Articles Service
Research article
Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes
1Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
2Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
J. Microbiol. Biotechnol. 2024; 34(2): 340-348
Published March 28, 2024 https://doi.org/10.4014/jmb.2308.08006
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
Introduction
According to the culture-confirmed human infection survey conducted by the Laboratory-based Enteric Disease Surveillance (LEDS) system, the 20 most prevalent serotypes in decreasing order were
From an epidemiological perspective, the surveillance of environmental serotypes is crucial for monitoring the emergence of pathogenic serotypes and preventing their transmission through the food chain [11, 12]. A dot-blot technique is a straightforward and rapid diagnostics where a small amount of bacterial lysate is directly dotted on a membrane and subsequently probed with a specific antibody to detect the target antigen [13]. Dot-blot assays are substantially more sensitive than enzyme-linked immunosorbent assay (ELISA) because nitrocellulose and polyvinylidene difluoride (PVDF) membranes have better protein- and LPS-binding capacities than the polystyrene plates used in ELISA [14]. Since this technique does not require highly skilled personnel or the expensive equipment needed for traditional immunology-based diagnosis, dot-blot immunoassays are affordable in most laboratories [15]. To exploit dot-blot immunoassay for a simple and reliable diagnosis for prevalent
Materials and Methods
Bacterial Strains and Growth Conditions
Antibodies
Ten different
-
Table 1 . Ten primary antibodies used in this study.
ID Product Immunogen Host Isotype Ab 1 Salmonella Typhimurium LPS antibody [1E6] (ab8274)S . Typhimurium LPSMouse (mAb) IgG1 Ab 2 Salmonella LPS antibody [se-01] (ab243104)S . Typhimurium LPSMouse (mAb) IgG1 Ab 3 Salmonella polyclonal antibody (PA1-7244)Salmonella O & H antigensRabbit (pAb) IgG Ab 4 Salmonella monoclonal antibody [F68C] (MA1-7443)Salmonella sp. preparationMouse (mAb) IgG1 Ab 5 Salmonella antibody (ab35156)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 6 Salmonella antibody (ab252742)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 7 Salmonella polyclonal antibody (PA1-20811)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 8 Salmonella LPS monoclonal antibody [F62C] (MA1-7447)Salmonella sp. common coreMouse (mAb) IgG2b Ab 9 Salmonella LPS monoclonal antibody [D46J] (MA5-18257)Salmonella sp. common coreMouse (mAb) IgG2a Ab 10 Salmonella LPS monoclonal antibody [A99H] (MA5-18258)Salmonella sp. common coreMouse (mAb) IgG2a
Western Blotting
Immunoblotting was conducted as described previously [16]. In brief, bacterial cells at the stationary growth phase were centrifuged at 12,000 ×
Dot-Blot Assay
The experimental flowchart is shown in Fig. 1A. Bacterial cells were cultivated in LB broth until an OD600 of 3.0 (approximately 3 × 109 CFU/ml) was reached and 500 μl cell suspension was centrifuged at 12,000 ×
-
Fig. 1. Scheme of the dot-blot immunoassay.
(A) Flowchart of the designed method with the estimated time. (B) A diagram showing the designed locations of tested serotypes on a nitrocellulose membrane. White and purple circles are indicative of negative and positive interaction, respectively, with tested antibodies. Cell lysates of 18
Salmonella serotypes (A1– D3) used in optimizing the assay were spotted onto nitrocellulose membranes. Lysis buffer solution (D4) andEscherichia coli cell lysate (D5) were spotted as controls.
Results
Assessment of the Cross-Reactivity of 10 Antibodies to Other Bacterial Pathogens
The cross-reactivity of 10 different
-
Fig. 2. Cross-reactivity tests of 10
Salmonella antibodies (Ab 1–10) against five bacterial species in western blotting analyses. ST:Salmonella Typhimurium ATCC 14028; Ec:Escherichia coli ATCC 53868; Vc:Vibrio cholerae ATCC 14033; Sa:Staphylococcus aureus ATCC 29213; Bc:Bacillus cereus ATCC 14579. M: size marker.
Comparison of Antibody Selectivity against 18 Salmonella Serotypes
The detection effectiveness of the antibodies was examined using 18
-
Table 2 . Spectrum of 10
Salmonella antibodies against 18 serotypes in western blotting.Antibody (Ab No.) 1 2 3 4 5 6 7 8 9 10 3+8 3+9 8+9 S . Enteritidis−3 + + + − + + + + + + + + + + + + + + + + S . Newport− − − − − − − − − − − − − S . Typhimurium+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + S . Javiana− − − − − − − + + + + + + + + S . I 4,[5],12:i:-− − − − − − − + − + + + + − + S . Infantis− − − − − − − + + − − + + − + + S . Muenchen− − − − − − − − + − − + + S . Montevideo− − − − − − − + + − − + + − + + S . Braenderup− − − − − − − + + − − + + + + + S . Thompson+ + + + + + + + + + + + + + + + + + + + − + + + + + + + + + S . Saintpaul+ + + + + + + + + + + + + + + + + + + + + − + + - + + + + + + + + S . Heidelberg+ + + + + + + + + + + + + + + + + + + + + − + + + + + + + + + + + S . Oranienburg− − − − − − − + + − + + + − + + S . Mississippi− − − − − − − + − − + − + S . Bareilly− − − − − − − + + − − + + − + + S . Berta− − + + + − + + + + + + + + + + + + + + + + + + + + + S . Agona− + + + + + + − + + + + + + + + + + + + − + + + + + + + + S . Anatum− − − − − − − + + + + + + + + + Detection rate1 4/18 6/18 7/18 5/18 7/18 7/18 7/18 13/18 10/18 9/18 16/18 11/18 17/18 Incidence (%)2 14.8 32.4 35.3 16.9 33.2 33.2 33.2 49.8 42.2 43.3 54.8 44.3 57.4 1Detection rate: Number of detected serotypes out of tested 18 serotypes.
2Incidence (%): Percentage of salmonellosis incidence associated with the detectable serotypes. Incidence was retrieved from the culture-confirmed human infection survey by LEDS. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf.
3Symbols of +/-: Detected/not detected. More symbols indicate stronger detection signals.
