Articles Service
Review
Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces
1Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
2Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
3Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA 4Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
5Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
J. Microbiol. Biotechnol. 2019; 29(5): 667-686
Published May 28, 2019 https://doi.org/10.4014/jmb.1904.04015
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Introduction
To activate silent SM-BGCs, various strategies have been applied, including culture media modifications, chemical or antibiotic treatments, heterologous gene expression in different hosts, and co-culture with cohabiting microbes [4]. However, these methods are untargeted, resulting in non-directed activation of silent SM-BGCs in
-
Fig. 1.
Overview of synthetic biology strategy to produce novel secondary metabolite from Abbreviations: BGC, biosynthetic gene cluster; CDS, coding sequence; 5’ UTR, 5’ untranslated region; RBS, ribosome binding site; WT, wild type; LA, left homology arm; RA, right homology arm.Streptomyces .
Mining of Secondary Metabolite Biosynthetic Gene Clusters
In the pre-genome mining era, most of the secondary metabolites in
In general, each
Genetic Parts for Streptomyces Synthetic Biology
Genomic information on
-
Table 1 . Genetic parts for
Streptomyces. Genetic parts Feature Reference Constitutive promoters ermE * promoterMutation at the promoter of the erythromycin resistance gene of Streptomyces erythraeus [31] SF14P promoterGenome of Streptomyces ghanaensis phage I19[34] kasOP promoterPromoter of SARP family regulator in Stretpomyces coelicolor A3[33] gapdh promoterPromoter of glyceraldehyde-3-phosphate dehydrogenase in Streptomyces griseus [35] rpsL promoterPromoter of 30S ribosomal protein S12 in Streptomyces griseus [35] 195 native or synthetic promoters High-throughput screening in S. venezueale [58] 32 native promoters Transcriptome data-based selection in S. albus [38] 166 native promoters Transcriptome data-based selection in S. coelicolor [39] 2 native promoters Multi-omics data-based selection in S. coelicolor [59] Inducible promoters tipA promoterThiostrepton-induced promoter [40] nitA promoterε-caprolactam-induced promoter [45] xylA promoterXylose-induced promoter [46] tcp830 Tetracycline-induced promoter [43] PA3-rolO Resorcinol-induced promoter [44] P21-cmt Cumate-induced promoter [44] Terminators Fd Bidirectional transcription termination originated from E. coli phage fd[48] TD1 Bidirectional transcription termination originated from Bacillus subtilis phage Φ29[49] RBS AAAGGAGG Typical RBS sequence of S. coelicolor [134] 192 native or synthetic RBSs High-throughput screening in S. venezueale [58] 4 native RBSs Multi-omics data-based selection in S. coelicolor [59] Reporter genes luxAB cassetten-Decanal as substrate; absorbance at 490 nm wavelength [61] amy geneSoluble starch with 3,5-dinitrosalycilic acid (DNS) as substrate; absorbance at 540 nm wavelength [64] xylE geneCatecol as substrate; absorbance at 375 nm wavelength [62] gusA genep-Nitrophenyl-β-D-glucuronide as substrate; absorbance at 415 nm wavelength [63] eGFP Green fluorescent protein; excitation wavelength 470-490 nm and emission wavelength 515 nm [65] sfGFP Green fluorescent protein; excitation wavelength 488 nm and emission wavelength 500~550 nm [58] mRFP Red fluorescent protein; excitation wavelength 584 nm and emission wavelength 607 nm [67] mCherry Red fluorescent protein; excitation wavelength 587 nm and emission wavelength 610 nm [68]
