Articles Service
Research article
Deficiency in Opu Systems Imparts Salt-Sensitivity to Weizmannia coagulans
1Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
2Pulmuone Institute of Technology, Cheongju 28220, Republic of Korea
3Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
J. Microbiol. Biotechnol. 2024; 34(7): 1443-1451
Published July 28, 2024 https://doi.org/10.4014/jmb.2404.04016
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
Introduction
The Qualified Presumption of Safety (QPS) system of the European Union Food Safety Authority was introduced to assess the safety of food and feed microorganisms [15], and
Most research on
Materials and Methods
Bacterial Strains and Culture Conditions
The strains and plasmids used in this study are listed in Table 1.
-
Table 1 . Bacterial strains and plasmids used in this study.
Strain/plasmid Relevant characteristic(s) Source or reference Strain W. coagulans KCTC 3625T Weizmannia coagulans type strain, wild-type strainKorean Collection for Type Cultures (KCTC), South Korea ASRS217 Potential starter candidate, isolated from rice straw [17] B. licheniformis KCCM 12145T Bacillus licheniformis type strainKorean Culture Center of Microorganisms (KCCM), South Korea 0DA23-1 Potential starter candidate, isolated from commercial doenjang [18] B. siamensis KCTC 13613T B. siamensis type strainKCTC, South Korea B28 Potential starter candidate, isolated from kimchi [19] B. subtilis KCCM 32835T B. subtilis type strainKCCM, South Korea SRCM102748 Isolated from kimchi SRCM, South Korea ISW1214 hsrM1, leuA8, metB5, Tet5 Takara Bio, Japan B. velezensis KCTC 13012T B. velezensis type strainKCTC, South Korea DMB07 Isolated from fermented soybean Unpublished results E. coli DH5α Escherichia coli , cloning host for recombinant plasmidsStratagene, USA BL21 (DE3) E. coli recA + strain, host for protein expressionNEB, USA Plasmid pLipSM E. coli –Bacillus shuttle vector, cloning vector, Ampr, Kanr[20] pL-opuA pLipSM derivative containing opuA operonThis study pL-opuB pLipSM derivative containing opuB operonThis study pL-opurB pLipSM derivative containing yvaV andopuB operonThis study pL-opuD pLipSM derivative containing opuD This study pL-opuE pLipSM derivative containing opuE This study pYJ335 E. coli –staphylococcal shuttle vector, Ampr, Eryr[21] pYJ-opuA pYJ335 derivative containing opuA operonThis study pYJ-opuB pYJ335 derivative containing opuB operonThis study pYJ-opurB pYJ335 derivative containing yvaV andopuB operonThis study pYJ-opuD pYJ335 derivative containing opuD This study pYJ-opuE pYJ335 derivative containing opuE This study
Comparative Genomic Analyses
For comparative genomic analysis of
-
Table 2 . Genomic features of strains of
Weizmannia coagulans and fourBacillus species.Species Strain Size (bp) G+C content (mol%) Origin Country Accession no. Reference W. coagulans KCTC 3625T 3,366,995 46.90 Dairy (evaporated milk) USA NZ_CP009709 [22] ASRS217 3,514,330 46.47 Rice straw South Korea NZ_CP058594 [23] HM-08 3,624,641 46.30 Healthy chicken intestine China NZ_CP010525 [24] IDCC1201 3,664,215 46.20 Green malt South Korea NZ_CP035305 [9] DSM 2314 3,628,651 46.24 Rhizosphere unknown NZ_CP033687 [25] B. licheniformis KCCM 12145T 4,222,597 46.20 Unknown unknown NZ_CP034569 [26] 0DA23-1 4,405,373 46.00 Doenjang South Korea NZ_CP031126 [27] 14ADL4 4,332,232 45.90 Doenjang South Korea NZ_CP026673 [18] MCC 2514 4,230,480 46.20 Raw milk (sheep) India NZ_CP038186 [28] TCCC 11148 4,341,076 45.90 Soil unknown NZ_CP033218 [29] B. siamensis KCTC 13613T 3,779,696 46.30 Salted crab South Korea AJVF01000000-51 [30] B28 3,946,178 45.89 Kimchi South Korea NZ_CP066219-21 [19] SCSIO 05746 4,268,316 45.98 Sea mud Indian Ocean NZ_CP025001 [31] B. subtilis KCCM 32835T 4,215,607 43.34 Soil under a mango tree unknown NZ_CP020102-3 [32] SRCM102748 4,210,797 43.60 Kimchi South Korea NZ_CP028212 [33] PS832 4,215,367 43.50 Soil unknown NZ_CP010053 [34] HRBS-10TDI13 4,186,269 43.29 Soybean paste South Korea NZ_CP015222 - GFR-12 4,202,955 43.30 Chung-gook-jang South Korea NZ_CP032852 [35] B. velezensis KCTC 13012T 4,034,335 46.30 River Velez Spain NZ_LLZC01000001-24 [36] DMB05 3,262,563 46.25 Meju South Korea NZ_CP083715-7 [37] DMB06 4,157,945 46.20 Doenjang South Korea NZ_CP083763 [38] DMB07 4,157,945 45.60 Meju South Korea NZ_CP083764 - KMU01 3,932,437 46.50 Kimchi South Korea NZ_CP063768 [39] - mean that there are no papers published
DNA Cloning and Transformation
Plasmids and genomic DNA of
Genes related to the Opu system from
-
Table 3 . Oligonucleotides used in this study.
Oligonucleotide Sequence (5 → 3)a Use Amplified size (bp) plipSM vector opuAA -Bam HI-F’CG GGATCC GCCTGATAAAAGCCCGGTTTCCopuAA upstream3,367 opuAC -Sma I-R’TCC CCCGGG GGATGAACCTCTTGTGACAACCopuAC downstreamopuBA -Bam HI-F’CGC GTCGAC GCTCATTTGATTACCCCTCTGCopuBA upstream3,747 opuBD -Sal I-R’CG GGATCC CCGGTCAATACGGGTAAATCopuBD downstreamyvaV -Bam HI-F’CG GGATCC GAAAAAACGAACCAAAGCGCCGyvaV downstream4,405 opuD -Bam HI-F’CG GGATCC CGTCCCCGTTGATAATTGACCopuD upstream1,787 opuD -Sal I-R’ACGC GTCGAC CCTGTGATCCTGAAGGTGAGCopuD downstreamopuE -Eco RI-F’CG CAATTC GGTTTAGTAACCATAGCCGGCopuE upstream1,746 opuE -Bam HI-R’CG GGATCC GCTCAATTTGCACAGCACCTCCopuE downstreamplipSM-check-F’ CCAGCCGAAAGAAGCCAAAGC Hpa II promoter downstream, upstream of insertion site pYJ335 vector opuAA -Kpn I-F’CC GGTACC GCCTGATAAAAGCCCGGTTTCCopuAA upstream3,367 opuAC -Kpn I-R’CC GGTACC GGATGAACCTCTTGTGACAACCopuAA downstreamopuBA -Kpn I-F’CC GGTACC GCTCATTTGATTACCCCTCTGCopuBA upstream3,747 opuBD -Kpn I-R’CC GGTACC CCGGTCAATACGGGTAAATCopuBD downstreamyvaV -Kpn I-F’CC GGTACC GAAAAAACGAACCAAAGCGCCGyvaV downstream4,405 opuD -Kpn I-F’CC GGTACC CGTCCCCGTTGATAATTGACCopuD upstream1,787 opuD -Kpn I-R’CC GGTACC CCTGTGATCCTGAAGGTGAGCopuD downstreamopuE -Kpn I-F’CC GGTACC GGTTTAGTAACCATAGCCGGCopuE upstream1,746 opuE -Kpn I-R’CC GGTACC GCTCAATTTGCACAGCACCTCCopuE downstreampYJ335-check-F’ GCGATTAAGTTGGGTAACGC Kpn I site upstream of pYJ335aRestriction sites are underline.