Owing to the selectivity and signal intensity (responsible for the sensitivity in dot-blot assays), Ab 3, Ab 8, and Ab 9 were selected for further dot-blot immunoassays. Ab 3 showed the highest detection rate among the four polyclonal antibodies and exhibited strong binding signals in the western blotting analysis. Ab 8 and Ab 9, despite having moderate signal intensities, demonstrated broad serotype spectra, covering 13 and 10 serotypes, respectively. The selectivity of three combinations (Ab 3+8, Ab 3+9, and Ab 8+9) was predicted based on the western blotting analyses (Table 2). Ab 3+8 and Ab 8+9 were estimated to detect 16 and 17 serotypes, respectively, which are responsible for 54.8% and 57.4% salmonellosis incidence, respectively, in the U.S. in 2016 [10]. Ab 3+9 was expected to detect 11 serotypes, which was inferior to the other two combinations.
Application of a Combination of Two Antibodies to Dot-Blot Immunoassays
Dot-blot assays were preformed using Ab 3, Ab 8, and Ab 9 individually (Fig. 3A) and in combination (Fig. 3B). The cell lysates of 18
-
Table 3 . Spectrum of three
Salmonella antibodies against 18 serotypes in dot-blot assay.Antibody (Ab No.) 3 8 9 3+8 3+9 8+9 WB1 DB2 WB DB WB DB DB DB DB S . Enteritidis+ +5 + + + + + + + + + + + + S . Newport− − − − − − − − − S . Typhimurium+ + + + + + − + + + + + + + + S . Javiana− − + + + − + − + S . I 4,[5],12:i:-− + + + + − + + + + + + S . Infantis− − + + + + − − + + − + S . Muenchen− − − − + − − − - S . Montevideo− − + + + + - − + + − + S . Braenderup+ − + + + − − + − + S . Thompson+ + + − − + + − + − + S . Saintpaul+ + + + + − − + + + + + + + + S . Heidelberg+ + + + + − − + + + + + + + + S . Oranienburg− − + + + − − + + − + S . Mississippi− − + − − − − − − S . Bareilly− − + + + + − − + + − + S . Berta+ + + + + + + + + + + + + + + S . Agona+ + + + + + + + + + + + + + + S . Anatum− + + + + + + + + + + Detection rate3 8/18 8/18 13/18 12/18 10/18 8/18 15/18 8/18 15/18 Incidence (%)4 35.3 36.8 49.8 40.6 42.2 36.8 53.7 36.8 53.7 1WB: western blotting analysis.
2DB: Dot-blot immunoassay.
3Detection rate: Number of detected serotypes out of tested 18 serotypes.
4Incidence (%): Percentage of salmonellosis incidence associated with the detectable serotypes. Incidence was retrieved from the culture-confirmed human infection survey by LEDS. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf.
5Symbols of +/-: Detected/not detected. More symbols indicate stronger detection signals.
-
Fig. 3. Dot-blot assays of three antibodies against 18
Salmonella serotypes. Cell lysates of 18Salmonella serotypes were spotted as described in Fig. 1B and probed with Ab 3, Ab 8, and Ab 9, (A) individually or (B) in combination. As negative controls, lysis buffer solution (D4) andEscherichia coli cell lysate (D5) were tested in parallel.
Dot-blot assays were conducted using three combinations of two antibodies (Fig. 3B). Considering the weak binding signals of monoclonal antibodies, higher Ab 8 or Ab 9 concentrations were added before adding Ab 3 (Fig. 1). The optimized dot-blot assay using Ab 3+8 or Ab 8+9 identified 15 of 18 serotypes (Fig. 3B). The diagnosed 15 serotypes were overlapped between two combinations and were estimated to be associated with 53.7% salmonellosis cases in the U.S. in 2016 (Table 3). However, the detection sensitivity of Ab 8+9 was inferior to that of Ab 3+8, likely because of the weak signal of monoclonal antibodies.
The designed dot-blot immunoassay using Ab 3+8 was applied to diagnose 18
-
Fig. 4. Diagnosis of 18
Salmonella strains using dot-blot immunoassay. EighteenSalmonella strains belonging to seven different serotypes were subjected to the designed dot-blot immunoassay using Ab 3+8. A1:S . Enteritidis ATCC 4931; A2:S . Enteritidis FORC_019; A3:S . Enteritidis FORC_052; A4:S . Enteritidis ATCC 13076; A5:S . Enteritidis MFDS 1004839; B1:S . Typhimurium FORC_030; B2:S . Typhimurium NCCP 12219; B3:S . Typhimurium NCCP 14772; B4:S . Newport NCCP 12235; B5:S . Newport FORC_020; C1:S . Montevideo CCARM 8189; C2:S . Montevideo MFDS 1006814; C3:S . Infantis MFDS 1006818; C4:S . Muenchen KCPB 03; C5:S . Bareilly CCARM 8578; D1:S . Bareilly NCCP 11674; D2:S . Bareilly NCCP 16323; D3:S . Bareilly MFDS 1007637; D4: lysis buffer solution; D5:Escherichia coli ATCC 53868.
Discussion
Traditional
As an alternative immunoassay, dot-blot assays also utilize antibodies to detect target antigens but use nitrocellulose or PVDF membranes instead of polystyrene plates frequently used in ELISA. Antigens such as proteins and LPS bind to nitrocellulose and PVDF membranes more tightly than polystyrene plates [14, 15]. Therefore, dot-blot-based methods have considerably higher sensitivity than ELISA-based methods [14]. Dot-blot assay is a simplified method derived from western blotting. However, dot-blot assays do not require electrophoretic separation of antigen molecules on polyacrylamide gels and the procedures are substantially easier and faster than western blotting. Moreover, dot-blot assays are cost-effective. Besides, spotting bacterial lysates on membranes of randomized sizes enables screening large numbers of specimens for the presence of target antigens.
In contrast, dot-blot immunoassays possess a critical drawback owing to antibody specificity. Commercial antibodies against
The dot-blot immunoassay developed in this study combined two different
The drawback of conventional
Supplemental Materials
Acknowledgments
This work was supported by a grant (2021M3A9I4026029) from the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science & ICT, and a grant (2021N100) of the Commercializations Promotion Agency for R&D Outcomes (COMPA), funded by the Korea government (MSIT).