Genetic Parts for Transcriptional Regulation in Streptomyces
In bacterial cells, a transcription unit is defined as a basic unit of regulation and is composed of several genes and accessory genetic elements, including promoters, transcrip-tion start sites (TSS), RBSs, and terminators. Design and utilization of these genetic parts, at appropriate strengths, is critical for precise transcriptional and translational regulation of targeted gene expression. In transcriptional regulation, the most important genetic part is the promoter, which is the binding site of RNA polymerase to initiate transcription. However, widely used promoters for bacterial genetic engineering, such as
First, constitutive promoters, which generate constant gene expression levels regardless of growth phases, are extensively used for SM-BGC expression in
Second, expression of SM-BGC genes under constitutive promoters sometimes causes growth retardation. Therefore, it is desirable to establish a controllable gene expression system in
Further, only a limited number of terminator sequences is available in
Taken together, many efforts in molecular biology of
Genetic Parts for Translational Regulation in Streptomyces
Because cellular protein level does not directly correlate with mRNA abundance, yet depends on translational efficiency, transcriptional regulation alone is not sufficient to design an efficient gene expression system in
First, in
Reporter Systems for High-Throughput Screening
For high-throughput characterization of genetic parts developed for
CRISPR/Cas-Based Genome-Engineering Tools for Streptomyces
To utilize genetic parts and reconstruct metabolic pathways for secondary metabolite production, efficient genome engineering tools are required. Conventional genome engineering of
Recently, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) has emerged as a promising tool for genome engineering of
-
Table 2 . Application of CRISPR/Cas9-mediated engineering in
Streptomyces .Cas Target Strategy Vector Repair Organism Related secondary metabolite Remark Ref SpCas9 actI-orf1 Disruption pCRISPR-Cas9 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD expression [86] actVB Disruption pCRISPR-Cas9 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD expression actI-orf2 Disruption pWHU NHEJ S. coelicolor ACT codA(sm)-based screening system for plasmid-cured strain [88] zwf2 Disruption pCRISPomyces NHEJ S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene [93] devB Disruption pCRISPomyces NHEJ S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene sshg_00040 - sshg_00050 Deletion pCRISPomyces HDR S. albus Lanthipeptide - [50] sshg_05713 Deletion pCRISPomyces HDR S. albus Polycylic tetramic acid macrolactam - Formicamycin cluster Deletion pCRISPomyces HDR S. formicae Formicamycin - [91] forV Deletion pCRISPomyces HDR S. formicae Formicamycin - actVA-orf5 Deletion pCRISPomyces HDR S. lividans ACT - [50] redD - redF Deletion pCRISPomyces HDR S. lividans RED - redN Deletion pCRISPomyces HDR S. lividans RED - actVA-orf5 and redN Deletion pCRISPomyces HDR S. lividans ACT and RED Multiplexed editing devB Deletion pCRISPomyces HDR S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene [93] zwf2 Deletion pCRISPomyces HDR S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene phpD Deletion pCRISPomyces HDR S. viridochromogenes Phosphinothricin tripeptide - [50] phpM Deletion pCRISPomyces HDR S. viridochromogenes Phosphinothricin tripeptide - sceN Deletion pCRISPR-Cas9 HDR Streptomyces sp.SD85BGC11 (sceliphrolactam) - [18] sceQ-sceR fusion Deletion pCRISPR-Cas9 HDR Streptomyces sp.SD85BGC11 (sceliphrolactam) Fusion