Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli

Dang Hai Dang Nguyen1†, Sung-Hoon Park2†, Phuong Lan Tran3, Jung-Wan Kim4, Quang Tri Le5, Winfried Boos6, and Jong-Tae Park7*

1Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
2Research Institute of Food and Biotechnology, SPC Group, Seoul 08826, Republic of Korea
3Department of Food Technology, An Giang University, Vietnam
4Department of Biology, University of Incheon, Incheon 22012, Republic of Korea
5Faculty of Food Science, Tien Giang University, My Tho, Vietnam
6Department of Biology, University of Konstanz, Germany
7Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea

Introduction

As the most widespread polysaccharide in living cells, glycogen is present in all cells and tissues of animals, fungi, and bacteria. Many microorganisms accumulate glycogen as a carbon and energy reserve to cope with harsh environmental conditions. It is also known that Escherichia coli and Vibrio spp. accumulate glycogen in large quantities when grown under a shortage of nitrogen with an excess of carbon [1–7]. In contrast, cyanobacteria containing chlorophyll a...
Several studies have suggested that bacteria need glycogen to provide energy for survival, colonization, and virulence [9–12]. However, the degradation pathway of glycogen in bacteria remains unknown, although it has been well-studied in eukaryotes. In eukaryotes, the outer chains of glucose residues with DP (degree of polymerization) = 11–13 are first attacked by glycogen phosphorylase, which sequentially removes glucose via the formation of glucose-1-P (glc-1-P). The enzyme continues the phosphorolysis reaction until it reaches a location four glucose residues from the branch point, where its action stops, providing GlgP-limit dextrin for further degradation of the debranching enzyme. Then, the enzyme transfers three glucose residues of GlgP-limit dextrin to the neighboring glycogen-attached chain via the formation of branches of DP 7, which can be further shortened by GlgP, while the remaining glucosyl residue is hydrolyzed by the same enzyme. Therefore, the debranching enzymes in eukaryotes, such as animals and yeast, have been referred to as ‘indirect’ debranching enzymes in which the enzyme has both glucanotransferase and amylo-1,6-glucosidase activities [13]. In contrast, the bacterial debranching enzyme, known as a ‘direct’ debranching enzyme, catalyzes the hydrolysis of the α-1,6-glucosidic linkage of glycogen, releasing branch chains (DP=4) from glycogen, which was previously processed by GlgP. The debranching enzyme in *E. coli*, GlgX, which has a high substrate specificity for DP 4 branch, hydrolyzes the α-1,6 branch to release maltotetraose (G4). The further degradation of maltodextrins, such as G4, is assisted by MalQ (amylomaltase), which is known as a transferase and is involved in the elongation of maltose to maltodextrin. The resulting maltodextrins with DP>7 are phosphorolyzed glc-1-P by MalP (maltodextrin phosphorylase). In *E. coli*, however, there are two phosphorylase isoenzymes, MalP and GlgP (glycogen phosphorylase; Table 1 and Fig. 1). These two enzymes have been characterized to some extent with respect to their substrate specificity and mechanism. Under the assumption that the formation of glc-1-P by either GlgP or MalP is an essential step for glycogen breakdown, an enzyme (MalQ) possessing transferase activity appears to be required for linking the GlgX-released G4 and phosphorolysis reaction.

However, few details are available regarding the metabolism of the short maltodextrin, G4, in relation to MalQ, MalP and GlgP, and even less has been investigated regarding the mechanism for the concurrent action of the complex enzyme system [7]. Thus, we investigated the role of MalQ in vivo and in vitro as the transferring enzyme in glycogen breakdown and proposed a possible novel pathway of glycogen breakdown in *E. coli*.

Table 1. Enzymes involved in glycogen breakdown from various bacterial strains.

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Transferring enzyme</th>
<th>Debranching enzyme</th>
<th>Phosphorylase</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-GTase type</td>
<td>CGTase type</td>
<td>GlgX type</td>
<td>Pul type</td>
</tr>
<tr>
<td>Enteropathogenic bacteria</td>
<td>E. coli</td>
<td>O</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Salmonella</td>
<td>O</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Vibrio vulnificus</td>
<td>O</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Aeromonas</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Alteromonadales</td>
<td>Saccharophagus degradans</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Alteromonas macleodii</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Others</td>
<td>Bacillus subtilis</td>
<td>O</td>
<td>O</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>B. cereus</td>
<td>O</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sulfolobus solfatarius</td>
<td>O</td>
<td>O</td>
<td>4-8</td>
</tr>
<tr>
<td></td>
<td>Nostoc punctiforme</td>
<td>O</td>
<td>O</td>
<td>2-8</td>
</tr>
</tbody>
</table>

*GlgX type was defined on the basis of the specificity of *E. coli* debranching enzyme. GlgX is not a typical isoamylase but shows high activity with phosphorylase-limit dextrin [17] and only very little activity with native glycogen.