Determination of Salt Tolerance
Salt tolerance of the strains in this study was determined by examining growth on TSA supplemented with up to 14% NaCl (w/v, final concentration). Growth on 0.5% (the NaCl concentration in normal TSA), 3.5%, 7%, 10.5%, and 14% NaCl was determined after incubation for 1, 2, 3, 4, and 5 days. The experiment was performed three times, independently.
Results and Discussion
Growth of W. coagulans on TSA
-
Fig. 1. Effect of NaCl on growth of
Weizmannia coagulans and fourBacillus species. Tryptic soy agar (TSA) containing 0%–7% (w/v) NaCl was used for the detection of growth. Strains: W1,W. coagulans KCTC 3625T; W2,W. coagulans ASRS217; L1,B. licheniformis KCCM 12145T; L2,B. licheniformis 0DA23-1; Si1,B. siamensis KCTC 13613T; Si2,B. siamensis B28; Su1,B. subtilis KCCM 32835T; Su2,B. subtilis SRCM102748; V1,B. velezensis KCTC 13012T; V2,B. velezensis DMB07.
Comparative Genomic Analysis of Salt Tolerance
To resist osmotic stress, many bacteria accumulate compatible solutes such as choline, glycine betaine, and proline betaine through uptake from outside the cell via transporters including osmoprotectant uptake (Opu) transporter [51, 52]. The Opu system is known to be involved in salt resistance [51].
-
Fig. 2. Predicted mechanism of salt-sensitivity of
W. coagulans based comparative genomic analysis with fourBacillus species. Compatible solutes are depicted in black text in yellow boxes. Color coding indicates which species contain whichopu genes.
Opu Systems Enhance the Salt Tolerance of B. subtilis
As a result of the comparative genome analysis, the salt-sensitivity of
-
Fig. 3. Construction of pLip-SM-derived plasmids containing
opu genes fromB. velezensis DMB07 (A) and salt-tolerance ofB. subtilis containing these plasmids (B). TSA containing up to 14% NaCl (w/v, final concentration) was used for the detection of growth.
Because
Opu Systems Confer Salt Tolerance to W. coagulans
pLipSM-based plasmids produced in
-
Fig. 4. Construction of pYJ335-derived plasmids containing
opu genes fromB. velezensis DMB07 (A) and salt-tolerance ofW. coagulans containing these plasmids (B). de Man, Rogosa, and Sharpe medium containing up to 10.5% NaCl (w/v, final concentration) was used for the detection of growth.
In previous studies, 67.7% and 71.0% of
Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) [NRF-2022M3A9I3082364].
Conflict of Interest
The authors have no financial conflicts of interest to declare.
References
- Hammer BW. 1915. Bacteriological studies on the coagulation of evaporated milk (Vol. 17). Agricultural Experiment Station, Iowa State College of Agriculture and Mechanic Arts.
- Gupta RS, Patel S, Saini N, Chen S. 2020. Robust demarcation of 17 distinct
Bacillus species clades, proposed as novelBacillaceae genera, by phylogenomics and comparative genomic analyses: description ofRobertmurraya kyonggiensis sp. nov. and proposal for an emended genusBacillus limiting it only to the members of theSubtilis andCereus clades of species.Int. J. Syst. Evol. Microbiol. 70 : 5753-5798. - Konuray G, Erginkaya Z. 2018. Potential use of
Bacillus coagulans in the food industry.Foods 7 : 92. - Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C,
et al . 2016. ProbioticBacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery.Peer J. 4 : e2276. - Majeed M, Majeed S, Nagabhushanam K, Natarajan S, Sivakumar A, Ali F. 2016. Evaluation of the stability of
Bacillus coagulans MTCC 5856 during processing and storage of functional foods.Int. J. Food Sci. Technol. 51 : 894-901. - Ratna Sudha, M Yelikar KA, Deshpande S. 2012. Clinical study of
Bacillus coagulans unique IS-2 (ATCC PTA-11748) in the treatment of patients with bacterial vaginosis.Indian J. Microbiol. 52 : 396-399. - Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives.
Front. Microbiol. 8 : 1490. - Maity C, Gupta AK, Saroj DB, Biyani A, Bagkar P, Kulkarni J,
et al . 2021. Impact of a gastrointestinal stable probiotic supplementBacillus coagulans LBSC on human gut microbiome modulation.J. Diet. Suppl. 18 : 577-596. - Bang WY, Ban OH, Lee BS, Oh S, Park C, Park MK,
et al . 2021. Genomic-, phenotypic-, and toxicity-based safety assessment and probiotic potency ofBacillus coagulans IDCC 1201 isolated from green malt.J. Ind. Microbiol. Biotechnol. 48 : kuab026. - Lee B, Lee H, Jeong DW, Lee JH. 2015. A rapid isolation method for
Bacillus coagulans from rice straw.Microbiol. Biotechnol. Lett. 43 : 401-404. - Shudong P, Guo C, Wu S, Cui H, Suo H, Duan Z. 2022. Bioactivity and metabolomics changes of plant-based drink fermented by
Bacillus coagulans VHProbi C08.LWT - Food Sci. Technol. 153 : 113030. - Babu KR, Satyanarayana T. 1995. α-Amylase production by thermophilic
Bacillus coagulans in solid state fermentation.Process Biochem. 30 : 305-309. - Olajuyigbe FM, Ehiosun KI. 2013. Production of thermostable and organic solvent-tolerant alkaline protease from
Bacillus coagulans PSB-07 under different submerged fermentation conditions.Afr. J. Biotechnol. 12 : 3341-3350. - Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by
Bacillus coagulans I4.Appl. Environ. Microbiol. 66 : 5213-5220. - EFSA. 2007. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA.