of sceQ and sce R by deleting stop codon of sceQ, intergenic region between sceQ and sceR, and start codon of sceR actI-orf1 Deletion pCRISPR-Cas9 HDR S. coelicolor ACT - [86] actVB Deletion pCRISPR-Cas9 HDR S. coelicolor ACT - SpCas9 ACT cluster Deletion pKCCas9 HDR S. coelicolor ACT - [42] actII-orf4 Deletion pKCCas9 HDR S. coelicolor ACT - actII-orf4 and redD Deletion pKCCas9 HDR S. coelicolor ACT and RED Multiplexed editing CDA cluster Deletion pKCCas9 HDR S. coelicolor CDA - glnR Deletion pKCCas9 HDR S. coelicolor - - RED cluster Deletion pKCCas9 HDR S. coelicolor RED - redD Deletion pKCCas9 HDR S. coelicolor RED - papR3 Deletion pKCCas9 HDR S. pristinaespiralis pristinamycin - [90] snaE1 and snaE2 Deletion pKCCas9 HDR S. pristinaespiralis pristinamycin - actI-orf2 Deletion pWHU HDR S. coelicolor ACT Development of codA(sm)-based selection system for screening plasmid-cured strain [88] rpsL Point mutation pKCCas9 HDR S. coelicolor - Lys88Glu mutation [42] ACT, CDA, CPK, RED deleted region Replacement pKCCas9 HDR S. coelicolor M1146, M1152- ΦC31 attB integration [89] Non-target BGCs Replacement pKCCas9 HDR S. pristinaespiralis BGC2, 3, 5, 13, and 15 Non-target BGC replacement with ΦC31 attB or ΦBT1 attB site indC-like indigoidine synthase Insertion pCRISPomyces HDR S. albus Indigoidine KasO* promoter knock-in to activate silent BGCs [87] redD Insertion pCRISPomyces HDR S. lividans RED KasO* promoter knock-in to activate silent BGCs actII-orf4 Insertion pCRISPomyces HDR S. lividans ACT KasO* promoter knock-in to activate silent BGCs frbD operon and frbC homolog Insertion pCRISPomyces HDR S. roseosporus FR-900098 KasO* promoter knock-in to activate silent BGCs main synthase gene Insertion pCRISPomyces HDR S. roseosporus BGC3 (T1pks) KasO* promoter knock-in to activate silent BGCs luxR-type regulator Insertion pCRISPomyces HDR S. roseosporus BGC18 (T1pks) KasO* promoter knock-in to activate silent BGCs SSGG_RS0133915 Insertion pCRISPomyces HDR S. roseosporus BGC24 (Nrps-t1pks) KasO* promoter knock-in to activate silent BGCs rppA and cytochrome P450 Insertion pCRISPomyces HDR S. venezuelae BGC16 (T3pks) KasO* promoter knock-in to activate silent BGCs SSQG_RS26895-RS26920 operon Insertion pCRISPomyces HDR S. viridochromogenes BGC22 (T2pks) KasO* promoter knock-in to activate silent BGCs rkD Cloning - - - RK-682 ICE [95] homE Cloning - - - Holomycin ICE stuE~stuF2 Cloning - - - Tü 3010 ICE [98] stuD1, stuD2 Cloning - - - Tü 3010 ICE SpCas9 Tetarimycin BGC Cloning - - - Tetarimycin mCRISTAR [97] spr1 region (pglE - snbC) Cloning - - - Pristinamycin mCRISTAR [90] 5-oxomilbemycin BGC Cloning - - - 5-oxomilbemycin mCRISTAR [99] Jadomycin and chlortetracycline BGC Cloning - - - Jadomycin, and chlortetracycline CATCH [96] Chloramphenicol, YM-216391, and pristinamycin II BGCs Cloning - - - Chloramphenicol, YM-216391, and pristinamycin CRISPR/Cas9 cleavage and Gibson assembly [89] SpdCas9 actI-orf1 CRISPRi pCRISPR-dCas9 - S. coelicolor ACT - [86] actI-orf1 CRISPRi pSET-dCas9 - S. coelicolor ACT - [101] actII-orf4 CRISPRi pSET-dCas9 - S. coelicolor ACT - cdaPS1 CRISPRi pSET-dCas9 - S. coelicolor CDA - cpkA CRISPRi pSET-dCas9 - S. coelicolor CPK - redQ CRISPRi pSET-dCas9 - S. coelicolor RED - actI-orf1 and cdaPS1 CRISPRi pSET-dCas9 - S. coelicolor ACT, CDA Multiplexed editing actI-orf1 and cdaPS1, cpkA CRISPRi pSET-dCas9 - S. coelicolor ACT, CDA, and CPK Multiplexed editing actI-orf1, cdaPS1, and cpkA, redQ CRISPRi pSET-dCas9 - S. coelicolor ACT, RED, CDA, and CPK Multiplexed editing Proteins with AmiR and NasR Transcriptional Antiterminator Regulator domain (ANTAR) CRISPRi