Conflict of Interest
The authors have no financial conflicts of interest to declare.
References
- Crum-Cianflone NF. 2008. Salmonellosis and the gastrointestinal tract: more than just peanut butter.
Curr. Gastroenterol. Rep. 10 : 424-431. - Ehuwa O, Jaiswal AK, Jaiswal S. 2021.
Salmonella , food safety and food handling practices.Foods 10 : 907. - Popoff MY, Bockemuhl J, Brenner FW. 2000. Supplement 1998 (no. 42) to the Kauffmann-white scheme.
Res. Microbiol. 151 : 63-65. - Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000.
Salmonella nomenclature.J. Clin. Microbiol. 38 : 2465-2467. - Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. 2019. Worldwide epidemiology of
Salmonella Serovars in animal-based foods: a meta-analysis.Appl. Environ. Microbiol. 85 : e00591-19. - Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E, Nair S,
et al . 2014. Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme.Res. Microbiol. 165 : 526-530. - Gal-Mor O, Boyle EC, Grassl GA. 2014. Same species, different diseases: how and why typhoidal and non-typhoidal
Salmonella enterica serovars differ.Front. Microbiol. 5 : 391. - Zha L, Garrett S, Sun J. 2019.
Salmonella infection in chronic inflammation and gastrointestinal cancer.Diseases 7 : 28. - Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive
Salmonella Infections.Clin. Microbiol. Rev. 28 : 901-937. - Centers for Disease Control and Prevention (CDC). 2018. National Enteric Disease Surveillance: Salmonella Annual Report, 2016. Atlanta, GA: Centers for Disease Control and Prevention. Available from https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf.
- Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK,
et al . 2022. Emergence, dissemination and antimicrobial resistance of the main poultry-associatedSalmonella serovars in Brazil.Vet. Sci. 9 : 405. - Uelze L, Becker N, Borowiak M, Busch U, Dangel A, Deneke C,
et al . 2021. Toward an integrated genome-based Surveillance ofSalmonella enterica in Germany.Front. Microbiol. 12 : 626941. - Stott DI. 1989. Immunoblotting and dot blotting.
J. Immunol. Methods 119 : 153-187. - Sarasombath S, Lertmemongkolchai G, Banchuin N. 1988. Characterization of monoclonal antibodies to protein antigen of
Salmonella typhi.J. Clin. Microbiol. 26 : 508-512. - Jaradat ZW, Bzikot JH, Zawistowski J, Bhunia AK. 2004. Optimization of a rapid dot-blot immunoassay for detection of
Salmonella enterica serovar Enteritidis in poultry products and environmental samples.Food Microbiol. 21 : 761-769. - Park S, Yoon H. 2023. Transcriptional insight into the effect of benzalkonium chloride on resistance and virulence potential in
Salmonella Typhimurium.Microbiol. Res. 266 : 127240. - van der Zee H. 1994. Conventional methods for the detection and isolation of Salmonella enteritidis.
Int. J. Food Microbiol. 21 : 41-46. - Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF,
et al . 2021. Advancement inSalmonella detection methods: From conventional to electrochemical-based sensing detection.Biosensors (Basel) 11 : 346. - Diep B, Barretto C, Portmann AC, Fournier C, Karczmarek A, Voets G,
et al . 2019.Salmonella serotyping; Comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data.Front. Microbiol. 10 : 2554. - Zou QH, Li RQ, Liu GR, Liu SL. 2016. Genotyping of
Salmonella with lineage-specific genes: correlation with serotyping.Int. J. Infect. Dis. 49 : 134-140. - Yang SM, Kim E, Kim D, Kim HB, Baek J, Ko S,
et al . 2021. Rapid real-time polymerase chain reaction forSalmonella serotyping based on novel unique gene markers by pangenome analysis.Front. Microbiol. 12 : 750379. - Ferone M, Gowen A, Fanning S, Scannell AGM. 2020. Microbial detection and identification methods: Bench top assays to omics approaches.
Compr. Rev. Food Sci. Food Saf. 19 : 3106-3129. - Schenk F, Weber P, Vogler J, Hecht L, Dietzel A, Gauglitz G. 2018. Development of a paper-based lateral flow immunoassay for simultaneous detection of lipopolysaccharides of
Salmonella serovars.Anal. Bioanal. Chem. 410 : 863-868. - Wang B, Park B. 2020. Immunoassay biosensing of foodborne pathogens with surface plasmon resonance imaging: A review.
J. Agric. Food Chem. 68 : 12927-12939. - Huang H, Garcia MM, Brooks BW, Nielsen K, Ng SP. 1999. Evaluation of culture enrichment procedures for use with
Salmonella detection immunoassay.Int. J. Food Microbiol. 51 : 85-94. - Lee HA, Wyatt GM, Bramham S, Morgan MRA. 1989. Rapid enzyme‐linked immunosorbent assays for the detection of
Salmonella enteritidis in eggs.Food Agric. Immunol. 1 : 89-99. - Bruce VJ, McNaughton BR. 2017. Evaluation of nanobody conjugates and protein fusions as bioanalytical reagents.
Anal. Chem. 89 : 3819-3823. - Bayrac C, Eyidogan F, Avni Oktem H. 2017. DNA aptamer-based colorimetric detection platform for
Salmonella Enteritidis .Biosens. Bioelectron. 98 : 22-28. - Silva NFD, Magalhaes J, Freire C, Delerue-Matos C. 2018. Electrochemical biosensors for
Salmonella : State of the art and challenges in food safety assessment.Biosens. Bioelectron. 99 : 667-682. - Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M,
et al . 2020. Trends in miniaturized biosensors for point-of-care testing.TrAC Trends Anal. Chem. 122 : 115701. - Farhana A, Khan YS. 2003. Biochemistry, Lipopolysaccharide., pp. Ed. Treasure Island (FL): StatPearls Publishing.
- Bertani B, Ruiz N. 2018. Function and biogenesis of lipopolysaccharides.
EcoSal Plus. 8 : 10.1128. - Raetz CR, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in gram-negative bacteria.
Annu. Rev. Biochem. 76 : 295-329. - Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins.