EFSA J. 587 : 1-16. - Heo S, Kim T, Na HE, Lee G, Park JH, Park HJ,
et al . Safety assessment systems for microbial starters derived from fermented foods.J. Microbiol. Biotechnol. 32 : 1227-1233. - Kim YS, Lee J, Heo S, Lee JH, Jeong DW. 2021. Technology and safety evaluation of
Bacillus coagulans exhibiting antimicrobial activity for starter development.LWT - Food Sci. Technol. 137 : 110464. - Jeong DW, Lee B, Lee J H. 2018. Complete genome sequence of
Bacillus licheniformis 14ADL4 exhibiting resistance to clindamycin.Korean J. Microbiol. 54 : 169-170. - Heo S, Kim JH, Kwak MS, Jeong DW, Sung MH. 2021. Functional genomic insights into probiotic
Bacillus siamensis strain B28 from traditional Korean fermented kimchi.Foods 10 : 1906. - Lee MH, Song JJ, Choi YH, Hong SP, Rha E, Kim HK,
et al . 2003. High-level expression and secretion ofBacillus pumilus lipase B26 inBacillus subtilis Chungkookjang.J. Microbiol. Biotechnol. 13 : 892-896. - Ji Y, Marra A, Rosenberg M, Woodnutt G. 1999. Regulated antisense RNA eliminates alpha-toxin virulence in
Staphylococcus aureus infection.J. Bacteriol. 181 : 6585-6590. - Johnson SL, Bishop-Lilly KA, Ladner JT, Daligault HE, Davenport KW, Jaissle J,
et al . 2015. Complete genome sequences for 59Burkholderia isolates, both pathogenic and near neighbor.Genome Announc. 3 : e00159-15. - Lee J, Heo S, Kim Y S, Lee JH, Jeong DW. 2020. Complete genome sequence of
Bacillus coagulans strain ASRS217, a potential food fermentation starter culture.Korean J. Microbiol. 56 : 321-323. - Yao G, Gao P, Zhang W. 2016. Complete genome sequence of probiotic
Bacillus coagulans HM-08: a potential lactic acid producer.J. Biotechnol. 228 : 71-72. - Maas RH, Bakker RR, Jansen ML, Visser D, Jong E, Eggink G,
et al . 2008. Lactic acid production from lime-treated wheat straw byBacillus coagulans : neutralization of acid by fed-batch addition of alkaline substrate.Appl. Microbiol. Biotechnol. 78 : 751-758. - Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M,
et al . 2004. Complete genome sequence of the industrial bacteriumBacillus licheniformis and comparisons with closely relatedBacillus species.Genome Biol. 5 : R77. - Jeong DW, Lee B, Heo S, Jang M, Lee JH. 2018. Complete genome sequence of
Bacillus licheniformis strain 0DA23-1, a potential starter culture candidate for soybean fermentation.Korean J. Microbiol. 54 : 453-455. - Rohith HS, Halami PM. 2021. The combined effect of potential probiotic
Bacillus licheniformis MCC 2514 andBifidobacterium breve NCIM 5671 towards anti-inflammatory activity on HT-29 cell lines.Probiotics Antimicrob. Proteins 15 : 351-362. - Yuan F, Li K, Zhou C, Zhou H, Liu H, Chai H,
et al . 2020. Identification of two novel highly inducible promoters fromBacillus licheniformis by screening transcriptomic data.Genom 112 : 1866-1871. - Jeong H, Jeong DE, Kim SH, Song GC, Park SY, Ryu CM,
et al . 2012. Draft genome sequence of the plant growth-promoting bacteriumBacillus siamensis KCTC 13613T.J. Bacteriol. 194 : 4148-4149. - Pan H, Tian X, Shao M, Xie Y, Huang H, Hu J,
et al . 2019. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities ofBacillus siamensis SCSIO 05746.Appl. Microbiol. Biotechnol. 103 : 4153-4165. - Nye TM, Schroeder JW, Kearns DB, Simmons LA. 2017. Complete genome sequence of undomesticated
Bacillus subtilis strain NCIB 3610.Genome Announc. 5 : e00364-17. - Iqbal S, Ullah N, Janjua HA. 2021.
In vitro evaluation and genome mining ofBacillus subtilis strain RS10 reveals its biocontrol and plant growth-promoting potential.Agriculture 11 : 1273. - Grela A, Jamrozek I, Hubisz M, Iwanicki A, Hinc K, Kazmierkiewicz R,
et al . 2018. Positions 299 and 302 of the GerAA subunit are important for function of the GerA spore germination receptor inBacillus subtilis .PLoS One 13 : e0198561. - Heo J, Kim JS, Hong SB, Park BY, Kim SJ, Kwon SW. 2019. Genetic marker gene,
recQ , differentiatingBacillus subtilis and the closely relatedBacillus species.FEMS Microbiol. Lett. 366 : fnz172. - Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016.
Bacillus velezensis is not a later heterotypic synonym ofBacillus amyloliquefaciens ;Bacillus methylotrophicus ,Bacillus amyloliquefaciens subsp.plantarum and 'Bacillus oryzicola ' are laterheterotypic synonyms ofBacillus velezensis based on phylogenomics.Int. J. Syst. Evol. Microbiol. 66 : 1212-1217. - Na HE, Heo S, Kim T, Lee G, Lee JH, Jeong DW. 2023. ComQXPA quorum-sensing systems contribute to enhancing the protease activity of
Bacillus velezensis DMB05 from fermented soybeans.Int. J. Food Microbiol. 401 : 110294. - Na HE, Heo S, Kim YS, Kim T, Lee G, Lee JH,
et al . 2022. The safety and technological properties ofBacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis.LWT - Food Sci. Technol. 161 : 113398. - Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic
Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi.Foods 10 : 563. - Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA,
et al . 2008. The RAST Server: rapid annotations using subsystems technology.BMC Genom. 9 : 75. - Darzi Y, Letunic I, Bork P, Yamada T. 2018. iPath3.0: interactive pathways explorer v3.
Nucleic Acids Res. 46 : W510-W513. - Abbas BA, Khudor MH, Saeed BMS. 2014. Detection of
hbl ,nhe andbceT toxin genes inBacillus cereus isolates by multiplex PCR.Int. J. Curr. Microbiol. Appl. Sci. 3 : 1009-1016. - Hanahan D, Meselson M. 1983. Plasmid screening at high colony density.
Methods Enzymol. 100 : 333-342. - Kraemer GR, Iandolo JJ. 1990. High-frequency transformation of
Staphylococcus aureus by electroporation.Curr. Microbiol. 21 : 373-376. - Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food.