pSET-dCas9 - S. coelicolor - Gene essentiality test FnCpf1 actI-orf1 Disruption pKCCpf1 NHEJ S. coelicolor ACT - [106] actI-orf1 Disruption pKCCpf1 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD and Ku expression redX Disruption pKCCpf1 NHEJ S. coelicolor RED - redX Disruption pKCCpf1 NHEJ S. coelicolor RED Reconstituted NHEJ with ligD and Ku expression redX, redG Deletion pKCCpf1 NHEJ S. coelicolor RED Deletion by reconstituted NHEJ with ligD and Ku expression at two cleavage sites actI-orfI Deletion pKCCpf1 HDR S. coelicolor ACT - redX Deletion pKCCpf1 HDR S. coelicolor RED - actI-orf1, redX Deletion pKCCpf1 HDR S. coelicolor ACT and RED Multiplexed editing SBI00792 Deletion pKCCpf1 HDR S. hygroscopicus Adjacent to 5-oxomilbemycin - FnddCpf1 actI-orf1 CRISPRi pSETddCpf1 - S. coelicolor ACT - redX CRISPRi pSETddCpf1 - S. coelicolor RED - cpkA CRISPRi pSETddCpf1 - S. coelicolor CPK - redX, actI-orf1, and cpkA CRISPRi pSETddCpf1 - S. coelicolor RED, ACT, and CPK Multiplexed editing
Editing Streptomyces Genomes and Secondary Metabolite Biosynthetic Gene Clusters
The DSB by Cas9 occurs only if a specific sequence motif, called a protospacer adjacent motif (PAM), is present next to the protospacer [84]. All applications of the CRISPR/Cas9 system in
CRISPR/Cas9-based approaches can be divided by the type of DSB repair, NHEJ and HDR. NHEJ-mediated genome engineering generates random mutation, insertion or deletion of a few nucleotides, to disrupt a gene of interest [86, 88, 93]. Further, it has been applied to
In addition to the in vivo genome engineering, CRISPR/Cas9 can be utilized for cloning and refactoring of large SM-BGCs [89, 95-99]. Restriction enzymes or PCR-based cloning strategies are not suitable for manipulation of large-sized DNA fragments due to the limited restriction sites and DNA amplification errors. The high-resolution site-specific cleavage activity of the CRISPR/Cas9 system enables efficient
CRISPR/Cas9-Based Transcriptional Repression and Activation
Cas9 contains two nuclease domains, RuvC1 and HNH, which are responsible for DSB formation at the target DNA sequence [79]. Introduction of two silencing mutations to the RuvC1 and HNH nuclease domains (D10A and H840A) generates catalytically dead Cas9 (dCas9), which lacks nuclease activity yet retains DNA binding activity. By guiding dCas9 to the promoter region or coding region of the target gene, transcription initiation or transcription elongation can be blocked, respectively [100]. The CRISPR/dCas9-based transcriptional repression system, called CRISPR interference (CRISPRi), has been exploited for transcriptional repression of genes in
Cpf1 as an Alternative to Cas9
Since SpCas9 recognizes 5’-NGG as the PAM sequence, there are considerable target sites in the GC-rich
Heterologous Expression of Secondary Metabolite Biosynthetic Gene Clusters
Compared to secondary metabolite production in the native host, heterologous expression has several advantages, including: (1) it enables SM-BGCs expression of unculturable or slow-growing native host strains, (2) it overcomes the difficult genetic manipulation of the native host, and (3) it bypasses the innate regulatory network of the native host [107]. In fact, the
There are four steps to express the SM-BGC in the heterologous expression host, which include (1) acquisition of the target SM-BGC from the native host genome, (2) ligation or assembly of the SM-BGC to the vector, (3) transfer of the SM-BGC-encoded vector to the heterologous expression host, and (4) target of secondary metabolite production (Table 3).
-
Table 3 . Different strategy for BGC cloning.