Annu. Rev. Biochem. 71 : 635-700. - Whitfield C, Williams DM, Kelly SD. 2020. Lipopolysaccharide O-antigens-bacterial glycans made to measure.
J. Biol. Chem. 295 : 10593-10609. - Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR,
et al . 2014. Structural diversity inSalmonella O antigens and its genetic basis.FEMS Microbiol. Rev. 38 : 56-89. - Masi A, Zawistowski J. 2008. Detection of live and heat‐treated
Salmonella enteritidis by a D1‐serospecific anti‐lipopolysaccharide O‐9 monoclonal antibody.Food Agric. Immunol. 7 : 351-363. - Jinapon C, Wangman P, Pengsuk C, Chaivisuthangkura P, Sithigorngul P, Longyant S. 2020. Development of monoclonal antibodies for the rapid detection and identification of
Salmonella enterica serovar Enteritidis in food sample using dot‐blot assays.J. Food Saf. https://doi.org/10.1111/jfs.12841. - Keller LH, Benson CE, Garcia V, Nocks E, Battenfelder P, Eckroade RJ. 1993. Monoclonal antibody-based detection system for
Salmonella enteritidis.Avian Dis. 37 : 501-507. - Yoshimasu MA, Zawistowski J. 2001. Application of rapid dot blot immunoassay for detection of
Salmonella enterica serovar enteritidis in eggs, poultry, and other foods.Appl. Environ. Microbiol. 67 : 459-461. - Karberg KA, Olsen GJ, Davis JJ. 2011. Similarity of genes horizontally acquired by
Escherichia coli andSalmonella enterica is evidence of a supraspecies pangenome.Proc. Natl. Acad. Sci. USA 108 : 20154-20159. - Hu B, Perepelov AV, Liu B, Shevelev SD, Guo D, Senchenkova SN,
et al . 2010. Structural and genetic evidence for the close relationship betweenEscherichia coli O71 andSalmonella enterica O28 O-antigens.FEMS Immunol. Med. Microbiol. 59 : 161-169. - Miller T, Prager R, Rabsch W, Fehlhaber K, Voss M. 2010. Epidemiological relationship between
S . Infantis isolates of human and broiler origin.Lohmann. Info. 45 : 27-31. - Arnold K, Lim S, Rakler T, Rovira A, Satuchne C, Yechezkel E,
et al . 2022. Using genetic markers for detection and subtyping of the emergingSalmonella enterica subspecies enterica serotype Muenchen.Poult. Sci. 101 : 102181. - Lalsiamthara J, Lee JH. 2017. Corrigendum: Pathogenic traits of
Salmonella Montevideo in experimental infections in vivo and in vitro.Sci. Rep. 7 : 46786. - Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muruvanda T,
et al . 2016. Tracing origins of theSalmonella bareilly strain causing a food-borne outbreak in the United States.J. Infect. Dis. 213 : 502-508. - Stromberg LR. 2016. Differential Interactions of Lipopolysaccharides with Lipid Bilayers: Applications for Pathogen Detection. Available from https://digitalrepository.unm.edu/bme_etds/9.
- Sturm S, Fortnagel P, Timmis KN. 1984. Immunoblotting procedure for the analysis of electrophoretically-fractionated bacterial lipopolysaccharide.
Arch. Microbiol. 140 : 198-201.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2024; 34(2): 340-348
Published online March 28, 2024 https://doi.org/10.4014/jmb.2308.08006
Copyright © The Korean Society for Microbiology and Biotechnology.
Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes
Jeongik Cho1, Heymin Song1, Hyun C. Yoon1,2, and Hyunjin Yoon1,2*
1Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
2Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
Correspondence to:Hyunjin Yoon, yoonh@ajou.ac.kr
Abstract
Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.
Keywords: Salmonella, serotype, dot-blot, detection
Introduction
According to the culture-confirmed human infection survey conducted by the Laboratory-based Enteric Disease Surveillance (LEDS) system, the 20 most prevalent serotypes in decreasing order were
From an epidemiological perspective, the surveillance of environmental serotypes is crucial for monitoring the emergence of pathogenic serotypes and preventing their transmission through the food chain [11, 12]. A dot-blot technique is a straightforward and rapid diagnostics where a small amount of bacterial lysate is directly dotted on a membrane and subsequently probed with a specific antibody to detect the target antigen [13]. Dot-blot assays are substantially more sensitive than enzyme-linked immunosorbent assay (ELISA) because nitrocellulose and polyvinylidene difluoride (PVDF) membranes have better protein- and LPS-binding capacities than the polystyrene plates used in ELISA [14]. Since this technique does not require highly skilled personnel or the expensive equipment needed for traditional immunology-based diagnosis, dot-blot immunoassays are affordable in most laboratories [15]. To exploit dot-blot immunoassay for a simple and reliable diagnosis for prevalent
Materials and Methods
Bacterial Strains and Growth Conditions
Antibodies
Ten different
-
Table 1 . Ten primary antibodies used in this study..
ID Product Immunogen Host Isotype Ab 1 Salmonella Typhimurium LPS antibody [1E6] (ab8274)S . Typhimurium LPSMouse (mAb) IgG1 Ab 2 Salmonella LPS antibody [se-01] (ab243104)S . Typhimurium LPSMouse (mAb) IgG1 Ab 3 Salmonella polyclonal antibody (PA1-7244)Salmonella O & H antigensRabbit (pAb) IgG Ab 4 Salmonella monoclonal antibody [F68C] (MA1-7443)Salmonella sp. preparationMouse (mAb) IgG1 Ab 5 Salmonella antibody (ab35156)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 6 Salmonella antibody (ab252742)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 7 Salmonella polyclonal antibody (PA1-20811)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 8 Salmonella LPS monoclonal antibody [F62C] (MA1-7447)Salmonella sp. common coreMouse (mAb) IgG2b Ab 9 Salmonella LPS monoclonal antibody [D46J] (MA5-18257)Salmonella sp. common coreMouse (mAb) IgG2a Ab 10 Salmonella LPS monoclonal antibody [A99H] (MA5-18258)Salmonella sp. common coreMouse (mAb) IgG2a
Western Blotting
Immunoblotting was conducted as described previously [16]. In brief, bacterial cells at the stationary growth phase were centrifuged at 12,000 ×
Dot-Blot Assay
The experimental flowchart is shown in Fig. 1A. Bacterial cells were cultivated in LB broth until an OD600 of 3.0 (approximately 3 × 109 CFU/ml) was reached and 500 μl cell suspension was centrifuged at 12,000 ×
-
Figure 1. Scheme of the dot-blot immunoassay.