J. Microbiol. Biotechnol. 24 : 648-660. - Jeong DW, Jeong M, Lee JH. 2017. Antibiotic susceptibilities and characteristics of
Bacillus licheniformis isolates from traditional Korean fermented soybean foods.LWT - Food Sci. Technol. 75 : 565-568. - Kim T, Heo S, Na HE, Lee G, Kim JH, Kwak MS,
et al . 2022. Bacterial community of galchi-baechu kimchi based on culturedependent and -independent investigation and selection of starter candidates.J. Microbiol. Biotechnol. 32 : 341-347. - Kim YS, Kim MC, Kwon SW, Kim SJ, Park IC, Ka JO,
et al . 2011. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods.J. Microbiol. Biotechnol. 49 : 340-348. - Jeon HH, Jung JY, Chun BH, Kim MD, Baek SY, Moon JY,
et al . 2016. Screening and characterization of potentialBacillus starter cultures for fermenting low-salt soybean paste (Doenjang).J. Microbiol. Biotechnol. 26 : 666-674. - Lee MY, Park SY, Jung KO, Park KY, Kim SD. 2005. Quality and functional characteristics of chungkukjang prepared with various
Bacillus sp. isolated from traditional chungkukjang.J. Food Sci. 70 : M191-M196. - Hoffmann T, Bremer E. 2017. Guardians in a stressful world: the Opu family of compatible solute transporters from
Bacillus subtilis .Biol. Chem. 398 : 193-214. - Heo S, Lee J, Lee JH, Jeong DW. 2019. Genomic insight into the salt tolerance of
Enterococcus faecium ,Enterococcus faecalis andTetragenococcus halophilus .J. Microbiol. Biotechnol. 29 : 151-1602. - Peterbauer C, Maischberger T, Haltrich D. 2011. Food-grade gene expression in lactic acid bacteria.
Biotechnol. J. 6 : 1147-1161. - Wang L, Xue Z, Zhao B, Yu B, Xu P, Ma Y. 2013. Jerusalem artichoke powder: a useful material in producing high-optical-purity Llactate using an efficient sugar-utilizing thermophilic
Bacillus coagulans strain.Bioresour. Technol. 130 : 174-180. - Xing SC, Chen JY, Lv N, Mi JD, Chen WL, Liang JB,
et al . 2018. Biosorption of lead (Pb2+) by the vegetative and decay cells and spores ofBacillus coagulans R11 isolated from lead mine soil.Chemosphere 211 : 804-816.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2024; 34(7): 1443-1451
Published online July 28, 2024 https://doi.org/10.4014/jmb.2404.04016
Copyright © The Korean Society for Microbiology and Biotechnology.
Deficiency in Opu Systems Imparts Salt-Sensitivity to Weizmannia coagulans
Tao Kim1,2, Sojeong Heo1, Jong-Hoon Lee3, and Do-Won Jeong1*
1Department of Food and Nutrition, Dongduk Women’s University, Seoul 02748, Republic of Korea
2Pulmuone Institute of Technology, Cheongju 28220, Republic of Korea
3Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
Correspondence to:Do-Won Jeong, jeongdw@dongduk.ac.kr
Abstract
Weizmannia coagulans can be used as a starter strain in fermented foods or as a probiotic. However, it is salt-sensitive. Here, W. coagulans genomes were compared with the genomes of strains of Bacillus species (B. licheniformis, B. siamensis, B. subtilis, and B. velezensis) that were isolated from fermented foods and show salt tolerance, to identify the basis for the salt-sensitivity of W. coagulans. Osmoprotectant uptake (Opu) systems transport compatible solutes into cells to help them tolerate osmotic stress. B. siamensis, B. subtilis, and B. velezensis each possess five Opu systems (OpuA, OpuB, OpuC, OpuD, and OpuE); B. licheniformis has all except OpuB. However, W. coagulans only has the OpuC system. Based on these findings, the opuA and opuB operons, and the opuD and opuE genes, were amplified from B. velezensis. Expression of each of these systems, respectively, in W. coagulans increased salt-tolerance. W. coagulans expressing B. velezensis opuA, opuD, or opuE grew in 10.5% NaCl (w/v), whereas wild-type W. coagulans could not grow in 3.5% NaCl. The salt resistance of B. subtilis was also increased by overexpression of B. velezensis opuA, opuB, opuD, or opuE. These results indicate that the salt-susceptibility of W. coagulans arises because it is deficient in Opu systems.
Keywords: Weizmannia coagulans, salt tolerance, Bacillus, Opu system, genome
Introduction
The Qualified Presumption of Safety (QPS) system of the European Union Food Safety Authority was introduced to assess the safety of food and feed microorganisms [15], and
Most research on
Materials and Methods
Bacterial Strains and Culture Conditions
The strains and plasmids used in this study are listed in Table 1.
-
Table 1 . Bacterial strains and plasmids used in this study..
Strain/plasmid Relevant characteristic(s) Source or reference Strain W. coagulans KCTC 3625T Weizmannia coagulans type strain, wild-type strainKorean Collection for Type Cultures (KCTC), South Korea ASRS217 Potential starter candidate, isolated from rice straw [17] B. licheniformis KCCM 12145T Bacillus licheniformis type strainKorean Culture Center of Microorganisms (KCCM), South Korea 0DA23-1 Potential starter candidate, isolated from commercial doenjang [18] B. siamensis KCTC 13613T B. siamensis type strainKCTC, South Korea B28 Potential starter candidate, isolated from kimchi [19] B. subtilis KCCM 32835T B. subtilis type strainKCCM, South Korea SRCM102748 Isolated from kimchi SRCM, South Korea ISW1214 hsrM1, leuA8, metB5, Tet5 Takara Bio, Japan B. velezensis KCTC 13012T B. velezensis type strainKCTC, South Korea DMB07 Isolated from fermented soybean Unpublished results E. coli DH5α Escherichia coli , cloning host for recombinant plasmidsStratagene, USA BL21 (DE3) E. coli recA + strain, host for protein expressionNEB, USA Plasmid pLipSM E. coli –Bacillus shuttle vector, cloning vector, Ampr, Kanr[20] pL-opuA pLipSM derivative containing opuA operonThis study pL-opuB pLipSM derivative containing opuB operonThis study pL-opurB pLipSM derivative containing yvaV andopuB operonThis study pL-opuD pLipSM derivative containing opuD This study pL-opuE pLipSM derivative containing opuE This study pYJ335 E. coli –staphylococcal shuttle vector, Ampr, Eryr[21] pYJ-opuA pYJ335 derivative containing opuA operonThis study pYJ-opuB pYJ335 derivative containing opuB operonThis study pYJ-opurB pYJ335 derivative containing yvaV andopuB operonThis study pYJ-opuD pYJ335 derivative containing opuD This study pYJ-opuE pYJ335 derivative containing opuE This study
