Articles Service
Research article
Antibacterial and Antibiofilm Effect of Cell-Free Supernatant of Lactobacillus brevis KCCM 202399 Isolated from Korean Fermented Food against Streptococcus mutans KCTC 5458
Department of Food Science and Biotechnology of Animal Resource Konkuk University, Seoul 05029, Republic of Korea
Correspondence to:J. Microbiol. Biotechnol. 2022; 32(1): 56-63
Published January 28, 2022 https://doi.org/10.4014/jmb.2109.09045
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
Introduction
Dental caries, caused by
Probiotics are live bacteria that can modulate the intestinal microflora when ingested in adequate amounts by the host [9, 10]. The characteristic properties of probiotics can prevent invasion and cellular adhesion of pathogenic bacteria [11]. In recent decades, the use of probiotics to prevent oral infections has significantly increased. Some of the specific
Materials and Methods
Bacterial Strains and Growth Conditions
Preparation Cell-Free Supernatant (CFS) of Lactobacillus Strains
Lactobacillus strains were cultured in MRS broth at 37°C for 24 h. The CFSs of the strains CFS were centrifuged (12,000 ×
Antibacterial Effect of L. brevis Strains against S. mutans Strains
The antibacterial effect of
Minimum Inhibitory Concentration (MIC) of L. brevis Strains against S. mutans Strains
The MIC of
Cell Surface Properties
The auto-aggregation and cell surface hydrophobicity of
After washing the cells, the absorbance at 600 nm (ODInitial) was adjusted to 0.5 ± 0. Chloroform (0.5 ml) was added to each cell suspension (2 ml) and pre-incubated for 10 min at 37°C. Thereafter, the mixtures were vortexed for 2 min and incubated for 15 min at 37°C. The aqueous phase was measured at 600 nm (ODTreatment). The cell surface hydrophobicity was calculated using the following formula:
Analysis of Total EPS Production Rate
EPS production by
Biofilm Assay
Biofilm inhibition and eradication were measured using a crystal violet assay, with some modifications [17]. Overnight cultured
To investigate the effect of eradication on the formation of
Scanning Electron Microscopy (SEM) Analysis
SEM was performed to investigate the biofilm inhibition effect of
Confocal Laser Scanning Microscopy (CLSM) Analysis
CLSM was performed to evaluate the biofilm inhibition effect of
Statistical Analysis
All experiments were repeated three times with duplicate samples, and the results are presented as the mean ± standard deviation. All statistical analyses were performed using SPSS 18.0. Significant differences among means were determined using one-way analysis of variance (ANOVA).
Results
Antibacterial Effect against S. mutans Strains
The antibacterial effects of
-
Table 1 . Inhibition effect of
Lactobacillus strains againstStreptococcus mutans strains.Oral pathogenic bacteria Inhibitory diameter (mm) LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) S. mutans KCTC 51247.55 ± 1.33a 7.66 ± 0.86a 5.66 ± 0.86b 6.33 ± 1.22a 6.11 ± 1.16b 4.88 ± 1.05b S. mutans KCTC 545816.27 ± 2.10a 16.11 ± 1.45a 13.33 ± 1.73bc 14.83 ± 0.93ab 11.72 ± 1.60cd 10.66 ± 1.32d S. mutans KCTC 53169.44 ± 1.42a 8.56 ± 1.67a 6.89 ± 0.78b 6.33 ± 1.00b 6.78 ± 2.05b 5.33 ± 0.71b 1-6)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019.All values are mean ± standard deviation.
a-dValues with different letters in the same row are significantly different (
p < 0.05). 1-6) LGG,L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019.All values are mean ± standard deviation.
a-dValues with different letters in the same row are significantly different (
p < 0.05).
-
Table 2 . Antibacterial effect of the
Lactobacillus strains cell free supernatant (CFS) againstS. mutans strains.Oral pathogenic bacteria Minimal inhibitory concentration (%) LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) S. mutans KCTC 512425 ± 0.0a 25 ± 0.0a 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b S .mutans KCTC 54586.25 ± 0.0a 6.25 ± 0.0a 12.5 ± 0.0b 12.5 ± 0.0b 25 ± 0.0c 25 ± 0.0c S. mutans KCTC 531625 ± 0.0a 25 ± 0.0a 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 1-6)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019.All values are mean ± standard deviation.
a-cValues with different letters in the same row are significantly different (
p < 0.05).