BGC cloning steps Strategies Representative examples Ref Acquisition of the target BGC from the native host genome Genomic library Cosmid, fosmid, BAC, and PAC [135] Cut off both ends of target BGC Restriction: pSBAC [113] Integrase: IR [114] CRISPR: CATCH, mCRISTAR, and CRISPR-TAR [96, 97, 120] PCR amplification DNA assembler [116] Ligation or assembly of the target BGC to the vector In vitro Sticky end ligation: pSBAC [113] Blunt end ligation: ICE [95] Gibson assembly: CATCH and MSGE [89, 96] In vivo Recombination in native host: IR [114] Recombination in E. coli : LLHR[117] Recombination in yeast: TAR, DNA assembler, DiPac, and mCRISTAR [97, 115, 116, 118] Transferring BGC vector to the expression host Conjugation pUWLcre [136] Protoplast transformation pSKC2 and pOJ446 [137] Target secondary metabolite production by expression of the BGC vector Integrative pSET152, pCAP01, and pESAC [118, 138] Replicative pSKC2 and pUWL201 [139]
The most frequently used method for acquisition of the target SM-BGC is the genomic library construction using cosmid, fosmid, BAC, and PAC vectors [109]. This method can be applied to a broad range of
Ligation or assembly methods of target SM-BGC to the heterologous expression vector can be largely divided into two groups,
In most cases, constructed SM-BGC vectors have been transformed to the heterologous expression host through conjugation between
Streptomyces Chassis Strains for Heterologous Gene Expression
To improve yields of secondary metabolites,
-
Table 4 . Representative examples of
Streptomyces chassis strain for optimal heterologous expression.Heterologous host Engineering Target genes or regions Deletion method Expressed BGC BGC vector Effect Limitation Ref Streptomyces coelicolor M145BGC deletion and Pleiotropic gene engineering Deletion of four BGCs (ACT, RED, CPK, and CDA) Point mutations of rpoB and rpsL. Homologous recombination by double crossover of the plasmid Shlorampheniocol and congocidine Cosmid Improved production, clean profile of background metabolites Low fitness [104] Streptomyces sp. FR-008BGC deletion Deletion of three BGCs (candicidin, type III PKS, and type I PKS) Homologous recombination by double crossover of the plasmid None None Improved fitness, sporulation, and clean profile of background metabolites Heterologous expression was not tested [124] Streptomyces lividans TK24BGC deletion Deletion of three BGCs (ACT, RED, and CDA) One copy integration of AfsRS by attB integrase Homologous recombination by double crossover of the plasmid Streptothiricins, borrelidin, and linear lipopeptides BAC High-throughput functional genome mining of Streptomyces rocheiLow fitness, laborious screening of BAC libraries [123] Streptomyces lividans TK24BGC deletion Deletion of three BGCs (ACT, RED, and CDA) Additional copies integration of AfsRS by attB integrase Homologous recombination by double crossover of the plasmid Hybrubins BAC High-throughput functional genome mining of Streptomyces variabilis Pathway crosstalk between incompletely deleted RED cluster.Low fitness [140] Streptomyces albus J1074BGC deletion Deletion of fifteen BGCs (Frontalamide, Paulomycin, Geosmin, Lantibiotic, carotenoid, flaviolin, candicidin, antimycin, 2 PKSNRPS, and 4 NRPS) Homologous recombination by double crossover of the plasmid using λ-red system Tunicamycin B2, moenomycin M, griseorhodin A, pyridinopyrone A, bhimamycin A, didesmethylmensacarcin, didemethoxyaranciamycino ne, aloesaponarin II, and cinnamycin, fralnimycin Fosmid and BAC Improved production, clean profile of background metabolites Moenomycin M productivity was reduced. [122] Streptomyces avermitilis Nonessential region deletion and BGC deletion Deletion of 1.48 Mb left arm determined by comparative genomics Homologous recombination by double crossover of the plasmid using λ-red system Cre/loxP system Streptomycin, cephamycin C, and pladienolide Cosmidand BAC Improved production by additional introduction of regulatory gene and optimization of codon usage Low conjugation efficiency [103] Streptomyces avermitilis Nonessential region deletion Deletion of 1.48 Mb left arm and some regions determined by comparative genomics Homologous recombination by double crossover of the plasmid using λ-red system Cre/loxP system Streptomycin, ribostamycin, kasugamycin, pholipomycin, oxytetracycline, resistomycin, pladienolide B, erythromycin A, bafilimycin B1, nemadectin α, aureothin, leptomycin, cephamycin C, holomycin, lactacystin, clavulanic acid, rebeccamycin, novobiocin, chloramphenicol, 2-methylisoborneol, pentalenolactone, amorpha-1,4-diene, taxa-4,11-diene, levopimaradiene, and abietatriene Cosmid and BAC Improved production, fitness, clean profile of background metabolites. Broad precursor capacity (sugar, polyketide, peptide, shikimate, and MVA or MEP) Ribostamycin, oxytetracycline productivity were reduced [125] Streptomyces chattanoogensis L10Nonessential region deletion Deletion of 1.3 Mb and 0.7 Mb nonessential arms determined by comparative genomics and prediction tools Cre/loxP recombination ACT pMM1 Improved production, fitness, ATP, NADPH, transformation efficiency, and genetic stability. Dispersed morphology. 1.3 Mb deleted strain was detrimental due to deletion of some unknown genes [121] Streptomyces albus J1074Pleiotropic gene engineering and BGC deletion Deletion of pfk ,wblA , overexpression of cpk, and deletion of one BGC (paulomycin)Homologous recombination by double crossover of the plasmid using λ-red system ACT Fosmid Improved production, fitness, and NADPH. Undesirable effects might be incurred due to the global change of transcriptome [128]