<: not determined

are able to produce glycogen in the absence of carbon [8]. Several studies have suggested that bacteria need glycogen to provide energy for survival, colonization, and virulence [9–12]. However, the degradation pathway of glycogen in bacteria remains unknown, although it has been well-studied in eukaryotes. In eukaryotes, the outer chains of glucose residues with DP (degree of polymerization) = 11-13 are first attacked by glycogen phosphorylase, which sequentially removes glucose via the formation of glucose-1-P (glc-1-P). The enzyme continues the phosphorolysis reaction until it reaches a location four glucose residues from the branch point, where its action stops, providing GlgP-limit dextrin for further degradation of the debranching enzyme. Then, the enzyme transfers three glucose residues of GlgP-limit dextrin to the neighboring glycogen-attached chain via the formation of branches of DP 7, which can be further shortened by GlgP, while the remaining glucosyl residue is hydrolyzed by the same enzyme. Therefore, the debranching enzymes in eukaryotes, such as animals and yeast, have been referred to as ‘indirect’ debranching enzymes in which the enzyme has both glucanotransferase and amylo-1,6-glucosidase activities [13]. In contrast, the bacterial debranching enzyme, known as a ‘direct’ debranching enzyme, catalyzes the hydrolysis of the α-1,6-glucosidic linkage of glycogen, releasing branch chains (DP=4) from glycogen, which was previously processed by GlgP. The debranching enzyme in *E. coli*, GlgX, which has a high substrate specificity for DP 4 branch, hydrolyzes the α-1,6 branch to release maltotetraose (G4). The further degradation of maltodextrins, such as G4, is assisted by MalQ (amylomaltase), which is known as a transferase and is involved in the elongation of maltose to maltodextrin. The resulting maltodextrins with DP>7 are phosphorolyzed glc-1-P by MalP (maltodextrin phosphorylase). In *E. coli*, however, there are two phosphorylase isoenzymes, MalP and GlgP (glycogen phosphorylase; Table 1 and Fig. 1). These two enzymes have been characterized to some extent with respect to their substrate specificity and mechanism. Under the assumption that the formation of glc-1-P by either GlgP or MalP is an essential step for glycogen breakdown, an enzyme (MalQ) possessing transferase activity appears to be required for linking the GlgX-released G4 and phosphorolysis reaction.

However, few details are available regarding the metabolism of the short maltodextrin, G4, in relation to MalQ, MalP and GlgP, and even less has been investigated regarding the mechanism for the concurrent action of the complex enzyme system [7]. Thus, we investigated the role of MalQ in vivo and in vitro as the transferring enzyme in glycogen breakdown and proposed a possible novel pathway of glycogen breakdown in *E. coli*.
Enterobacteriales (Escherichia coli)
\[
\text{malP} \otimes \text{malQ} \otimes \text{glaX} \otimes \text{glaP} \otimes \\
\text{glaC} \otimes \text{glaB} \otimes \\
\]

Pasteurellales
\[
\text{malQ} \otimes \text{glaB} \otimes \text{glaX} \otimes \text{glaC} \otimes \text{glaP} \otimes \\
\]

Vibrionales
\[
\text{malP} \otimes \text{malQ} \otimes \text{glaB} \otimes \text{glaX} \otimes \text{glaP} \otimes \\
\text{glaC} \otimes \\
\]

Aeromonadas (Aeromonas balmainica)
\[
\text{malP} \otimes \text{glaB} \otimes \text{glaX} \otimes \text{glaP} \otimes \text{glaC} \otimes \text{glaA} \otimes \\
\]

Alteromonadas (Pseudoalteromonas, SM9912)
\[
\text{malP} \otimes \text{glaB} \otimes \text{glaX} \otimes \text{glaP} \otimes \text{glaC} \otimes \text{glaA} \otimes \\
\]