Cell Surface Properties
The effects of
-
Table 3 . Effects of the cell-free supernatant of
Lactobacillus strains on auto-aggregation and cell surface hydrophobicity of S.mutans KCTC 5458.Probiotics strains LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) Auto-aggregation (%) Control7) 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 Treated8) 46.35 ± 3.18a 45.91 ± 1.97a 56.94 ± 3.21b 49.11 ± 0.88c 59.76 ± 2.26d 54.54 ± 1.7c Hydrophobicity (%) Control 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 Treated 32.97 ± 0.39a 40.51 ± 1.04b 48.44 ± 4.43c 45.18 ± 1.72c 52.19 ± 3.67d 45.93 ± 7.61c 1-8)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019; control, treated with probiotic CFS.a-cValues with different letters in the same row are significantly different (
p < 0.05).All values are mean ± standard deviation.
EPS Production Rate
The EPS production rate of
-
Fig. 1. EPS production rate of
Streptococcus mutans KCTC 5458 treated with cell-free supernatant (CFS) ofLactobacillus brevis strains. □, Control (treatedL. brevis strains); ■,L. brevis strains; LGG,L. rhamnosus GG. Each value represents the mean ± standard deviation, with a-ddifferent letters on each bar representing significant differences (p < 0.05).
Biofilm Inhibition and Eradication Effects of CFS
The inhibitory effect of
-
Fig. 2. Antibiofilm effects of cell-free supernatant (CFS) of
Lactobacillus brevis strains onStreptococcus mutans KCTC 5458. (A), Biofilm inhibition effect of CFS; (B), Biofilm eradication effect of CFS. LGG,L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019. Each value represents the mean ± standard deviation, with a-gdifferent letters on each bar representing significant differences (p < 0.05).
SEM Analysis on Glass Coupon
The effects of
-
Fig. 3.
Streptococcus mutans KCTC 5458 biofilm on glass coupons surface treatment with cell-free supernatant (CFS) ofLactobacillus brevis KCCM 202399 visualized by scanning electron microscopy (SEM) images (magnification: × 1,000, × 5,000, and × 10,000). A group: control group (untreated withL. brevis CFS); B group: treated withL. rhamnosus GG CFS; C group: treated withL. brevis KCCM 202399 CFS.
CLSM Analysis on Glass Coupon
The antibiofilm and antibacterial effects of
-
Fig. 4. Confocal laser scanning microscopy (CLSM) images of
Streptococcus mutans KCTC 5458 biofilm on glass coupons surface treated withLactobacillus brevis KCCM 202399 cell-free supernatant (CFS) (× 100 magnification). A group: control group (untreated withL. brevis CFS); B group: treated withL. rhamnosus GG CFS; C group: treated withL. brevis KCCM 202399 CFS.
Discussion
Dental caries is a major oral disease that is multi-species biofilm-mediated. Dental plaque, which is a multi-species biofilm, is transformed from cariogenic to non-cariogenic plaque.
In this study, methods were developed to screen the antibacterial effect of
Auto-aggregation, cell surface hydrophobicity, and EPS production changes in
Changes in cell surface properties and EPS production by
Six
Conflict of Interests
The authors have no financial conflicts of interest to declare.
References
- Miki M, Hitoshi K. 2010. Role of two-component system of
Streptococcus mutans in the adaptive response to the oral environment.J. Oral Biosci. 52 : 252-259. - Kim HJ, Lee JH. 2020. Anti-biofilm effect of egg yolk phosvitin by inhibition of biomass production and adherence activity against
Streptococcus mutans .Food Sci. Anim. Resour. 40 : 1001-1013. - Salli KM, Forssten SD, Lahtinen SJ, Ouwehand AC. 2016. Influence of sucrose and xylitol on an early
Streptococcus mutans biofilm in a dental simulator.Arch. Oral Biol. 70 : 39-46. - Lim SM, Lee NK, Paik HD. 2020. Antibacterial and anticavity activity of probiotic
Lactobacillus plantarum 200661 isolated from fermented foods againstStreptococcus mutans .LWT - Food Sci. Technol. 118 : 108840. - Yimeng C, Huiwei Y, Wujun W, Pengfei P, Yin W, Xinyu W,
et al . 2020. KillingStreptococcus mutans in mature bioflm with a combination of antimicrobial and antibioflm peptides.Amino Acids 52 : 1-14. - World Health Organization, 2003. Oral health to use from https://www.who.int/news-room/fact-sheets/detail/oral-health. Accessed Mar. 25, 2020.