Nonessential genomic regions (NGR) are usually located at the ends of linear chromosomes, which are not conserved in all species and dispensable for cell growth. They include genomic islands (GI), IS elements, and endogenous CRISPR array regions that decrease genomic stability. For example, NGRs in
Genes with pleiotropic functions can be additionally engineered to improve productivity of target secondary metabolites. For instance, deletion of phosphofructokinase gene
Future Perspective
In this review, we summarized a synthetic biology strategy to produce novel secondary metabolites in
Although genetic tools based on the CRISPR/Cas system have offered diverse strategies to enhance secondary metabolite production and activate silent SM-BGCs [87, 89, 90, 93, 99], further optimization of the CRISPR/Cas system for
Development of synthetic biology tools can also be exploited to construct the
Acknowledgments
This work was supported by a grant from the Novo Nordisk Foundation (grant number NNF10CC1016517). This research was also supported by the Basic Science Research Program (2018R1A1A3A04079196 to S.C.), the Basic Core Technology Development Program for the Oceans and the Polar Regions (2016M1A5A1027458 to B.-K.C.), and the Bio & Medical Technology Development Program (2018M3A9F3079664 to B.-K.C.) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT.
Conflict of Interest
The authors have no financial conflicts of interest to declare.
References
- Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H,
et al . 2008. Genome sequence of the streptomycin-producing microorganismStreptomyces griseus IFO 13350.J. Bacteriol. 190 : 4050-4060. - Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M,
et al . 2011.Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products.Environ. Microbiol. 13 : 391-403. - Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes.
J. Antibiot. (Tokyo) 70 : 865-870. - Lim FY, Sanchez JF, Wang CC, Keller NP. 2012. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi.
Methods Enzymol. 517 : 303-324. - Medema MH, Alam MT, Breitling R, Takano E. 2011. The future of industrial antibiotic production: from random mutagenesis to synthetic biology.
Bioeng. Bugs. 2 : 230-233. - Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. 2012. Metabolomics methods for the synthetic biology of secondary metabolism.
FEBS Lett. 586 : 2177-2183. - Yang YH, Song E, Lee BR, Kim EJ, Park SH, Kim YG,
et al . 2010. Rapid functional screening ofStreptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC.Appl. Environ. Microbiol. 76 : 3645-3656. - Myronovskyi M, Luzhetskyy A. 2016. Native and engineered promoters in natural product discovery.
Nat. Prod. Rep. 33 : 1006-1019. - Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes -a review.
Nat. Prod. Rep. 33 : 988-1005. - Harrison J, Studholme DJ. 2014. Recently published
Streptomyces genome sequences.Microb. Biotechnol. 7 : 373-380. - Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD,
et al . 2002. Complete genome sequence of the model actinomyceteStreptomyces coelicolor A3(2).Nature 417 : 141-147. - Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. 2018. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close
Streptomyces strains.Sci. Rep. 8 : 6888. - Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. 2008. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and
in silico prediction of novel chemical structures.Nucleic Acids Res. 36 : 6882-6892. - Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH. 2009. Automated genome mining for natural products.
BMC Bioinformatics 10 : 185. - Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL,
et al . 2015. Genomes to natural products prediction informatics for secondary metabolomes (PRISM).Nucleic Acids Res. 43 : 9645-9662. - Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA,
et al . 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification.Nucleic Acids Res. 45 : W36-W41. - Weber T, Kim HU. 2016. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production.
Synth. Syst. Biotechnol. 1 : 69-79. - Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H,
et al . 2018. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in aStreptomyces strain isolated from mangrove sediment.Sci. Rep. 8 : 1594. - Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. 2017. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci. Rep. 7: 44786.
- Zhang G, Yu D, Sang B, Feng J, Han L, Zhang X. 2017. Genome-wide analysis reveals the secondary metabolome in
Streptomyces kanasensis ZX01.Genes (Basel) 8 : 346. - Ansari MZ, Yadav G, Gokhale RS, Mohanty D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases.