Saccharophagus degradans 2-40
\[
\text{malP} \otimes \text{glaB} \otimes \text{glaX} \otimes \text{glaP} \otimes \text{glaC} \otimes \text{glaA} \otimes \\
\]

Fig. 1. Glycogen gene clusters in *Escherichia coli* and other bacteria.
Sources: *E. coli* [6], *Pasteurella*, *Vibrio anguillarum*, *Aeromonas balmainica* and *Pseudoalteromonas*, SM9912 [18], *Saccharophagus degradans* 2-40 [17]. In *E. coli*, *malQ* (encoding an amylomaltase) and *malP* (encoding a maltodextrin phosphorylase) are separated from a glycogen gene cluster that consists of *glaB* (encoding a branching enzyme), *glaX* (encoding a glycogen debranching enzyme), *glaC* (ADP-glucose pyrophosphorylase), *glaA* (glycogen synthase), and *glaP* (glycogen phosphorylase). In other bacteria, however, *malQ* is found in the same cluster as genes involved in glycogen metabolism. Genes and encoding proteins were experimentally analyzed or annotated by their encoding amino acid sequences.

Materials and Methods

Chemicals

Pure maltodextrin (purity ≥ 90%) from DP 3 to 10 was purchased from CARBOEXPERT Inc. (Korea)

Preparation of the MalQ Mutant of MC4100

The MalQ deletion strain was constructed according to the method of Park JT et al. [14]. The strain was cultured in M63 minimal salts supplemented with a specific carbon source at 37°C with shaking. The cells were harvested at various stage of cell growth. The collection and quantification was carried out as described previously by Park et al. [14]. The harvested cells were washed twice with cold water, resuspended in 50 mM sodium acetate (pH 4.5) and boiled for 10 min. The resuspension was then sonicated at room temperature. Glycogen in crude cell extract was collected by ethanol precipitation and centrifugation and air dried. The quantification of glycogen was calculated from the sum of peak areas in the HPAEC chromatogram and bovine glycogen standard curve.

Expression and Purification of MalQ

E. coli BL21 (DE3) was used as the host for the expression of plasmid pET29b-malQ encoding enzyme MalQ [14]. *E. coli* transformants were cultured in LB medium (1% Bacto tryptone, 0.5% yeast extract, and 0.5% NaCl) containing kanamycin (20 μg/ml) at 37°C for 12 h. Six-His-tagged MalQ was purified using an Ni-NTA column (1 × 4 cm, Ni-NTA Superflow; Qiagen, Hilden, Germany). The eluted target protein was concentrated using an ultrafiltration kit (Millipore, USA) and dialyzed against 50 mM Tris-HCl buffer (pH 7.5). The purity of the enzyme was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Overexpression and Purification of Glycogen Phosphorylase (GlpP)

The *glp* gene was amplified by PCR from genomic DNA of *E. coli* K12, with the addition of restriction sites (underlined below) required for cloning. The primers were GlgP/XbaI (5’-CGG AAA AAT CTA GAA CCC TTT GGC CCC GTT C-3’) and GlgP/NdeI (5’-GAA ACG CCC ATA TGA ATG CTC CGT TTA CAT ATT C-3’). The PCR product was digested with NdeI and XbaI, and ligated into identically cut pTKNdeXH. The resulting construct [pTKNdeXH_GlgP] was transformed into *E. coli* MC1061 transformants and transformants were cultured on LB medium with kanamycin (50 μg/ml). GlgP was purified by Ni-NTA chromatography, and enzyme activity on glycogen as the substrate was measured using high-performance anion exchange chromatography (HPAEC).