- Baker JL, Faustoferri RC, Quivey RG Jr. 2017. Acid-adaptive mechanisms of
Streptococcus mutans -the more we know, the more we don't.Mol. Oral Microbiol. 32 : 107-117. - Kim AR, Ahn KB, Yun CH, Park OJ, Perinpanayagam H, Yoo YJ,
et al . 2019.Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm.J. Endod. 45 : 310-315. - Cai JN, Kim MA, Jung JE, Pandit S, Song KY, Jeon JG. 2015. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of
Streptococcus mutans UA159 biofilms.Biofouling 31 : 555-563. - Lee NK, Kim SY, Han KJ, Eom SJ, Paik HD. 2014. Probiotic potential of
Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters.LWT - Food Sci. Technol. 58 : 130-134. - Tareb R, Bemardeau M, Gueguen M, Vernoux JP. 2013.
In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probioticLactobacillus strains and interaction with foodborne zoonotic bacteria. especiallyCampylobacter jejuni .J. Med. Microbiol. 62 : 637-649. - Cruz AGD, Ranadheera CS, Nazzaro F, Mortazavian A. 2021. Probiotics and Prebiotics in Foods, pp. 59-80.
In: Michel RM, Pedro HFS, Luciana PM, Segio S, Arthur CO, Flavia F (eds),Chapter 4 - Probiotics and Prebiotic in Oral Health . Academic Press, Massachusetts. - Parul C, Renuka D, Anuradha S, Neeru B, & Mahesh SD. 2020. A critical appraisal of the effects of probiotics on oral health.
J. Funct. Foods 70 : 103985. - Jang HJ, Lee NK, Paik HD. 2019. Probiotic characterization of
Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi.Food Sci. Biotechnol. 28 : 1521-1528. - Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM,
et al . 2018. Cell autoaggregation biofilm formation, and plant attachment in aSinorhizobium meliloti lpsB mutant.Mol. Plant Microbe Interact. 31 : 1075-1082. - Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. 2015. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability.
Microb. Biotechnol. 8 : 392-403. - Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. 2019. Anti-biofilm activity of grapefruit seed extract against
Staphylococcus aureus and Escherichia coli.J. Mircobiol. Biotechnol. 29 : 1177-1183. - Yu HH, Song YJ, Yu HS, Lee NK, Paik HD. 2020. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against
Campylobacter spp. using cell surface characteristics.J. Food Sci. 85 : 157-164. - Badet C, Richard B, Castaing-Debat M, De Flaujac PM, Dorignac G. 2004. Adaptation of salivary
Lactobacillus strains to xylitol.Arch. Oral Biol. 49 : 161-164. - Taku F, Yutaka T, Tomonori H, Shigetada K, Takashi O, Shizuo S,
et al . 1998. Molecular analyses of glucosyltransferase genes among strains ofStreptococcus mutans .FEMS Microbiol. Lett. 161 : 331-336. - Zhang G, Lu M, Liu R, Tian Y, Vu VH, Li Y,
et al . 2020. Inhibition ofStreptococcus mutans biofilm formation and virulence byLactobacillus plantarum K41 isolated from traditional sichuan pickles.Front. Microbiol. 11 : 774. - Zhang Z, Lyu X, Xu Q, Li C, Lu M, Gong T,
et al . 2020. Utilization of the extract of Cedrus deodara (Roxb.Ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacteriumStreptococcus mutans .J. Ethnopharmacol. 257 : 112856. - Tahmourespour A, Karsa Kermanshahi R, Salehi R, Nabinezhad AAR. 2008. The relationship between cell surface hydrophobicity and antibiotic resistance of
Streptococcal strains isolated from dental plaque and caries.Iran. J. Basic Med. Sci. 10 : 251-255. - Fang F, Xu J, Li Q, Xia X, Du G. 2018. Characterization of a
Lactobaciilus brevis strain with potential oral probiotic properties.BMC Microbiol. 18 : 221. - Yoo Y, Seo DH, Lee H, Cho ES, Song NE, Nam TG,
et al . 2019. Inhibitory effect ofBacillus velezensis on biofilm formation byStreptococcus mutans .J. Biotechnol. 298 : 57-63. - Sun Y, Jiang W, Zhang M, Zhang L, Shen Y, Huang S,
et al . 2021. The inhibitory effects of ficin onStreptococcus mutans biofilm formation.Biomed Res. Int. 2021 : 6692328. - Jang HJ, Kim JH, Lee NK, Paik HD. 2021. Inhibitory effects of
Lactobacillus brevis KU15153 againstStreptococcus mutans KCTC 5316 causing dental caries.Microb. Pathog. 157 : 104938. - Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C. 2014. Antimicrobial and antibiofilm potential of biosurfactants isolated from
lactobacilli against multi-drug-resistant pathogens.BMC Microbiol. 14 : 197. - Jamwal A, Sharma K, Chauhan R, Bansal S, Goel G. 2019. Evaluation of commercial probiotic lactic cultures against biofilm formation by
Cronobacter sakazakii .Intest. Res. 17 : 192-201. - Tahmourespour A, Salehi R, Kermanshahi RK. 2011.