Nucleic Acids Res. 32 : W405-413. - Kim MS, Cho WJ, Song MC, Park SW, Kim K, Kim E,
et al . 2017. Engineered biosynthesis of milbemycins in the avermectin high-producing strainStreptomyces avermitilis .Microb. Cell Fact. 16 : 9. - Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T,
et al . 2003. Complete genome sequence and comparative analysis of the industrial microorganismStreptomyces avermitilis .Nat. Biotechnol. 21 : 526-531. - Bode HB, Bethe B, Hofs R, Zeeck A. 2002. Big effects from small changes: possible ways to explore nature’s chemical diversity.
Chembiochem. 3 : 619-627. - Marmann A, Aly AH, Lin W, Wang B, Proksch P. 2014. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms.
Mar. Drugs. 12 : 1043-1065. - Baral B, Akhgari A, Metsa-Ketela M. 2018. Activation of microbial secondary metabolic pathways: Avenues and challenges.
Synth. Syst. Biotechnol. 3 : 163-178. - King AA, Chater KF. 1986. The expression of the
Escherichia coli lacZ gene inStreptomyces .J. Gen. Microbiol. 132 : 1739-1752. - Lussier FX, Denis F, Shareck F. 2010. Adaptation of the highly productive T7 expression system to
Streptomyces lividans .Appl. Environ. Microbiol. 76 : 967-970. - Mitra A, Angamuthu K, Jayashree HV, Nagaraja V. 2009. Occurrence, divergence and evolution of intrinsic terminators across eubacteria.
Genomics 94 : 110-116. - Bibb MJ, White J, Ward JM, Janssen GR. 1994. The mRNA for the 23S rRNA methylase encoded by the
ermE gene ofSaccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site.Mol. Microbiol. 14 : 533-545. - Bibb MJ, Janssen GR, Ward JM. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (
ermE ) ofStreptomyces erythraeus .Gene 38 : 215-226. - Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. 2000. Practical
Streptomyces Genetics. John Innes Foundation, Norwich, England. - Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. 2013. An engineered strong promoter for Streptomycetes.
Appl. Environ. Microbiol. 79 : 4484-4492. - Labes G, Bibb M, Wohlleben W. 1997. Isolation and characterization of a strong promoter element from the
Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1 ) of Tn 1696 as reporter.Microbiology 143 : 1503-1512. - Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. 2013. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold.
ACS Synth. Biol. 2 : 662-669. - Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. 2014. Synthetic promoter library for modulation of actinorhodin production in
Streptomyces coelicolor A3(2).PLoS One 9 : e99701. - Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ. 2011. The construction of a library of synthetic promoters revealed some specific features of strong
Streptomyces promoters.Appl. Microbiol. Biotechnol. 90 : 615-623. - Luo Y, Zhang L, Barton KW, Zhao H. 2015. Systematic identification of a panel of strong constitutive promoters from
Streptomyces albus .ACS Synth. Biol. 4 : 1001-1010. - Li S, Wang J, Li X, Yin S, Wang W, Yang K. 2015. Genome-wide identification and evaluation of constitutive promoters in Streptomycetes.
Microb. Cell Fact. 14 : 172. - Murakami T, Holt TG, Thompson CJ. 1989. Thiostrepton-induced gene expression in
Streptomyces lividans .J. Bacteriol. 171 : 1459-1466. - Takano E, White J, Thompson CJ, Bibb MJ. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in
Streptomyces spp.Gene 166 : 133-137. - Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step high-efficiency CRISPR/Cas9-mediated genome editing in
Streptomyces .Acta Biochim. Biophys. Sin (Shanghai) 47 : 231-243. - Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MC, Smith MC. 2005. Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria
Streptomyces .Nucleic Acids Res. 33 : e87. - Horbal L, Fedorenko V, Luzhetskyy A. 2014. Novel and tightly regulated resorcinol and cumate-inducible expression systems for
Streptomyces and other actinobacteria.Appl. Microbiol. Biotechnol. 98 : 8641-8655. - Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S,
et al . 2004. Hyper-inducible expression system for Streptomycetes.Proc. Natl. Acad. Sci. USA 101 : 14031-14035. - Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H,
et al . 2018. Development of a strictly regulated xylose-induced expression system inStreptomyces .Microb. Cell Fact. 17 : 151. - Hindle Z, Smith CP. 1994. Substrate induction and catabolite repression of the
Streptomyces coelicolor glycerol operon are mediated through the GylR protein.Mol. Microbiol. 12 : 737-745. - Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ. 1986. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for
Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator.Mol. Gen. Genet. 203 : 468-478. - Pulido D, Jimenez A, Salas M, Mellado RP. 1987. A
Bacillus subtilis phage phi 29 transcription terminator is efficiently recognized inStreptomyces lividans .Gene 56 : 277-282. - Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of
Streptomyces species using an engineered CRISPR/Cas system.ACS Synth. Biol. 4 : 723-728. - West S, Proudfoot NJ. 2009. Transcriptional termination enhances protein expression in human cells.