Expression and Purification of GlgX

A recombinant plasmid for expressing *E. coli* GlgX was constructed previously [15]. *E. coli* GlgX was expressed and purified following the method described by Song et al. [15]. After purification, *E. coli* GlgX was concentrated and dialyzed against 50 mM Tris-HCl buffer (pH 7.5). VV2_1226 gene encoding a glycogen debranching enzyme was amplified from *V. vulnificus* MO6-24/0 genomic DNA by PCR using forward (CAACCATAA CCATGG) and reverse (GAAAAAGTAAACTCGAG CGG AAA AAT CTA GAA CCC TTT GGC CCC GTT C-3’) primers. The amplified VV2_1226 gene was digested with restriction enzymes and ligated with [pTKNd6xH] and [pET29b_malQ encoding enzyme MalQ] requiring for cloning. The primers were GlgP/NdeI (5’-GAA ACG CCC ATA TGA ATG CTC CGT TTA CAT ATT C-3’). The PCR product was digested with NdeI and XbaI, and ligated into identically cut pTKNdeXH. The resulting construct [pTKNdeXH_GlgP] was transformed into *E. coli* MC1061 and transformants were cultured on LB medium with kanamycin (50 μg/ml). GlgP was purified by Ni-NTA chromatography, and enzyme activity on glycogen as the substrate was measured using high-performance anion exchange chromatography (HPAEC).
Synthesis of G4-β-CD [21]

Five milliliters of maltosyl transferase (TmMT) from Thermatoga maritima were added to a solution of 5% (w/v) maltosyl β-cyclodextrin (G2-β-CD: CARBOEXPERT Inc., Korea) and 10% (w/v) soluble starch in McIlvaine’s buffer (pH 6.5). The reaction proceeded at 70°C for three days. The solution was then heated to 100°C for 20 min to inactivate the enzyme and loaded onto a C18 Sep-Pak column (Waters, USA) to remove small oligosaccharides. Analysis was performed using high-performance liquid chromatography (HPLC).

Analysis of Reaction Products

The reaction was conducted at 37°C in 50 mM sodium-phosphate buffer (pH 6.5). GlgP-limit dextrin (1%) or G4-β-CD (0.5%) was mixed with various combinations of MalQ (20 mU/mg substrate), GlgX (20 mU/mg substrate), GlgP (20 mM/mg substrate), and MalP (20 mM/mg substrate).

For the specificity determination of branch chain length each GlgX was incubated with 1.0 mM branched β-CDs (DP 2-8), and at suitable time intervals an aliquot was boiled for 5 min to stop the reaction before being stored at 0°C.

(i) Thin-layer chromatography (TLC) analysis. Silica gel K5F TLC plates (Whatman, Maidstone, UK) were activated for 1 h at 110°C. Samples were spotted onto plates which were then placed in a TLC chamber containing n-butanol:ethanol:water (5:5:3 v/v/v). Chromatography was conducted at room temperature. Reducing sugars were detected using the naphtol–sulfuric acid (H_2SO_4) method. Each plate was thoroughly dried and dipped into a methanol solution containing 3 g N-(1-naphthyl)-ethylene-diamine and 50 ml concentrated H_2SO_4 per liter. Each plate was dried and placed in an oven at 110°C for 10 min. Purple–black spots appeared on a white background.

(ii) HPAEC. The reaction mixtures were boiled for 10 min, centrifuged at 12,000 × g for 10 min, and filtered using syringe filter (pore diameter 0.2 μm; Gelman Science, Ann Arbor, MI). Products were applied to a CarboPac PA-1 column (0.4 × 25 cm; Dionex, Sunnyvale, CA, USA) and analyzed on a HPAEC platform fitted with a pulsed amperometric detector (ED40; Dionex). Sixty-microliter aliquots of sample were injected. Elution was achieved using an NaOAc gradient in 150 mM NaOH (increasing from 60 to 180 mM NaOAc over 0–10 min, from 180 to 240 mM over 10–16 min, from 240 to 300 mM over 16–27 min, from 300 to 360 mM over 27–44 min, and from 360 to 372 mM over 44–55 min). The flow rate was 1 ml·min⁻¹.

Preparation of Phosphorylase (GlgP)-Limit Dextrin

The purified GlgP (75 μg/g glycogen) was added to 1% purified E. coli glycogen solution in 100 mM phosphate buffer (pH 7.0). The reaction was conducted in a dialysis tube with 100 mM phosphate buffer at 30°C. After a 24 h reaction, further GlgP (35 μg/g glycogen) was added to the same reaction mixture against the same buffer solution for 24 h. The reaction was stopped by boiling for 10 min and centrifuged for 20 min at 12,000 rpm. The limit dextrin formed was dialyzed against distilled water and freeze-dried. The glycogen phosphorylase limit dextrin was found to have a high content of G4 (Fig. 2).

Fig. 2. Preparation of GlgP-limit dextrin from glycogen using E. coli glycogen phosphorylase (a) and the analysis of the products by HPAEC (b).