Comparative Genomic Analyses
For comparative genomic analysis of
-
Table 2 . Genomic features of strains of
Weizmannia coagulans and fourBacillus species..Species Strain Size (bp) G+C content (mol%) Origin Country Accession no. Reference W. coagulans KCTC 3625T 3,366,995 46.90 Dairy (evaporated milk) USA NZ_CP009709 [22] ASRS217 3,514,330 46.47 Rice straw South Korea NZ_CP058594 [23] HM-08 3,624,641 46.30 Healthy chicken intestine China NZ_CP010525 [24] IDCC1201 3,664,215 46.20 Green malt South Korea NZ_CP035305 [9] DSM 2314 3,628,651 46.24 Rhizosphere unknown NZ_CP033687 [25] B. licheniformis KCCM 12145T 4,222,597 46.20 Unknown unknown NZ_CP034569 [26] 0DA23-1 4,405,373 46.00 Doenjang South Korea NZ_CP031126 [27] 14ADL4 4,332,232 45.90 Doenjang South Korea NZ_CP026673 [18] MCC 2514 4,230,480 46.20 Raw milk (sheep) India NZ_CP038186 [28] TCCC 11148 4,341,076 45.90 Soil unknown NZ_CP033218 [29] B. siamensis KCTC 13613T 3,779,696 46.30 Salted crab South Korea AJVF01000000-51 [30] B28 3,946,178 45.89 Kimchi South Korea NZ_CP066219-21 [19] SCSIO 05746 4,268,316 45.98 Sea mud Indian Ocean NZ_CP025001 [31] B. subtilis KCCM 32835T 4,215,607 43.34 Soil under a mango tree unknown NZ_CP020102-3 [32] SRCM102748 4,210,797 43.60 Kimchi South Korea NZ_CP028212 [33] PS832 4,215,367 43.50 Soil unknown NZ_CP010053 [34] HRBS-10TDI13 4,186,269 43.29 Soybean paste South Korea NZ_CP015222 - GFR-12 4,202,955 43.30 Chung-gook-jang South Korea NZ_CP032852 [35] B. velezensis KCTC 13012T 4,034,335 46.30 River Velez Spain NZ_LLZC01000001-24 [36] DMB05 3,262,563 46.25 Meju South Korea NZ_CP083715-7 [37] DMB06 4,157,945 46.20 Doenjang South Korea NZ_CP083763 [38] DMB07 4,157,945 45.60 Meju South Korea NZ_CP083764 - KMU01 3,932,437 46.50 Kimchi South Korea NZ_CP063768 [39] - mean that there are no papers published.
DNA Cloning and Transformation
Plasmids and genomic DNA of
Genes related to the Opu system from
-
Table 3 . Oligonucleotides used in this study..
Oligonucleotide Sequence (5 → 3)a Use Amplified size (bp) plipSM vector opuAA -Bam HI-F’CG GGATCC GCCTGATAAAAGCCCGGTTTCCopuAA upstream3,367 opuAC -Sma I-R’TCC CCCGGG GGATGAACCTCTTGTGACAACCopuAC downstreamopuBA -Bam HI-F’CGC GTCGAC GCTCATTTGATTACCCCTCTGCopuBA upstream3,747 opuBD -Sal I-R’CG GGATCC CCGGTCAATACGGGTAAATCopuBD downstreamyvaV -Bam HI-F’CG GGATCC GAAAAAACGAACCAAAGCGCCGyvaV downstream4,405 opuD -Bam HI-F’CG GGATCC CGTCCCCGTTGATAATTGACCopuD upstream1,787 opuD -Sal I-R’ACGC GTCGAC CCTGTGATCCTGAAGGTGAGCopuD downstreamopuE -Eco RI-F’CG CAATTC GGTTTAGTAACCATAGCCGGCopuE upstream1,746 opuE -Bam HI-R’CG GGATCC GCTCAATTTGCACAGCACCTCCopuE downstreamplipSM-check-F’ CCAGCCGAAAGAAGCCAAAGC Hpa II promoter downstream, upstream of insertion site pYJ335 vector opuAA -Kpn I-F’CC GGTACC GCCTGATAAAAGCCCGGTTTCCopuAA upstream3,367 opuAC -Kpn I-R’CC GGTACC GGATGAACCTCTTGTGACAACCopuAA downstreamopuBA -Kpn I-F’CC GGTACC GCTCATTTGATTACCCCTCTGCopuBA upstream3,747 opuBD -Kpn I-R’CC GGTACC CCGGTCAATACGGGTAAATCopuBD downstreamyvaV -Kpn I-F’CC GGTACC GAAAAAACGAACCAAAGCGCCGyvaV downstream4,405 opuD -Kpn I-F’CC GGTACC CGTCCCCGTTGATAATTGACCopuD upstream1,787 opuD -Kpn I-R’CC GGTACC CCTGTGATCCTGAAGGTGAGCopuD downstreamopuE -Kpn I-F’CC GGTACC GGTTTAGTAACCATAGCCGGCopuE upstream1,746 opuE -Kpn I-R’CC GGTACC GCTCAATTTGCACAGCACCTCCopuE downstreampYJ335-check-F’ GCGATTAAGTTGGGTAACGC Kpn I site upstream of pYJ335aRestriction sites are underline..
Determination of Salt Tolerance
Salt tolerance of the strains in this study was determined by examining growth on TSA supplemented with up to 14% NaCl (w/v, final concentration). Growth on 0.5% (the NaCl concentration in normal TSA), 3.5%, 7%, 10.5%, and 14% NaCl was determined after incubation for 1, 2, 3, 4, and 5 days. The experiment was performed three times, independently.
Results and Discussion
Growth of W. coagulans on TSA
-
Figure 1. Effect of NaCl on growth of
Weizmannia coagulans and fourBacillus species. Tryptic soy agar (TSA) containing 0%–7% (w/v) NaCl was used for the detection of growth. Strains: W1,W. coagulans KCTC 3625T; W2,W. coagulans ASRS217; L1,B. licheniformis KCCM 12145T; L2,B. licheniformis 0DA23-1; Si1,B. siamensis KCTC 13613T; Si2,B. siamensis B28; Su1,B. subtilis KCCM 32835T; Su2,B. subtilis SRCM102748; V1,B. velezensis KCTC 13012T; V2,B. velezensis DMB07.
Comparative Genomic Analysis of Salt Tolerance
To resist osmotic stress, many bacteria accumulate compatible solutes such as choline, glycine betaine, and proline betaine through uptake from outside the cell via transporters including osmoprotectant uptake (Opu) transporter [51, 52]. The Opu system is known to be involved in salt resistance [51].
-
Figure 2. Predicted mechanism of salt-sensitivity of
W. coagulans based comparative genomic analysis with fourBacillus species. Compatible solutes are depicted in black text in yellow boxes. Color coding indicates which species contain whichopu genes.