Lactobacillus acidophilus -derived biosurfactant effect on GTFB and GTFC expression level inStreptococcus mutans biofilm cells.Braz. J. Microbiol. 42 : 330-339. - Ahn KB, Baik JE, Park OJ, Yun CH, Han SH. 2018.
Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation ofStreptococcus mutans .PLoS One 13 : e0192694. - Lin X, Chen X, Tu W, Wang S, Chen H. 2017. Effect of probiotic
Lactobacilli on the growth ofStreptococcus mutans and multispecies biofilms isolated from children with active caries.Med. Sci. Monit. 23 : 4175-4181. - Jeffrey AB. 2004. Virulence properties of
Streptococcus .Front. Biosci. 9 : 1264-1277.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2022; 32(1): 56-63
Published online January 28, 2022 https://doi.org/10.4014/jmb.2109.09045
Copyright © The Korean Society for Microbiology and Biotechnology.
Antibacterial and Antibiofilm Effect of Cell-Free Supernatant of Lactobacillus brevis KCCM 202399 Isolated from Korean Fermented Food against Streptococcus mutans KCTC 5458
Jong Ha Kim, Hye Ji Jang, Na-Kyoung Lee, and Hyun-Dong Paik*
Department of Food Science and Biotechnology of Animal Resource Konkuk University, Seoul 05029, Republic of Korea
Correspondence to:Hyun-Dong Paik, hdpaik@konkuk.ac.kr
Abstract
This study aims to determine the antibiofilm effect of cell-free supernatant (CFS) of Lactobacillus brevis strains against Streptococcus mutans strains. To study the antibiofilm mechanism against S. mutans strains, antibacterial effects, cell surface properties (auto-aggregation and cell surface hydrophobicity), exopolysaccharide (EPS) production, and morphological changes were examined. The antibiofilm effect of L. brevis KCCM 202399 CFS as morphological changes were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), compared with the control treatment. Among the L. brevis strains, L. brevis KCCM 202399 showed the highest antibiofilm effect on S. mutans KCTC 5458. The antibacterial effect of L. brevis KCCM 202399 against S. mutans KCTC 5458 was investigated using the deferred method (16.00 mm). The minimum inhibitory concentration of L. brevis KCCM 202399 against S. mutans KCTC 5458 was 25.00%. Compared with the control treatment, L. brevis KCCM 202399 CFS inhibited the bacterial adhesion of S. mutans KCTC 5458 by decreasing auto-aggregation, cell surface hydrophobicity, and EPS production (45.91%, 40.51%, and 67.44%, respectively). L. brevis KCCM 202399 CFS inhibited and eradicated the S. mutans KCTC 5458 biofilm. Therefore, these results suggest that L. brevis KCCM 202399 CFS may be used to develop oral health in the probiotic industry.