Roles of MalP and GlgP in Glycogen Breakdown

To investigate the action of MalP and GlgP toward glc4, GlgP-limit dextrin was incubated with a mixture of MalP/GlgX or GlgP/GlgX. Both of the mixtures of MalP or GlgP with GlgX produced significant amounts of glc-1-P in which the rate of glc-1-P formation was higher in the mixture of GlgP/GlgX (1.75 mM min\(^{-1}\) \times 10\(^{-3}\)) than that of the MalP/GlgX (0.5 mM min\(^{-1}\) \times 10\(^{-3}\)) (Table 2). The results revealed that G4 released from the substrate, GlgP-limit dextrin, by GlgX was more efficiently phosphorylated by GlgP than MalP, demonstrating that under test conditions in which G4 was rich in the outer layer of glgP-limit dextrin, GlgP may access the branches of DP≥4 as a substrate, whereas MalP acts specifically toward the linear maltodextrins of DP >7 (Table 2).

Furthermore, the reaction mixture of GlgP/MalP/GlgX/GlgX had a higher reaction rate (2.417 mM min\(^{-1}\) \times 10\(^{-3}\)) than the reaction mixture without MalP (1.75 mM min\(^{-1}\) \times 10\(^{-3}\)) or without GlgP (0.5 mM min\(^{-1}\) \times 10\(^{-3}\)), indicating that both GlgP and MalP significantly enhanced the rate of glc-1-P formation.

MalQ and GlgX Share a High Specificity toward G4

To understand the transfer action mechanism of MalQ, the mixture of G4-β-CD and MalQ was reacted with and without G4. The TLC analysis clearly showed that the reaction in the presence of G4 produced a series of linear maltodextrins of DP >7 (Table 2).

To determine the substrate specificity of MalQ and the relationship to GlgX, various linear maltooligosaccharides of G3-G7 were incubated with MalQ, and the reaction products were analyzed by HPAEC. As shown in Fig. 3A, the analysis revealed various linear G3-G7 products, indicating that the substrates were disproportionately changed into shorter linear products or longer maltooligosaccharides by MalQ. In Fig. 3B, the decrease in substrate was plotted against reaction time, and the slope was determined as the initial velocity (v\(_i\)) of MalQ for various substrates. The v\(_i\) value for 0.19 μM/h (Fig. 3B) was highest among those in the range of 0.1-0.11 μM/h for G3, G5, and G6. The results indicated that MalQ had its highest affinity toward G4, demonstrating that G4 is the best substrate for the MalQ reaction.

A previous kinetic study and the 3-D structure of GlgX have shown that the GlgX of E. coli predominantly debranches the branch chain of G4 [15, 16]. Both MalQ and GlgX had a high specificity toward G4 in the form of linear or branch chains of glycogen, respectively, implicating an efficient cooperation in the glycogen degradation process.

MalQ Transfers Glucan Moieties from G4 Not Only to Other G4 Molecules but Also to the Branch Chain of Glycogen

To understand the transfer action mechanism of MalQ, the mixture of G4-β-CD and MalQ was reacted with and without G4. The TLC analysis clearly showed that the reaction in the presence of G4 produced a series of linear maltooligosaccharides with DP 2-7. Moreover, the reaction resulted in more β-CDs with various lengths of branch chains greater than G4, whereas reactions in the absence of glc4 produced fewer β-CDs with different branch lengths (Fig. 4). This suggests that G4 was transferred to other G4 molecules and/or to the branch chain, G4, of G4-β-CD by the transglycosylation reaction of MalQ. To determine

Table 2. Rates of glucose-1-P formation reactions by various combinations of glycogen breakdown enzymes.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>GlgP</th>
<th>MalP</th>
<th>GlgX</th>
<th>MalQ</th>
<th>Glucose-1-phosphate (mM)</th>
<th>Rate constant(^a) (mM⋅min(^{-1}) \times 10(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlgP-limit glycogen</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.002 ± 0.001</td>
<td>0.005 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.012 ± 0.001</td>
<td>0.033 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0.126 ± 0.012</td>
<td>0.307 ± 0.029</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>0.253 ± 0.028</td>
<td>0.493 ± 0.051</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0.013 ± 0.002</td>
<td>0.096 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.082 ± 0.009</td>
<td>0.279 ± 0.003</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>0.151 ± 0.011</td>
<td>0.434 ± 0.035</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0.472 ± 0.033</td>
<td>0.012 ± 0.079</td>
</tr>
<tr>
<td>G4-β-CD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o G4</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.010 ± 0.001</td>
<td>0.030 ± 0.112</td>
</tr>
<tr>
<td>w/ G4</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>0.100 ± 0.012</td>
<td>0.122 ± 0.011</td>
</tr>
</tbody>
</table>