(A) Flowchart of the designed method with the estimated time. (B) A diagram showing the designed locations of tested serotypes on a nitrocellulose membrane. White and purple circles are indicative of negative and positive interaction, respectively, with tested antibodies. Cell lysates of 18
Salmonella serotypes (A1– D3) used in optimizing the assay were spotted onto nitrocellulose membranes. Lysis buffer solution (D4) andEscherichia coli cell lysate (D5) were spotted as controls.
Results
Assessment of the Cross-Reactivity of 10 Antibodies to Other Bacterial Pathogens
The cross-reactivity of 10 different
-
Figure 2. Cross-reactivity tests of 10
Salmonella antibodies (Ab 1–10) against five bacterial species in western blotting analyses. ST:Salmonella Typhimurium ATCC 14028; Ec:Escherichia coli ATCC 53868; Vc:Vibrio cholerae ATCC 14033; Sa:Staphylococcus aureus ATCC 29213; Bc:Bacillus cereus ATCC 14579. M: size marker.
Comparison of Antibody Selectivity against 18 Salmonella Serotypes
The detection effectiveness of the antibodies was examined using 18
-
Table 2 . Spectrum of 10
Salmonella antibodies against 18 serotypes in western blotting..Antibody (Ab No.) 1 2 3 4 5 6 7 8 9 10 3+8 3+9 8+9 S . Enteritidis−3 + + + − + + + + + + + + + + + + + + + + S . Newport− − − − − − − − − − − − − S . Typhimurium+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + S . Javiana− − − − − − − + + + + + + + + S . I 4,[5],12:i:-− − − − − − − + − + + + + − + S . Infantis− − − − − − − + + − − + + − + + S . Muenchen− − − − − − − − + − − + + S . Montevideo− − − − − − − + + − − + + − + + S . Braenderup− − − − − − − + + − − + + + + + S . Thompson+ + + + + + + + + + + + + + + + + + + + − + + + + + + + + + S . Saintpaul+ + + + + + + + + + + + + + + + + + + + + − + + - + + + + + + + + S . Heidelberg+ + + + + + + + + + + + + + + + + + + + + − + + + + + + + + + + + S . Oranienburg− − − − − − − + + − + + + − + + S . Mississippi− − − − − − − + − − + − + S . Bareilly− − − − − − − + + − − + + − + + S . Berta− − + + + − + + + + + + + + + + + + + + + + + + + + + S . Agona− + + + + + + − + + + + + + + + + + + + − + + + + + + + + S . Anatum− − − − − − − + + + + + + + + + Detection rate1 4/18 6/18 7/18 5/18 7/18 7/18 7/18 13/18 10/18 9/18 16/18 11/18 17/18 Incidence (%)2 14.8 32.4 35.3 16.9 33.2 33.2 33.2 49.8 42.2 43.3 54.8 44.3 57.4 1Detection rate: Number of detected serotypes out of tested 18 serotypes..
2Incidence (%): Percentage of salmonellosis incidence associated with the detectable serotypes. Incidence was retrieved from the culture-confirmed human infection survey by LEDS. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf..
3Symbols of +/-: Detected/not detected. More symbols indicate stronger detection signals..
Owing to the selectivity and signal intensity (responsible for the sensitivity in dot-blot assays), Ab 3, Ab 8, and Ab 9 were selected for further dot-blot immunoassays. Ab 3 showed the highest detection rate among the four polyclonal antibodies and exhibited strong binding signals in the western blotting analysis. Ab 8 and Ab 9, despite having moderate signal intensities, demonstrated broad serotype spectra, covering 13 and 10 serotypes, respectively. The selectivity of three combinations (Ab 3+8, Ab 3+9, and Ab 8+9) was predicted based on the western blotting analyses (Table 2). Ab 3+8 and Ab 8+9 were estimated to detect 16 and 17 serotypes, respectively, which are responsible for 54.8% and 57.4% salmonellosis incidence, respectively, in the U.S. in 2016 [10]. Ab 3+9 was expected to detect 11 serotypes, which was inferior to the other two combinations.
Application of a Combination of Two Antibodies to Dot-Blot Immunoassays
Dot-blot assays were preformed using Ab 3, Ab 8, and Ab 9 individually (Fig. 3A) and in combination (Fig. 3B). The cell lysates of 18
-
Table 3 . Spectrum of three
Salmonella antibodies against 18 serotypes in dot-blot assay..Antibody (Ab No.) 3 8 9 3+8 3+9 8+9 WB1 DB2 WB DB WB DB DB DB DB S . Enteritidis+ +5 + + + + + + + + + + + + S . Newport− − − − − − − − − S . Typhimurium+ + + + + + − + + + + + + + + S . Javiana− − + + + − + − + S . I 4,[5],12:i:-− + + + + − + + + + + + S . Infantis− − + + + + − − + + − + S . Muenchen− − − − + − − − - S . Montevideo− − + + + + - − + + − + S . Braenderup+ − + + + − − + − + S . Thompson+ + + − − + + − + − + S . Saintpaul+ + + + + − − + + + + + + + + S . Heidelberg+ + + + + − − + + + + + + + + S . Oranienburg− − + + + − − + + − + S . Mississippi− − + − − − − − − S . Bareilly− − + + + + − − + + − + S . Berta+ + + + + + + + + + + + + + + S . Agona+ + + + + + + + + + + + + + + S . Anatum− + + + + + + + + + + Detection rate3 8/18 8/18 13/18 12/18 10/18 8/18 15/18 8/18 15/18 Incidence (%)4 35.3 36.8 49.8 40.6 42.2 36.8 53.7 36.8 53.7 1WB: western blotting analysis..
2DB: Dot-blot immunoassay..
3Detection rate: Number of detected serotypes out of tested 18 serotypes..