Opu Systems Enhance the Salt Tolerance of B. subtilis
As a result of the comparative genome analysis, the salt-sensitivity of
-
Figure 3. Construction of pLip-SM-derived plasmids containing
opu genes fromB. velezensis DMB07 (A) and salt-tolerance ofB. subtilis containing these plasmids (B). TSA containing up to 14% NaCl (w/v, final concentration) was used for the detection of growth.
Because
Opu Systems Confer Salt Tolerance to W. coagulans
pLipSM-based plasmids produced in
-
Figure 4. Construction of pYJ335-derived plasmids containing
opu genes fromB. velezensis DMB07 (A) and salt-tolerance ofW. coagulans containing these plasmids (B). de Man, Rogosa, and Sharpe medium containing up to 10.5% NaCl (w/v, final concentration) was used for the detection of growth.
In previous studies, 67.7% and 71.0% of
Acknowledgments
This work was supported by the National Research Foundation of Korea (NRF) [NRF-2022M3A9I3082364].
Conflict of Interest
The authors have no financial conflicts of interest to declare.
Fig 1.
Fig 2.
Fig 3.
Fig 4.
-
Table 1 . Bacterial strains and plasmids used in this study..
Strain/plasmid Relevant characteristic(s) Source or reference Strain W. coagulans KCTC 3625T Weizmannia coagulans type strain, wild-type strainKorean Collection for Type Cultures (KCTC), South Korea ASRS217 Potential starter candidate, isolated from rice straw [17] B. licheniformis KCCM 12145T Bacillus licheniformis type strainKorean Culture Center of Microorganisms (KCCM), South Korea 0DA23-1 Potential starter candidate, isolated from commercial doenjang [18] B. siamensis KCTC 13613T B. siamensis type strainKCTC, South Korea B28 Potential starter candidate, isolated from kimchi [19] B. subtilis KCCM 32835T B. subtilis type strainKCCM, South Korea SRCM102748 Isolated from kimchi SRCM, South Korea ISW1214 hsrM1, leuA8, metB5, Tet5 Takara Bio, Japan B. velezensis KCTC 13012T B. velezensis type strainKCTC, South Korea DMB07 Isolated from fermented soybean Unpublished results E. coli DH5α Escherichia coli , cloning host for recombinant plasmidsStratagene, USA BL21 (DE3) E. coli recA + strain, host for protein expressionNEB, USA Plasmid pLipSM E. coli –Bacillus shuttle vector, cloning vector, Ampr, Kanr[20] pL-opuA pLipSM derivative containing opuA operonThis study pL-opuB pLipSM derivative containing opuB operonThis study pL-opurB pLipSM derivative containing yvaV andopuB operonThis study pL-opuD pLipSM derivative containing opuD This study pL-opuE pLipSM derivative containing opuE This study pYJ335 E. coli –staphylococcal shuttle vector, Ampr, Eryr[21] pYJ-opuA pYJ335 derivative containing opuA operonThis study pYJ-opuB pYJ335 derivative containing opuB operonThis study pYJ-opurB pYJ335 derivative containing yvaV andopuB operonThis study pYJ-opuD pYJ335 derivative containing opuD This study pYJ-opuE pYJ335 derivative containing opuE This study
-
Table 2 . Genomic features of strains of
Weizmannia coagulans and fourBacillus species..Species Strain Size (bp) G+C content (mol%) Origin Country Accession no. Reference W. coagulans KCTC 3625T 3,366,995 46.90 Dairy (evaporated milk) USA NZ_CP009709 [22] ASRS217 3,514,330 46.47 Rice straw South Korea NZ_CP058594 [23] HM-08 3,624,641 46.30 Healthy chicken intestine China NZ_CP010525 [24] IDCC1201 3,664,215 46.20 Green malt South Korea NZ_CP035305 [9] DSM 2314 3,628,651 46.24 Rhizosphere unknown NZ_CP033687 [25] B. licheniformis KCCM 12145T 4,222,597 46.20 Unknown unknown NZ_CP034569 [26] 0DA23-1 4,405,373 46.00 Doenjang South Korea NZ_CP031126 [27] 14ADL4 4,332,232 45.90 Doenjang South Korea NZ_CP026673 [18] MCC 2514 4,230,480 46.20 Raw milk (sheep) India NZ_CP038186 [28] TCCC 11148 4,341,076 45.90 Soil unknown NZ_CP033218 [29] B. siamensis KCTC 13613T 3,779,696 46.30 Salted crab South Korea AJVF01000000-51 [30] B28 3,946,178 45.89 Kimchi South Korea NZ_CP066219-21 [19] SCSIO 05746 4,268,316 45.98 Sea mud Indian Ocean NZ_CP025001 [31] B. subtilis KCCM 32835T 4,215,607 43.34 Soil under a mango tree unknown NZ_CP020102-3 [32] SRCM102748 4,210,797 43.60 Kimchi South Korea NZ_CP028212 [33] PS832 4,215,367 43.50 Soil unknown NZ_CP010053 [34] HRBS-10TDI13 4,186,269 43.29 Soybean paste South Korea NZ_CP015222 - GFR-12 4,202,955 43.30 Chung-gook-jang South Korea NZ_CP032852 [35] B. velezensis KCTC 13012T 4,034,335 46.30 River Velez Spain NZ_LLZC01000001-24 [36] DMB05 3,262,563 46.25 Meju South Korea NZ_CP083715-7 [37] DMB06 4,157,945 46.20 Doenjang South Korea NZ_CP083763 [38] DMB07 4,157,945 45.60 Meju South Korea NZ_CP083764 - KMU01 3,932,437 46.50 Kimchi South Korea NZ_CP063768 [39] - mean that there are no papers published.
-
Table 3 . Oligonucleotides used in this study..