\(^a\)Rate constants were calculated from the first 3 h reaction.
whether these products can be further phosphorylated by GlgP, GlgP was added to the reaction mixture, and the rate of glc-1-P formation was determined. As shown in Table 2, more glc-1-P (0.783 mM min$^{-1} \times 10^{-3}$) was produced in the presence of glc4 compared to that (0.167 mM min$^{-1} \times 10^{-3}$) in the absence of glc4. These results suggest that the transglycosylation reaction can occur with G4 and/or glycogen branch chains in a similar manner.

Fig. 3. Analyses of the reaction products (A) and the reaction rates (B) of MalQ with various maltooligosaccharides. In A, the initial concentration (7.8 μmol/ml) of each maltooligosaccharide was drawn in dotted lines. The reactions were conducted by adding MalQ (20 μM) in pH 6.5 sodium phosphate buffer (50 mM) for 1 h at 37°C, and the products were analyzed using HPAEC. Maltotriose (G3) to maltohexaose (G6) are indicated in the figure.

The reactions were conducted by adding MalQ (20 μM) in pH 6.5 sodium phosphate buffer (50 mM) for 1 h at 37°C, and the products were analyzed using HPAEC. Maltotriose (G3) to maltohexaose (G6) are indicated in the figure.

Fig. 4. Thin-layer chromatography (TLC) analysis (a) and schematic diagram (b) of the MalQ reaction with maltotetraosyl (G4)-β-CD in the presence (A) and absence (B) of G4.

The reactions were conducted in pH 6.5 sodium phosphate buffer (50 mM) at 37°C. In the diagram (b), branched β-CD (①) or G4 (② and ③) was used as a donor molecule in the transglycosylation reaction by MalQ. Maltodextrin standards (G1 to G8) are shown on the TLC analysis.
MalQ Enhances the Glycogen Breakdown Rate with the Cooperation of GlgX/GlgP/MalP

To investigate the effect of MalQ, various combinations of enzyme mixtures were tested in the presence and absence of MalQ. When GlgP-limit dextrin was incubated with a mixture of GlgX and GlgP in the absence and presence of MalQ, the rate of formation of glc-1-P was 2.88 mM min\(^{-1}\) \times 10^{-3} in the presence of MalQ, whereas in the absence of MalQ, it was 1.75 mM min\(^{-1}\) \times 10^{-3} (Table 2). Furthermore, the mixture of GlgP/MalP/GlgX yielded the highest reaction rate (4.85 mM min\(^{-1}\) \times 10^{-3}) in the presence of MalQ, which was considerably higher than in the absence of MalQ. All the pair combinations in the enzyme mixture significantly exhibited higher reaction rates in the presence of MalQ than in the absence of MalQ. The results clearly show that MalQ is involved in glycogen breakdown in \(E. coli\). Based on these data, we suggest that MalQ is responsible for the transfer of the glucan moiety from GlgX-released G4 to other G4 molecules and/or branch chains in GlgP-limit dextrin that can then be further phosphorylated by GlgP and/or MalP.

In the absence of GlgP, such as in \(Vibrio\) spp., MalP likely controls glycogen degradation and vice versa in bacteria missing MalP, such as \(Alteromonadales\) [17]. Therefore, in most \(Vibrio\) spp. that lack GlgP (Table 1 and Figs. 1 and 5), G4 released from GlgP-limit glycogen (probably from the host cell) by GlgX is first elongated by MalQ and then degraded by MalP (Figs. 1 and 5). The results indicate that, as previously reported, the absence of GlgP in some gammaproteobacterial species (Fig. 1) could be compensated for by other enzymes that are capable of exerting the same effect, such as MalP [18]. Daumillé et al. also postulated that the phosphorylase-limit dextrin is acted upon by GlgX to yield mainly G4, and the resulting G4 is thought to be disproportionately broken down by MalQ to maltodextrin, providing a substrate that is depolymerized into glc-1-P by MalP [16]. In contrast, \(E. coli\) and \(Salmonella\), which possess both GlgP and MalP, have an efficient glycogen breakdown system that involves the cooperation of the two enzymes, GlgP and MalP (Fig. 5).