Keywords: Probiotics, antibacterial effect, antibiofilm effect, Streptococcus mutans
Introduction
Dental caries, caused by
Probiotics are live bacteria that can modulate the intestinal microflora when ingested in adequate amounts by the host [9, 10]. The characteristic properties of probiotics can prevent invasion and cellular adhesion of pathogenic bacteria [11]. In recent decades, the use of probiotics to prevent oral infections has significantly increased. Some of the specific
Materials and Methods
Bacterial Strains and Growth Conditions
Preparation Cell-Free Supernatant (CFS) of Lactobacillus Strains
Lactobacillus strains were cultured in MRS broth at 37°C for 24 h. The CFSs of the strains CFS were centrifuged (12,000 ×
Antibacterial Effect of L. brevis Strains against S. mutans Strains
The antibacterial effect of
Minimum Inhibitory Concentration (MIC) of L. brevis Strains against S. mutans Strains
The MIC of
Cell Surface Properties
The auto-aggregation and cell surface hydrophobicity of
After washing the cells, the absorbance at 600 nm (ODInitial) was adjusted to 0.5 ± 0. Chloroform (0.5 ml) was added to each cell suspension (2 ml) and pre-incubated for 10 min at 37°C. Thereafter, the mixtures were vortexed for 2 min and incubated for 15 min at 37°C. The aqueous phase was measured at 600 nm (ODTreatment). The cell surface hydrophobicity was calculated using the following formula:
Analysis of Total EPS Production Rate
EPS production by
Biofilm Assay
Biofilm inhibition and eradication were measured using a crystal violet assay, with some modifications [17]. Overnight cultured
To investigate the effect of eradication on the formation of
Scanning Electron Microscopy (SEM) Analysis
SEM was performed to investigate the biofilm inhibition effect of
Confocal Laser Scanning Microscopy (CLSM) Analysis
CLSM was performed to evaluate the biofilm inhibition effect of
Statistical Analysis
All experiments were repeated three times with duplicate samples, and the results are presented as the mean ± standard deviation. All statistical analyses were performed using SPSS 18.0. Significant differences among means were determined using one-way analysis of variance (ANOVA).
Results
Antibacterial Effect against S. mutans Strains
The antibacterial effects of
-
Table 1 . Inhibition effect of
Lactobacillus strains againstStreptococcus mutans strains..Oral pathogenic bacteria Inhibitory diameter (mm) LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) S. mutans KCTC 51247.55 ± 1.33a 7.66 ± 0.86a 5.66 ± 0.86b 6.33 ± 1.22a 6.11 ± 1.16b 4.88 ± 1.05b S. mutans KCTC 545816.27 ± 2.10a 16.11 ± 1.45a 13.33 ± 1.73bc 14.83 ± 0.93ab 11.72 ± 1.60cd 10.66 ± 1.32d S. mutans KCTC 53169.44 ± 1.42a 8.56 ± 1.67a 6.89 ± 0.78b 6.33 ± 1.00b 6.78 ± 2.05b 5.33 ± 0.71b 1-6)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019..All values are mean ± standard deviation..
a-dValues with different letters in the same row are significantly different (
p < 0.05). 1-6) LGG,L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019..All values are mean ± standard deviation..
a-dValues with different letters in the same row are significantly different (
p < 0.05)..
-
Table 2 . Antibacterial effect of the
Lactobacillus strains cell free supernatant (CFS) againstS. mutans strains..Oral pathogenic bacteria Minimal inhibitory concentration (%) LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) S. mutans KCTC 512425 ± 0.0a 25 ± 0.0a 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b S .mutans KCTC 54586.25 ± 0.0a 6.25 ± 0.0a 12.5 ± 0.0b 12.5 ± 0.0b 25 ± 0.0c 25 ± 0.0c S. mutans KCTC 531625 ± 0.0a 25 ± 0.0a 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 1-6)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019..All values are mean ± standard deviation..
a-cValues with different letters in the same row are significantly different (
p < 0.05)..
Cell Surface Properties
The effects of
-
Table 3 . Effects of the cell-free supernatant of
Lactobacillus strains on auto-aggregation and cell surface hydrophobicity of S.mutans KCTC 5458..Probiotics strains LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) Auto-aggregation (%) Control7) 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 Treated8) 46.35 ± 3.18a 45.91 ± 1.97a 56.94 ± 3.21b 49.11 ± 0.88c 59.76 ± 2.26d 54.54 ± 1.7c Hydrophobicity (%) Control 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 Treated 32.97 ± 0.39a 40.51 ± 1.04b 48.44 ± 4.43c 45.18 ± 1.72c 52.19 ± 3.67d 45.93 ± 7.61c 1-8)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019; control, treated with probiotic CFS..a-cValues with different letters in the same row are significantly different (
p < 0.05)..All values are mean ± standard deviation..