4Incidence (%): Percentage of salmonellosis incidence associated with the detectable serotypes. Incidence was retrieved from the culture-confirmed human infection survey by LEDS. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf..
5Symbols of +/-: Detected/not detected. More symbols indicate stronger detection signals..
-
Figure 3. Dot-blot assays of three antibodies against 18
Salmonella serotypes. Cell lysates of 18Salmonella serotypes were spotted as described in Fig. 1B and probed with Ab 3, Ab 8, and Ab 9, (A) individually or (B) in combination. As negative controls, lysis buffer solution (D4) andEscherichia coli cell lysate (D5) were tested in parallel.
Dot-blot assays were conducted using three combinations of two antibodies (Fig. 3B). Considering the weak binding signals of monoclonal antibodies, higher Ab 8 or Ab 9 concentrations were added before adding Ab 3 (Fig. 1). The optimized dot-blot assay using Ab 3+8 or Ab 8+9 identified 15 of 18 serotypes (Fig. 3B). The diagnosed 15 serotypes were overlapped between two combinations and were estimated to be associated with 53.7% salmonellosis cases in the U.S. in 2016 (Table 3). However, the detection sensitivity of Ab 8+9 was inferior to that of Ab 3+8, likely because of the weak signal of monoclonal antibodies.
The designed dot-blot immunoassay using Ab 3+8 was applied to diagnose 18
-
Figure 4. Diagnosis of 18
Salmonella strains using dot-blot immunoassay. EighteenSalmonella strains belonging to seven different serotypes were subjected to the designed dot-blot immunoassay using Ab 3+8. A1:S . Enteritidis ATCC 4931; A2:S . Enteritidis FORC_019; A3:S . Enteritidis FORC_052; A4:S . Enteritidis ATCC 13076; A5:S . Enteritidis MFDS 1004839; B1:S . Typhimurium FORC_030; B2:S . Typhimurium NCCP 12219; B3:S . Typhimurium NCCP 14772; B4:S . Newport NCCP 12235; B5:S . Newport FORC_020; C1:S . Montevideo CCARM 8189; C2:S . Montevideo MFDS 1006814; C3:S . Infantis MFDS 1006818; C4:S . Muenchen KCPB 03; C5:S . Bareilly CCARM 8578; D1:S . Bareilly NCCP 11674; D2:S . Bareilly NCCP 16323; D3:S . Bareilly MFDS 1007637; D4: lysis buffer solution; D5:Escherichia coli ATCC 53868.
Discussion
Traditional
As an alternative immunoassay, dot-blot assays also utilize antibodies to detect target antigens but use nitrocellulose or PVDF membranes instead of polystyrene plates frequently used in ELISA. Antigens such as proteins and LPS bind to nitrocellulose and PVDF membranes more tightly than polystyrene plates [14, 15]. Therefore, dot-blot-based methods have considerably higher sensitivity than ELISA-based methods [14]. Dot-blot assay is a simplified method derived from western blotting. However, dot-blot assays do not require electrophoretic separation of antigen molecules on polyacrylamide gels and the procedures are substantially easier and faster than western blotting. Moreover, dot-blot assays are cost-effective. Besides, spotting bacterial lysates on membranes of randomized sizes enables screening large numbers of specimens for the presence of target antigens.
In contrast, dot-blot immunoassays possess a critical drawback owing to antibody specificity. Commercial antibodies against
The dot-blot immunoassay developed in this study combined two different
The drawback of conventional
Supplemental Materials
Acknowledgments
This work was supported by a grant (2021M3A9I4026029) from the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science & ICT, and a grant (2021N100) of the Commercializations Promotion Agency for R&D Outcomes (COMPA), funded by the Korea government (MSIT).
Conflict of Interest
The authors have no financial conflicts of interest to declare.
Fig 1.
Fig 2.
Fig 3.
Fig 4.
-
Table 1 . Ten primary antibodies used in this study..
ID Product Immunogen Host Isotype Ab 1 Salmonella Typhimurium LPS antibody [1E6] (ab8274)S . Typhimurium LPSMouse (mAb) IgG1 Ab 2 Salmonella LPS antibody [se-01] (ab243104)S . Typhimurium LPSMouse (mAb) IgG1 Ab 3 Salmonella polyclonal antibody (PA1-7244)Salmonella O & H antigensRabbit (pAb) IgG Ab 4 Salmonella monoclonal antibody [F68C] (MA1-7443)Salmonella sp. preparationMouse (mAb) IgG1 Ab 5 Salmonella antibody (ab35156)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 6 Salmonella antibody (ab252742)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 7 Salmonella polyclonal antibody (PA1-20811)Mixture of S . Enteritidis,S . Typhimurium andS . HeidelbergRabbit (pAb) IgG Ab 8 Salmonella LPS monoclonal antibody [F62C] (MA1-7447)Salmonella sp. common coreMouse (mAb) IgG2b Ab 9 Salmonella LPS monoclonal antibody [D46J] (MA5-18257)Salmonella sp. common coreMouse (mAb) IgG2a Ab 10 Salmonella LPS monoclonal antibody [A99H] (MA5-18258)Salmonella sp. common coreMouse (mAb) IgG2a
-
Table 2 . Spectrum of 10
Salmonella antibodies against 18 serotypes in western blotting..Antibody (Ab No.) 1 2 3 4 5 6 7 8 9 10 3+8 3+9 8+9 S . Enteritidis−3 + + + − + + + + + + + + + + + + + + + + S . Newport− − − − − − − − − − − − − S . Typhimurium+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + S . Javiana− − − − − − − + + + + + + + + S . I 4,[5],12:i:-− − − − − − − + − + + + + − + S . Infantis− − − − − − − + + − − + + − + + S . Muenchen− − − − − − − − + − − + + S . Montevideo− − − − − − − + + − − + + − + + S . Braenderup− − − − − − − + + − − + + + + + S . Thompson+ + + + + + + + + + + + + + + + + + + + − + + + + + + + + + S . Saintpaul+ + + + + + + + + + + + + + + + + + + + + − + + - + + + + + + + + S . Heidelberg+ + + + + + + + + + + + + + + + + + + + + − + + + + + + + + + + + S . Oranienburg− − − − − − − + + − + + + − + + S . Mississippi− − − − − − − + − − + − + S . Bareilly− − − − − − − + + − − + + − + + S . Berta− − + + + − + + + + + + + + + + + + + + + + + + + + + S . Agona− + + + + + + − + + + + + + + + + + + + − + + + + + + + + S . Anatum− − − − − − − + + + + + + + + + Detection rate1 4/18 6/18 7/18 5/18 7/18 7/18 7/18 13/18 10/18 9/18 16/18 11/18 17/18 Incidence (%)2 14.8 32.4 35.3 16.9 33.2 33.2 33.2 49.8 42.2 43.3 54.8 44.3 57.4 1Detection rate: Number of detected serotypes out of tested 18 serotypes..