MalQ Mutant Accumulates More Glycogen when Grown on Glucose

To understand glycogen production and degradation during growth of \(E. coli\) in vivo, the glycogen content was determined at different culture times for the MalQ mutant. As shown in Fig. 6, the cell growth rates were similar in both MalQ mutant and wild-type MC 4100. In Fig. 6B, however, the glycogen content of the MalQ mutant was 0.18 mg/ml at 9 h of culture and 0.15 mg/ml at 10 h of culture, whereas those of the wild-type strain were 0.092 mg/ml and 0.06 mg/ml, respectively. The results, that are well correspondent with previous study [14],

![Fig. 5. Schematic diagram of glycogen breakdown in \(E. coli\).](image)

When maltotetraose (G4) is released by GlgX from GlgP-limit glycogen, the G4 residue of free maltotetraose can be transferred to another glycogen external branch chain (2) or disproportionate within linear maltodextrins (1) by MalQ. The elongated products are efficiently degraded by GlgP or MalP.

Fig. 6. Cell growth (A) and glycogen content (B) of wild-type and \(\Delta\)malQ \(E. coli\) at various culture times.
indicate that MalQ is involved in glycogen breakdown in the wild type, whereas glycogen breakdown was slowed in the absence of MalQ.

Discussion

Efficient Cooperation of GlgX and MalQ in Glycogen Breakdown

Previous studies have revealed that the GlgX-type debranching enzyme in enteropathogenic bacterial strains has a high specificity for the hydrolysis of chains consisting of three or four glucose residues, such as GlgP-limit dextrin [15, 16]. From the 3D-structure of GlgX, it is clear that a physical barrier exists in the substrate-binding groove, which is suitable only for G4 present in the outer layer of GlgP-limit dextrin [15]. *Salmonella enterica* hydrolyzes the α-1,6-glucosidic linkages in glycogen, which have been partially depolymerized by GlgP, indicating that the enzyme may have a high specificity toward G4 [19]. *V. vulnificus* also has a high branch chain preference for G4 (data not shown). The data above suggest that the debranching enzyme from enteropathogenic bacteria preferentially hydrolyze short branch chains, such as G4, and rarely attack the longer branch chains in glycogen (Table 1). As MalQ shares with GlgX the highest specific activity toward G4 (Fig. 3), GlgX and MalQ cooperatively trigger the continuous breakdown of GlgP-limit dextrin into glc-1-P.

Substrate Specificities of GlgP and MalP in MalQ-Assisted Glycogen Breakdown

In *E. coli*, the amino acid sequence of MalP has 45% similarity with that of GlgP. *E. coli* MalP prefers linear maltodextrins with DP 7, whereas its activity with glycogen is 90% lower. In contrast, the activity of *E. coli* GlgP with glycogen is four-fold higher than with maltodextrin. This indicates that GlgP and MalP differ in substrate specificity and regulation depending on the conditions in the cell [6, 20]. The data in Table 2 showed that GlgP appears to have relatively high activity toward maltodextrins, including amylose, compared to MalP. Assuming that GlgP can phosphorylate G4 more efficiently than MalP, GlgP can be involved in the phosphorylation of both G4 and longer maltodextrins in the presence of MalQ. In addition, the G4 released from GlgP-limit glycogen by GlgX can be reincorporated into glycogen branch chains, generating glycogen molecules with longer branch chains, greater than DP 4, that can be further phosphorylated by GlgP. This type of glucanotransferase transglycosylation is well-known in starch modification [21]. Several bacterial 4-α-glucanotransferases, which show comparable substrate specificity to MalQ, catalyze the transfer of the glucan moiety from amylose to amylopectin branch chains, rearranging the branch chain lengths of amylopectin [22, 23]. The reincorporation of the glucan moiety G4 may possibly be beneficial to reduce the high osmotic pressure when G4 is released in excess into the cytosol.