EPS Production Rate
The EPS production rate of
-
Figure 1. EPS production rate of
Streptococcus mutans KCTC 5458 treated with cell-free supernatant (CFS) ofLactobacillus brevis strains. □, Control (treatedL. brevis strains); ■,L. brevis strains; LGG,L. rhamnosus GG. Each value represents the mean ± standard deviation, with a-ddifferent letters on each bar representing significant differences (p < 0.05).
Biofilm Inhibition and Eradication Effects of CFS
The inhibitory effect of
-
Figure 2. Antibiofilm effects of cell-free supernatant (CFS) of
Lactobacillus brevis strains onStreptococcus mutans KCTC 5458. (A), Biofilm inhibition effect of CFS; (B), Biofilm eradication effect of CFS. LGG,L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019. Each value represents the mean ± standard deviation, with a-gdifferent letters on each bar representing significant differences (p < 0.05).
SEM Analysis on Glass Coupon
The effects of
-
Figure 3.
Streptococcus mutans KCTC 5458 biofilm on glass coupons surface treatment with cell-free supernatant (CFS) ofLactobacillus brevis KCCM 202399 visualized by scanning electron microscopy (SEM) images (magnification: × 1,000, × 5,000, and × 10,000). A group: control group (untreated withL. brevis CFS); B group: treated withL. rhamnosus GG CFS; C group: treated withL. brevis KCCM 202399 CFS.
CLSM Analysis on Glass Coupon
The antibiofilm and antibacterial effects of
-
Figure 4. Confocal laser scanning microscopy (CLSM) images of
Streptococcus mutans KCTC 5458 biofilm on glass coupons surface treated withLactobacillus brevis KCCM 202399 cell-free supernatant (CFS) (× 100 magnification). A group: control group (untreated withL. brevis CFS); B group: treated withL. rhamnosus GG CFS; C group: treated withL. brevis KCCM 202399 CFS.
Discussion
Dental caries is a major oral disease that is multi-species biofilm-mediated. Dental plaque, which is a multi-species biofilm, is transformed from cariogenic to non-cariogenic plaque.
In this study, methods were developed to screen the antibacterial effect of
Auto-aggregation, cell surface hydrophobicity, and EPS production changes in
Changes in cell surface properties and EPS production by
Six
Conflict of Interests
The authors have no financial conflicts of interest to declare.
Fig 1.
Fig 2.
Fig 3.
Fig 4.
-
Table 1 . Inhibition effect of
Lactobacillus strains againstStreptococcus mutans strains..Oral pathogenic bacteria Inhibitory diameter (mm) LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) S. mutans KCTC 51247.55 ± 1.33a 7.66 ± 0.86a 5.66 ± 0.86b 6.33 ± 1.22a 6.11 ± 1.16b 4.88 ± 1.05b S. mutans KCTC 545816.27 ± 2.10a 16.11 ± 1.45a 13.33 ± 1.73bc 14.83 ± 0.93ab 11.72 ± 1.60cd 10.66 ± 1.32d S. mutans KCTC 53169.44 ± 1.42a 8.56 ± 1.67a 6.89 ± 0.78b 6.33 ± 1.00b 6.78 ± 2.05b 5.33 ± 0.71b 1-6)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019..All values are mean ± standard deviation..
a-dValues with different letters in the same row are significantly different (
p < 0.05). 1-6) LGG,L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019..All values are mean ± standard deviation..
a-dValues with different letters in the same row are significantly different (
p < 0.05)..
-
Table 2 . Antibacterial effect of the
Lactobacillus strains cell free supernatant (CFS) againstS. mutans strains..Oral pathogenic bacteria Minimal inhibitory concentration (%) LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) S. mutans KCTC 512425 ± 0.0a 25 ± 0.0a 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b S .mutans KCTC 54586.25 ± 0.0a 6.25 ± 0.0a 12.5 ± 0.0b 12.5 ± 0.0b 25 ± 0.0c 25 ± 0.0c S. mutans KCTC 531625 ± 0.0a 25 ± 0.0a 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 50 ± 0.0b 1-6)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019..All values are mean ± standard deviation..
a-cValues with different letters in the same row are significantly different (
p < 0.05)..