2Incidence (%): Percentage of salmonellosis incidence associated with the detectable serotypes. Incidence was retrieved from the culture-confirmed human infection survey by LEDS. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf..
3Symbols of +/-: Detected/not detected. More symbols indicate stronger detection signals..
-
Table 3 . Spectrum of three
Salmonella antibodies against 18 serotypes in dot-blot assay..Antibody (Ab No.) 3 8 9 3+8 3+9 8+9 WB1 DB2 WB DB WB DB DB DB DB S . Enteritidis+ +5 + + + + + + + + + + + + S . Newport− − − − − − − − − S . Typhimurium+ + + + + + − + + + + + + + + S . Javiana− − + + + − + − + S . I 4,[5],12:i:-− + + + + − + + + + + + S . Infantis− − + + + + − − + + − + S . Muenchen− − − − + − − − - S . Montevideo− − + + + + - − + + − + S . Braenderup+ − + + + − − + − + S . Thompson+ + + − − + + − + − + S . Saintpaul+ + + + + − − + + + + + + + + S . Heidelberg+ + + + + − − + + + + + + + + S . Oranienburg− − + + + − − + + − + S . Mississippi− − + − − − − − − S . Bareilly− − + + + + − − + + − + S . Berta+ + + + + + + + + + + + + + + S . Agona+ + + + + + + + + + + + + + + S . Anatum− + + + + + + + + + + Detection rate3 8/18 8/18 13/18 12/18 10/18 8/18 15/18 8/18 15/18 Incidence (%)4 35.3 36.8 49.8 40.6 42.2 36.8 53.7 36.8 53.7 1WB: western blotting analysis..
2DB: Dot-blot immunoassay..
3Detection rate: Number of detected serotypes out of tested 18 serotypes..
4Incidence (%): Percentage of salmonellosis incidence associated with the detectable serotypes. Incidence was retrieved from the culture-confirmed human infection survey by LEDS. https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf..
5Symbols of +/-: Detected/not detected. More symbols indicate stronger detection signals..
References
- Crum-Cianflone NF. 2008. Salmonellosis and the gastrointestinal tract: more than just peanut butter.
Curr. Gastroenterol. Rep. 10 : 424-431. - Ehuwa O, Jaiswal AK, Jaiswal S. 2021.
Salmonella , food safety and food handling practices.Foods 10 : 907. - Popoff MY, Bockemuhl J, Brenner FW. 2000. Supplement 1998 (no. 42) to the Kauffmann-white scheme.
Res. Microbiol. 151 : 63-65. - Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000.
Salmonella nomenclature.J. Clin. Microbiol. 38 : 2465-2467. - Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. 2019. Worldwide epidemiology of
Salmonella Serovars in animal-based foods: a meta-analysis.Appl. Environ. Microbiol. 85 : e00591-19. - Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de Pinna E, Nair S,
et al . 2014. Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme.Res. Microbiol. 165 : 526-530. - Gal-Mor O, Boyle EC, Grassl GA. 2014. Same species, different diseases: how and why typhoidal and non-typhoidal
Salmonella enterica serovars differ.Front. Microbiol. 5 : 391. - Zha L, Garrett S, Sun J. 2019.
Salmonella infection in chronic inflammation and gastrointestinal cancer.Diseases 7 : 28. - Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive
Salmonella Infections.Clin. Microbiol. Rev. 28 : 901-937. - Centers for Disease Control and Prevention (CDC). 2018. National Enteric Disease Surveillance: Salmonella Annual Report, 2016. Atlanta, GA: Centers for Disease Control and Prevention. Available from https://www.cdc.gov/nationalsurveillance/pdfs/2016-Salmonella-report-508.pdf.
- Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK,
et al . 2022. Emergence, dissemination and antimicrobial resistance of the main poultry-associatedSalmonella serovars in Brazil.Vet. Sci. 9 : 405. - Uelze L, Becker N, Borowiak M, Busch U, Dangel A, Deneke C,
et al . 2021. Toward an integrated genome-based Surveillance ofSalmonella enterica in Germany.Front. Microbiol. 12 : 626941. - Stott DI. 1989. Immunoblotting and dot blotting.
J. Immunol. Methods 119 : 153-187. - Sarasombath S, Lertmemongkolchai G, Banchuin N. 1988. Characterization of monoclonal antibodies to protein antigen of
Salmonella typhi.J. Clin. Microbiol. 26 : 508-512. - Jaradat ZW, Bzikot JH, Zawistowski J, Bhunia AK. 2004. Optimization of a rapid dot-blot immunoassay for detection of
Salmonella enterica serovar Enteritidis in poultry products and environmental samples.Food Microbiol. 21 : 761-769. - Park S, Yoon H. 2023. Transcriptional insight into the effect of benzalkonium chloride on resistance and virulence potential in
Salmonella Typhimurium.Microbiol. Res. 266 : 127240. - van der Zee H. 1994. Conventional methods for the detection and isolation of Salmonella enteritidis.