Oligonucleotide Sequence (5 → 3)a Use Amplified size (bp) plipSM vector opuAA -Bam HI-F’CG GGATCC GCCTGATAAAAGCCCGGTTTCCopuAA upstream3,367 opuAC -Sma I-R’TCC CCCGGG GGATGAACCTCTTGTGACAACCopuAC downstreamopuBA -Bam HI-F’CGC GTCGAC GCTCATTTGATTACCCCTCTGCopuBA upstream3,747 opuBD -Sal I-R’CG GGATCC CCGGTCAATACGGGTAAATCopuBD downstreamyvaV -Bam HI-F’CG GGATCC GAAAAAACGAACCAAAGCGCCGyvaV downstream4,405 opuD -Bam HI-F’CG GGATCC CGTCCCCGTTGATAATTGACCopuD upstream1,787 opuD -Sal I-R’ACGC GTCGAC CCTGTGATCCTGAAGGTGAGCopuD downstreamopuE -Eco RI-F’CG CAATTC GGTTTAGTAACCATAGCCGGCopuE upstream1,746 opuE -Bam HI-R’CG GGATCC GCTCAATTTGCACAGCACCTCCopuE downstreamplipSM-check-F’ CCAGCCGAAAGAAGCCAAAGC Hpa II promoter downstream, upstream of insertion site pYJ335 vector opuAA -Kpn I-F’CC GGTACC GCCTGATAAAAGCCCGGTTTCCopuAA upstream3,367 opuAC -Kpn I-R’CC GGTACC GGATGAACCTCTTGTGACAACCopuAA downstreamopuBA -Kpn I-F’CC GGTACC GCTCATTTGATTACCCCTCTGCopuBA upstream3,747 opuBD -Kpn I-R’CC GGTACC CCGGTCAATACGGGTAAATCopuBD downstreamyvaV -Kpn I-F’CC GGTACC GAAAAAACGAACCAAAGCGCCGyvaV downstream4,405 opuD -Kpn I-F’CC GGTACC CGTCCCCGTTGATAATTGACCopuD upstream1,787 opuD -Kpn I-R’CC GGTACC CCTGTGATCCTGAAGGTGAGCopuD downstreamopuE -Kpn I-F’CC GGTACC GGTTTAGTAACCATAGCCGGCopuE upstream1,746 opuE -Kpn I-R’CC GGTACC GCTCAATTTGCACAGCACCTCCopuE downstreampYJ335-check-F’ GCGATTAAGTTGGGTAACGC Kpn I site upstream of pYJ335aRestriction sites are underline..
References
- Hammer BW. 1915. Bacteriological studies on the coagulation of evaporated milk (Vol. 17). Agricultural Experiment Station, Iowa State College of Agriculture and Mechanic Arts.
- Gupta RS, Patel S, Saini N, Chen S. 2020. Robust demarcation of 17 distinct
Bacillus species clades, proposed as novelBacillaceae genera, by phylogenomics and comparative genomic analyses: description ofRobertmurraya kyonggiensis sp. nov. and proposal for an emended genusBacillus limiting it only to the members of theSubtilis andCereus clades of species.Int. J. Syst. Evol. Microbiol. 70 : 5753-5798. - Konuray G, Erginkaya Z. 2018. Potential use of
Bacillus coagulans in the food industry.Foods 7 : 92. - Jäger R, Shields KA, Lowery RP, De Souza EO, Partl JM, Hollmer C,
et al . 2016. ProbioticBacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery.Peer J. 4 : e2276. - Majeed M, Majeed S, Nagabhushanam K, Natarajan S, Sivakumar A, Ali F. 2016. Evaluation of the stability of
Bacillus coagulans MTCC 5856 during processing and storage of functional foods.Int. J. Food Sci. Technol. 51 : 894-901. - Ratna Sudha, M Yelikar KA, Deshpande S. 2012. Clinical study of
Bacillus coagulans unique IS-2 (ATCC PTA-11748) in the treatment of patients with bacterial vaginosis.Indian J. Microbiol. 52 : 396-399. - Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives.
Front. Microbiol. 8 : 1490. - Maity C, Gupta AK, Saroj DB, Biyani A, Bagkar P, Kulkarni J,
et al . 2021. Impact of a gastrointestinal stable probiotic supplementBacillus coagulans LBSC on human gut microbiome modulation.J. Diet. Suppl. 18 : 577-596. - Bang WY, Ban OH, Lee BS, Oh S, Park C, Park MK,
et al . 2021. Genomic-, phenotypic-, and toxicity-based safety assessment and probiotic potency ofBacillus coagulans IDCC 1201 isolated from green malt.J. Ind. Microbiol. Biotechnol. 48 : kuab026. - Lee B, Lee H, Jeong DW, Lee JH. 2015. A rapid isolation method for
Bacillus coagulans from rice straw.Microbiol. Biotechnol. Lett. 43 : 401-404. - Shudong P, Guo C, Wu S, Cui H, Suo H, Duan Z. 2022. Bioactivity and metabolomics changes of plant-based drink fermented by
Bacillus coagulans VHProbi C08.LWT - Food Sci. Technol. 153 : 113030. - Babu KR, Satyanarayana T. 1995. α-Amylase production by thermophilic
Bacillus coagulans in solid state fermentation.Process Biochem. 30 : 305-309. - Olajuyigbe FM, Ehiosun KI. 2013. Production of thermostable and organic solvent-tolerant alkaline protease from
Bacillus coagulans PSB-07 under different submerged fermentation conditions.Afr. J. Biotechnol. 12 : 3341-3350. - Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by
Bacillus coagulans I4.Appl. Environ. Microbiol. 66 : 5213-5220. - EFSA. 2007. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA.
EFSA J. 587 : 1-16. - Heo S, Kim T, Na HE, Lee G, Park JH, Park HJ,
et al . Safety assessment systems for microbial starters derived from fermented foods.J. Microbiol. Biotechnol. 32 : 1227-1233. - Kim YS, Lee J, Heo S, Lee JH, Jeong DW. 2021. Technology and safety evaluation of
Bacillus coagulans exhibiting antimicrobial activity for starter development.LWT - Food Sci. Technol. 137 : 110464. - Jeong DW, Lee B, Lee J H. 2018. Complete genome sequence of
Bacillus licheniformis 14ADL4 exhibiting resistance to clindamycin.Korean J. Microbiol. 54 : 169-170. - Heo S, Kim JH, Kwak MS, Jeong DW, Sung MH. 2021. Functional genomic insights into probiotic
Bacillus siamensis strain B28 from traditional Korean fermented kimchi.Foods 10 : 1906. - Lee MH, Song JJ, Choi YH, Hong SP, Rha E, Kim HK,
et al . 2003. High-level expression and secretion ofBacillus pumilus lipase B26 inBacillus subtilis Chungkookjang.J. Microbiol. Biotechnol. 13 : 892-896. - Ji Y, Marra A, Rosenberg M, Woodnutt G. 1999. Regulated antisense RNA eliminates alpha-toxin virulence in
Staphylococcus aureus infection.J. Bacteriol. 181 : 6585-6590. - Johnson SL, Bishop-Lilly KA, Ladner JT, Daligault HE, Davenport KW, Jaissle J,
et al . 2015. Complete genome sequences for 59Burkholderia isolates, both pathogenic and near neighbor.Genome Announc. 3 : e00159-15. - Lee J, Heo S, Kim Y S, Lee JH, Jeong DW. 2020. Complete genome sequence of
Bacillus coagulans strain ASRS217, a potential food fermentation starter culture.Korean J. Microbiol. 56 : 321-323. - Yao G, Gao P, Zhang W. 2016. Complete genome sequence of probiotic
Bacillus coagulans HM-08: a potential lactic acid producer.J. Biotechnol. 228 : 71-72. - Maas RH, Bakker RR, Jansen ML, Visser D, Jong E, Eggink G,
et al . 2008. Lactic acid production from lime-treated wheat straw byBacillus coagulans : neutralization of acid by fed-batch addition of alkaline substrate.Appl. Microbiol. Biotechnol. 78 : 751-758. - Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M,
et al . 2004. Complete genome sequence of the industrial bacteriumBacillus licheniformis and comparisons with closely relatedBacillus species.Genome Biol. 5 : R77. - Jeong DW, Lee B, Heo S, Jang M, Lee JH. 2018. Complete genome sequence of
Bacillus licheniformis strain 0DA23-1, a potential starter culture candidate for soybean fermentation.Korean J. Microbiol. 54 : 453-455. - Rohith HS, Halami PM. 2021. The combined effect of potential probiotic
Bacillus licheniformis MCC 2514 andBifidobacterium breve NCIM 5671 towards anti-inflammatory activity on HT-29 cell lines.Probiotics Antimicrob. Proteins 15 : 351-362. - Yuan F, Li K, Zhou C, Zhou H, Liu H, Chai H,
et al . 2020. Identification of two novel highly inducible promoters fromBacillus licheniformis by screening transcriptomic data.Genom 112 : 1866-1871. - Jeong H, Jeong DE, Kim SH, Song GC, Park SY, Ryu CM,
et al . 2012. Draft genome sequence of the plant growth-promoting bacteriumBacillus siamensis KCTC 13613T.J. Bacteriol. 194 : 4148-4149. - Pan H, Tian X, Shao M, Xie Y, Huang H, Hu J,
et al . 2019. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities ofBacillus siamensis SCSIO 05746.Appl. Microbiol. Biotechnol. 103 : 4153-4165. - Nye TM, Schroeder JW, Kearns DB, Simmons LA. 2017. Complete genome sequence of undomesticated
Bacillus subtilis strain NCIB 3610.Genome Announc. 5 : e00364-17. - Iqbal S, Ullah N, Janjua HA. 2021.