-
Table 3 . Effects of the cell-free supernatant of
Lactobacillus strains on auto-aggregation and cell surface hydrophobicity of S.mutans KCTC 5458..Probiotics strains LGG1) KCCM 2023992) KU151593) KU151474) KCCM 2023025) KCCM 2000196) Auto-aggregation (%) Control7) 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 67.34 ± 3.3 Treated8) 46.35 ± 3.18a 45.91 ± 1.97a 56.94 ± 3.21b 49.11 ± 0.88c 59.76 ± 2.26d 54.54 ± 1.7c Hydrophobicity (%) Control 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 56.39 ± 3.5 Treated 32.97 ± 0.39a 40.51 ± 1.04b 48.44 ± 4.43c 45.18 ± 1.72c 52.19 ± 3.67d 45.93 ± 7.61c 1-8)LGG,
L. rhamnosus GG; KCCM 202399,L. brevis KCCM 202399; KU15159,L. brevis KU15159; KU15147,L. brevis KU15147; KCCM 202302,L. brevis KCCM 202302; KCCM 200019,L. brevis KCCM 200019; control, treated with probiotic CFS..a-cValues with different letters in the same row are significantly different (
p < 0.05)..All values are mean ± standard deviation..
References
- Miki M, Hitoshi K. 2010. Role of two-component system of
Streptococcus mutans in the adaptive response to the oral environment.J. Oral Biosci. 52 : 252-259. - Kim HJ, Lee JH. 2020. Anti-biofilm effect of egg yolk phosvitin by inhibition of biomass production and adherence activity against
Streptococcus mutans .Food Sci. Anim. Resour. 40 : 1001-1013. - Salli KM, Forssten SD, Lahtinen SJ, Ouwehand AC. 2016. Influence of sucrose and xylitol on an early
Streptococcus mutans biofilm in a dental simulator.Arch. Oral Biol. 70 : 39-46. - Lim SM, Lee NK, Paik HD. 2020. Antibacterial and anticavity activity of probiotic
Lactobacillus plantarum 200661 isolated from fermented foods againstStreptococcus mutans .LWT - Food Sci. Technol. 118 : 108840. - Yimeng C, Huiwei Y, Wujun W, Pengfei P, Yin W, Xinyu W,
et al . 2020. KillingStreptococcus mutans in mature bioflm with a combination of antimicrobial and antibioflm peptides.Amino Acids 52 : 1-14. - World Health Organization, 2003. Oral health to use from https://www.who.int/news-room/fact-sheets/detail/oral-health. Accessed Mar. 25, 2020.
- Baker JL, Faustoferri RC, Quivey RG Jr. 2017. Acid-adaptive mechanisms of
Streptococcus mutans -the more we know, the more we don't.Mol. Oral Microbiol. 32 : 107-117. - Kim AR, Ahn KB, Yun CH, Park OJ, Perinpanayagam H, Yoo YJ,
et al . 2019.Lactobacillus plantarum lipoteichoic acid inhibits oral multispecies biofilm.J. Endod. 45 : 310-315. - Cai JN, Kim MA, Jung JE, Pandit S, Song KY, Jeon JG. 2015. Effects of combined oleic acid and fluoride at sub-MIC levels on EPS formation and viability of
Streptococcus mutans UA159 biofilms.Biofouling 31 : 555-563. - Lee NK, Kim SY, Han KJ, Eom SJ, Paik HD. 2014. Probiotic potential of
Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters.LWT - Food Sci. Technol. 58 : 130-134. - Tareb R, Bemardeau M, Gueguen M, Vernoux JP. 2013.
In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probioticLactobacillus strains and interaction with foodborne zoonotic bacteria. especiallyCampylobacter jejuni .J. Med. Microbiol. 62 : 637-649. - Cruz AGD, Ranadheera CS, Nazzaro F, Mortazavian A. 2021. Probiotics and Prebiotics in Foods, pp. 59-80.
In: Michel RM, Pedro HFS, Luciana PM, Segio S, Arthur CO, Flavia F (eds),Chapter 4 - Probiotics and Prebiotic in Oral Health . Academic Press, Massachusetts. - Parul C, Renuka D, Anuradha S, Neeru B, & Mahesh SD. 2020. A critical appraisal of the effects of probiotics on oral health.