A Proposed Pathway for the Breakdown of Glycogen in *E. coli*

An efficient model for the breakdown pathway in *E. coli* is proposed in Fig. 7. The outer glucose-branch chains of glycogen that were previously processed by GlgP are preferentially debranched by GlgX, releasing G4, which is immediately elongated by MalQ into longer maltodextrins of > DP 5 or incorporated into other branch chains of glycogen and then further exposed to MalP /or GlgP phosphorolysis, respectively (Fig. 5). In some bacteria lacking MalP, such as *Saccharophagus degradans* 2-40 and *Pseudoalteromonas*, SM9912 (Alteromonadales), the degradation of glycogen may be controlled predominantly by GlgP [17]. In contrast, *Vibrio* spp. lacking GlgP may use the MalP-controlled pathway. Of the enzymes involved in glycogen

![Fig. 7. A proposed model of the glycogen breakdown pathway in *E. coli*. MalQ catalyzes the transglycosylation of maltotetraose released from glycogen by GlgX, which is involved in glycogen degradation along with GlgP and/or MalP.](image-url)
breakdown, the GlgX-type debranching enzymes are conserved in enterobacteria, while the pullulanase-type debranching enzymes are present in Bacillus and others. As mentioned earlier, GlgX-type enzymes have a high specificity toward the DP 4 branch chain, but the pullulanase enzymes have specificity for a broad range of branch chain lengths (DP 3-7). Thus, enterobacteria possibly follow the proposed pathway of glycogen breakdown.

Evolutionary Arrangements of Glycogen Genes, Including MalQ, GlgP and MalP

Free-living bacteria have a complete set of glycogen enzymes. The minimal set includes one enzyme from each of the GT5, GT35, and GH13 families, which is probably sufficient for the management of simple glycogen metabolism [23]. Comparative genomic analyses of gammaproteobacterial glg genes have shown that the glg gene arrangement of these bacterial groups is remarkably conserved in the E. coli glycogen glgBXCAP operon, although an absence of GlgP or MalP is found in some gammaproteobacterial species [18; Fig. 1 and Table 1]. Thus, E. coli may share a common glycogen breakdown pathway with some phylogenetically-close gammaproteobacteria. In addition, a comparison of the enzymes involved in glycogen breakdown between Enterobacter (pathogens) and Bacillus indicated that intracellular MalQ is conserved in Eubacteria, while there are extracellular CGTases in Bacillus (Table 1), indicating that the glycogen degradation pathway can differ between E. coli and Bacillus [24].

A neighbor-joining tree indicated a high similarity (70–77%) among E. coli, Vibrio cholera, and Aeromonas species based on both proteins and genes [25, 26]. Furthermore, a phylogenetic analysis of the E. coli glycogen operon and Enterobacter revealed that glg BXCAP is highly conserved in Enterobacter and Pasteurellales, indicating that it shares a common origin by horizontal gene transfer [18]. Vibrionales lacks glgP, whereas MalQ and MalP are located in close proximity in the same cluster [27]. Therefore, both MalQ and MalP are likely to function cooperatively in glycogen breakdown in Vibrio spp. Similarly, we suggest that MalQ is involved, along with MalP and/or GlgP, in the glycogen breakdown pathway in E. coli. This agrees with the fact that MalQ plays an important role in glycogen synthesis when grown on maltose-containing media [14].

On the other hand, the phylogenetic analysis of the glg genes reveals that MalQ is clustered in the glgBXCAP arrangement in E. coli and enteropathogenic species. In E. coli, however, the MalQ gene is physically separated from the glgBXCAP operon, whereas in Pasteurellales and Vibrionales, it is located in the same transcriptional operon as glg8X and glgBXCAP, respectively [18]. Moreover, representative Aeromonadales, Alteromonadales species and Saccharophagus degradans conserve the arrangement of malQglgBX in the same cluster. A phylogenetic analysis, with a comparison of the glg genes cluster, suggests that MalQ would efficiently cooperate with GlgX and GlgP, being located in the same cluster, to rapidly adapt the metabolism to environmental changes and biochemical needs [28–30].

Intriguingly, recent investigations of host-pathogen interactions have revealed that complex carbohydrates such as glycogen may serve as key carbon sources for infection of microbes, being involved in complex carbohydrate binding, transport, and metabolism, and contribute to microbial pathogenesis [13, 31–36]. Thus, the available data regarding microbial glycogen breakdown, including in the pathogens, may provide important insight into hostpathogen interactions.

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2015R1D1A1A01058005).

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