Int. J. Food Microbiol. 21 : 41-46. - Awang MS, Bustami Y, Hamzah HH, Zambry NS, Najib MA, Khalid MF,
et al . 2021. Advancement inSalmonella detection methods: From conventional to electrochemical-based sensing detection.Biosensors (Basel) 11 : 346. - Diep B, Barretto C, Portmann AC, Fournier C, Karczmarek A, Voets G,
et al . 2019.Salmonella serotyping; Comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data.Front. Microbiol. 10 : 2554. - Zou QH, Li RQ, Liu GR, Liu SL. 2016. Genotyping of
Salmonella with lineage-specific genes: correlation with serotyping.Int. J. Infect. Dis. 49 : 134-140. - Yang SM, Kim E, Kim D, Kim HB, Baek J, Ko S,
et al . 2021. Rapid real-time polymerase chain reaction forSalmonella serotyping based on novel unique gene markers by pangenome analysis.Front. Microbiol. 12 : 750379. - Ferone M, Gowen A, Fanning S, Scannell AGM. 2020. Microbial detection and identification methods: Bench top assays to omics approaches.
Compr. Rev. Food Sci. Food Saf. 19 : 3106-3129. - Schenk F, Weber P, Vogler J, Hecht L, Dietzel A, Gauglitz G. 2018. Development of a paper-based lateral flow immunoassay for simultaneous detection of lipopolysaccharides of
Salmonella serovars.Anal. Bioanal. Chem. 410 : 863-868. - Wang B, Park B. 2020. Immunoassay biosensing of foodborne pathogens with surface plasmon resonance imaging: A review.
J. Agric. Food Chem. 68 : 12927-12939. - Huang H, Garcia MM, Brooks BW, Nielsen K, Ng SP. 1999. Evaluation of culture enrichment procedures for use with
Salmonella detection immunoassay.Int. J. Food Microbiol. 51 : 85-94. - Lee HA, Wyatt GM, Bramham S, Morgan MRA. 1989. Rapid enzyme‐linked immunosorbent assays for the detection of
Salmonella enteritidis in eggs.Food Agric. Immunol. 1 : 89-99. - Bruce VJ, McNaughton BR. 2017. Evaluation of nanobody conjugates and protein fusions as bioanalytical reagents.
Anal. Chem. 89 : 3819-3823. - Bayrac C, Eyidogan F, Avni Oktem H. 2017. DNA aptamer-based colorimetric detection platform for
Salmonella Enteritidis .Biosens. Bioelectron. 98 : 22-28. - Silva NFD, Magalhaes J, Freire C, Delerue-Matos C. 2018. Electrochemical biosensors for
Salmonella : State of the art and challenges in food safety assessment.Biosens. Bioelectron. 99 : 667-682. - Liu D, Wang J, Wu L, Huang Y, Zhang Y, Zhu M,
et al . 2020. Trends in miniaturized biosensors for point-of-care testing.TrAC Trends Anal. Chem. 122 : 115701. - Farhana A, Khan YS. 2003. Biochemistry, Lipopolysaccharide., pp. Ed. Treasure Island (FL): StatPearls Publishing.
- Bertani B, Ruiz N. 2018. Function and biogenesis of lipopolysaccharides.
EcoSal Plus. 8 : 10.1128. - Raetz CR, Reynolds CM, Trent MS, Bishop RE. 2007. Lipid A modification systems in gram-negative bacteria.
Annu. Rev. Biochem. 76 : 295-329. - Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins.
Annu. Rev. Biochem. 71 : 635-700. - Whitfield C, Williams DM, Kelly SD. 2020. Lipopolysaccharide O-antigens-bacterial glycans made to measure.
J. Biol. Chem. 295 : 10593-10609. - Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR,
et al . 2014. Structural diversity inSalmonella O antigens and its genetic basis.FEMS Microbiol. Rev. 38 : 56-89. - Masi A, Zawistowski J. 2008. Detection of live and heat‐treated
Salmonella enteritidis by a D1‐serospecific anti‐lipopolysaccharide O‐9 monoclonal antibody.Food Agric. Immunol. 7 : 351-363. - Jinapon C, Wangman P, Pengsuk C, Chaivisuthangkura P, Sithigorngul P, Longyant S. 2020. Development of monoclonal antibodies for the rapid detection and identification of
Salmonella enterica serovar Enteritidis in food sample using dot‐blot assays.J. Food Saf. https://doi.org/10.1111/jfs.12841. - Keller LH, Benson CE, Garcia V, Nocks E, Battenfelder P, Eckroade RJ. 1993. Monoclonal antibody-based detection system for
Salmonella enteritidis.Avian Dis. 37 : 501-507. - Yoshimasu MA, Zawistowski J. 2001. Application of rapid dot blot immunoassay for detection of
Salmonella enterica serovar enteritidis in eggs, poultry, and other foods.Appl. Environ. Microbiol. 67 : 459-461. - Karberg KA, Olsen GJ, Davis JJ. 2011. Similarity of genes horizontally acquired by
Escherichia coli andSalmonella enterica is evidence of a supraspecies pangenome.Proc. Natl. Acad. Sci. USA 108 : 20154-20159. - Hu B, Perepelov AV, Liu B, Shevelev SD, Guo D, Senchenkova SN,
et al . 2010. Structural and genetic evidence for the close relationship betweenEscherichia coli O71 andSalmonella enterica O28 O-antigens.FEMS Immunol. Med. Microbiol. 59 : 161-169. - Miller T, Prager R, Rabsch W, Fehlhaber K, Voss M. 2010. Epidemiological relationship between
S . Infantis isolates of human and broiler origin.Lohmann. Info. 45 : 27-31. - Arnold K, Lim S, Rakler T, Rovira A, Satuchne C, Yechezkel E,
et al . 2022. Using genetic markers for detection and subtyping of the emergingSalmonella enterica subspecies enterica serotype Muenchen.Poult. Sci. 101 : 102181. - Lalsiamthara J, Lee JH. 2017. Corrigendum: Pathogenic traits of
Salmonella Montevideo in experimental infections in vivo and in vitro.Sci. Rep. 7 : 46786. - Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muruvanda T,
et al . 2016. Tracing origins of theSalmonella bareilly strain causing a food-borne outbreak in the United States.J. Infect. Dis. 213 : 502-508. - Stromberg LR. 2016. Differential Interactions of Lipopolysaccharides with Lipid Bilayers: Applications for Pathogen Detection. Available from https://digitalrepository.unm.edu/bme_etds/9.
- Sturm S, Fortnagel P, Timmis KN. 1984. Immunoblotting procedure for the analysis of electrophoretically-fractionated bacterial lipopolysaccharide.
Arch. Microbiol. 140 : 198-201.