In vitro evaluation and genome mining ofBacillus subtilis strain RS10 reveals its biocontrol and plant growth-promoting potential.Agriculture 11 : 1273. - Grela A, Jamrozek I, Hubisz M, Iwanicki A, Hinc K, Kazmierkiewicz R,
et al . 2018. Positions 299 and 302 of the GerAA subunit are important for function of the GerA spore germination receptor inBacillus subtilis .PLoS One 13 : e0198561. - Heo J, Kim JS, Hong SB, Park BY, Kim SJ, Kwon SW. 2019. Genetic marker gene,
recQ , differentiatingBacillus subtilis and the closely relatedBacillus species.FEMS Microbiol. Lett. 366 : fnz172. - Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2016.
Bacillus velezensis is not a later heterotypic synonym ofBacillus amyloliquefaciens ;Bacillus methylotrophicus ,Bacillus amyloliquefaciens subsp.plantarum and 'Bacillus oryzicola ' are laterheterotypic synonyms ofBacillus velezensis based on phylogenomics.Int. J. Syst. Evol. Microbiol. 66 : 1212-1217. - Na HE, Heo S, Kim T, Lee G, Lee JH, Jeong DW. 2023. ComQXPA quorum-sensing systems contribute to enhancing the protease activity of
Bacillus velezensis DMB05 from fermented soybeans.Int. J. Food Microbiol. 401 : 110294. - Na HE, Heo S, Kim YS, Kim T, Lee G, Lee JH,
et al . 2022. The safety and technological properties ofBacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis.LWT - Food Sci. Technol. 161 : 113398. - Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic
Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi.Foods 10 : 563. - Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA,
et al . 2008. The RAST Server: rapid annotations using subsystems technology.BMC Genom. 9 : 75. - Darzi Y, Letunic I, Bork P, Yamada T. 2018. iPath3.0: interactive pathways explorer v3.
Nucleic Acids Res. 46 : W510-W513. - Abbas BA, Khudor MH, Saeed BMS. 2014. Detection of
hbl ,nhe andbceT toxin genes inBacillus cereus isolates by multiplex PCR.Int. J. Curr. Microbiol. Appl. Sci. 3 : 1009-1016. - Hanahan D, Meselson M. 1983. Plasmid screening at high colony density.
Methods Enzymol. 100 : 333-342. - Kraemer GR, Iandolo JJ. 1990. High-frequency transformation of
Staphylococcus aureus by electroporation.Curr. Microbiol. 21 : 373-376. - Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food.
J. Microbiol. Biotechnol. 24 : 648-660. - Jeong DW, Jeong M, Lee JH. 2017. Antibiotic susceptibilities and characteristics of
Bacillus licheniformis isolates from traditional Korean fermented soybean foods.LWT - Food Sci. Technol. 75 : 565-568. - Kim T, Heo S, Na HE, Lee G, Kim JH, Kwak MS,
et al . 2022. Bacterial community of galchi-baechu kimchi based on culturedependent and -independent investigation and selection of starter candidates.J. Microbiol. Biotechnol. 32 : 341-347. - Kim YS, Kim MC, Kwon SW, Kim SJ, Park IC, Ka JO,
et al . 2011. Analyses of bacterial communities in meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods.J. Microbiol. Biotechnol. 49 : 340-348. - Jeon HH, Jung JY, Chun BH, Kim MD, Baek SY, Moon JY,
et al . 2016. Screening and characterization of potentialBacillus starter cultures for fermenting low-salt soybean paste (Doenjang).J. Microbiol. Biotechnol. 26 : 666-674. - Lee MY, Park SY, Jung KO, Park KY, Kim SD. 2005. Quality and functional characteristics of chungkukjang prepared with various
Bacillus sp. isolated from traditional chungkukjang.J. Food Sci. 70 : M191-M196. - Hoffmann T, Bremer E. 2017. Guardians in a stressful world: the Opu family of compatible solute transporters from
Bacillus subtilis .Biol. Chem. 398 : 193-214. - Heo S, Lee J, Lee JH, Jeong DW. 2019. Genomic insight into the salt tolerance of
Enterococcus faecium ,Enterococcus faecalis andTetragenococcus halophilus .J. Microbiol. Biotechnol. 29 : 151-1602. - Peterbauer C, Maischberger T, Haltrich D. 2011. Food-grade gene expression in lactic acid bacteria.
Biotechnol. J. 6 : 1147-1161. - Wang L, Xue Z, Zhao B, Yu B, Xu P, Ma Y. 2013. Jerusalem artichoke powder: a useful material in producing high-optical-purity Llactate using an efficient sugar-utilizing thermophilic
Bacillus coagulans strain.Bioresour. Technol. 130 : 174-180. - Xing SC, Chen JY, Lv N, Mi JD, Chen WL, Liang JB,
et al . 2018. Biosorption of lead (Pb2+) by the vegetative and decay cells and spores ofBacillus coagulans R11 isolated from lead mine soil.Chemosphere 211 : 804-816.