J. Funct. Foods 70 : 103985. - Jang HJ, Lee NK, Paik HD. 2019. Probiotic characterization of
Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi.Food Sci. Biotechnol. 28 : 1521-1528. - Sorroche F, Bogino P, Russo DM, Zorreguieta A, Nievas F, Morales GM,
et al . 2018. Cell autoaggregation biofilm formation, and plant attachment in aSinorhizobium meliloti lpsB mutant.Mol. Plant Microbe Interact. 31 : 1075-1082. - Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. 2015. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability.
Microb. Biotechnol. 8 : 392-403. - Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. 2019. Anti-biofilm activity of grapefruit seed extract against
Staphylococcus aureus and Escherichia coli.J. Mircobiol. Biotechnol. 29 : 1177-1183. - Yu HH, Song YJ, Yu HS, Lee NK, Paik HD. 2020. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against
Campylobacter spp. using cell surface characteristics.J. Food Sci. 85 : 157-164. - Badet C, Richard B, Castaing-Debat M, De Flaujac PM, Dorignac G. 2004. Adaptation of salivary
Lactobacillus strains to xylitol.Arch. Oral Biol. 49 : 161-164. - Taku F, Yutaka T, Tomonori H, Shigetada K, Takashi O, Shizuo S,
et al . 1998. Molecular analyses of glucosyltransferase genes among strains ofStreptococcus mutans .FEMS Microbiol. Lett. 161 : 331-336. - Zhang G, Lu M, Liu R, Tian Y, Vu VH, Li Y,
et al . 2020. Inhibition ofStreptococcus mutans biofilm formation and virulence byLactobacillus plantarum K41 isolated from traditional sichuan pickles.Front. Microbiol. 11 : 774. - Zhang Z, Lyu X, Xu Q, Li C, Lu M, Gong T,
et al . 2020. Utilization of the extract of Cedrus deodara (Roxb.Ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacteriumStreptococcus mutans .J. Ethnopharmacol. 257 : 112856. - Tahmourespour A, Karsa Kermanshahi R, Salehi R, Nabinezhad AAR. 2008. The relationship between cell surface hydrophobicity and antibiotic resistance of
Streptococcal strains isolated from dental plaque and caries.Iran. J. Basic Med. Sci. 10 : 251-255. - Fang F, Xu J, Li Q, Xia X, Du G. 2018. Characterization of a
Lactobaciilus brevis strain with potential oral probiotic properties.BMC Microbiol. 18 : 221. - Yoo Y, Seo DH, Lee H, Cho ES, Song NE, Nam TG,
et al . 2019. Inhibitory effect ofBacillus velezensis on biofilm formation byStreptococcus mutans .J. Biotechnol. 298 : 57-63. - Sun Y, Jiang W, Zhang M, Zhang L, Shen Y, Huang S,
et al . 2021. The inhibitory effects of ficin onStreptococcus mutans biofilm formation.Biomed Res. Int. 2021 : 6692328. - Jang HJ, Kim JH, Lee NK, Paik HD. 2021. Inhibitory effects of
Lactobacillus brevis KU15153 againstStreptococcus mutans KCTC 5316 causing dental caries.Microb. Pathog. 157 : 104938. - Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C. 2014. Antimicrobial and antibiofilm potential of biosurfactants isolated from
lactobacilli against multi-drug-resistant pathogens.BMC Microbiol. 14 : 197. - Jamwal A, Sharma K, Chauhan R, Bansal S, Goel G. 2019. Evaluation of commercial probiotic lactic cultures against biofilm formation by
Cronobacter sakazakii .Intest. Res. 17 : 192-201. - Tahmourespour A, Salehi R, Kermanshahi RK. 2011.
Lactobacillus acidophilus -derived biosurfactant effect on GTFB and GTFC expression level inStreptococcus mutans biofilm cells.Braz. J. Microbiol. 42 : 330-339. - Ahn KB, Baik JE, Park OJ, Yun CH, Han SH. 2018.
Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation ofStreptococcus mutans .PLoS One 13 : e0192694. - Lin X, Chen X, Tu W, Wang S, Chen H. 2017. Effect of probiotic
Lactobacilli on the growth ofStreptococcus mutans and multispecies biofilms isolated from children with active caries.Med. Sci. Monit. 23 : 4175-4181. - Jeffrey AB. 2004. Virulence properties of
Streptococcus .Front. Biosci. 9 : 1264-1277.