Mol. Cell. 33 : 354-364. - Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. 2010. Crosstalk between mRNA 3’ end processing and transcription initiation.
Mol. Cell. 40 : 410-422. - Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P,
et al . 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.Science 352 : aad9822. - Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation.
Nat. Biotechnol. 25 : 117-124. - Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ,
et al . 2016. The dynamic transcriptional and translational landscape of the model antibiotic producerStreptomyces coelicolor A3(2).Nat. Commun. 7 : 11605. - Makrides SC. 1996. Strategies for achieving high-level expression of genes in
Escherichia coli .Microbiol. Rev. 60 : 512-538. - Na D, Lee D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression.
Bioinformatics 26 : 2633-2634. - Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J,
et al . 2015. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products inStreptomyces .Proc. Natl. Acad. Sci. USA 112 : 12181-12186. - Yi JS, Kim MW, Kim M, Jeong Y, Kim EJ, Cho BK,
et al . 2017. A novel approach for gene expression optimization through native promoter and 5’ UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq ofStreptomyces coelicolor .ACS Synth. Biol. 6 : 555-565. - Janssen GR, Bibb MJ. 1990. Tandem promoters,
tsr p1 andtsr p2, direct transcription of the thiostrepton resistance gene (tsr ) ofStreptomyces azureus : transcriptional initiation fromtsr p2 occurs after deletion of the -35 region.Mol. Gen. Genet. 221 : 339-346. - Sohaskey CD, Im H, Nelson AD, Schauer AT. 1992. Tn4556 and luciferase: synergistic tools for visualizing transcription in
Streptomyces .Gene 115 : 67-71. - Ingram C, Brawner M, Youngman P, Westpheling J. 1989.
xylE functions as an efficient reporter gene inStreptomyces spp.: use for the study ofgal P1, a catabolite-controlled promoter.J. Bacteriol. 171 : 6617-6624. - Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A. 2011. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes.
Appl. Environ Microbiol. 77 : 5370-5383. - Flores FJ, Rincon J, Martin JF. 2003. Characterization of the iron-regulated
desA promoter ofStreptomyces pilosus as a system for controlled gene expression in actinomycetes.Microb. Cell Fact. 2 : 5. - Willemse J, van Wezel GP. 2009. Imaging of
Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization.PLoS One 4 : e4242. - Santos-Beneit F, Errington J. 2017. Green fluorescent protein as a reporter for the spatial and temporal expression of
actIII inStreptomyces coelicolor .Arch. Microbiol. 199 : 875-880. - Nguyen KD, Au-Young SH, Nodwell JR. 2007. Monomeric red fluorescent protein as a reporter for macromolecular localization in
Streptomyces coelicolor .Plasmid 58 : 167-173. - Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG,
et al . 2017. Development of next generation synthetic biology tools for use inStreptomyces venezuelae .ACS Synth. Biol. 6 : 159-166. - Siegl T, Luzhetskyy A. 2012. Actinomycetes genome engineering approaches.
Antonie Van Leeuwenhoek. 102 : 503-516. - Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E,
et al . 2012. Site-specific recombination strategies for engineering actinomycete genomes.Appl. Environ. Microbiol. 78 : 1804-1812. - Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF,
et al . 2006. Expression of Cre recombinase during transient phage infection permits efficient marker removal inStreptomyces .Nucleic Acids Res. 34 : e20. - Zelyas N, Tahlan K, Jensen SE. 2009. Use of the native
flp gene to generate in-frame unmarked mutations inStreptomyces spp.Gene 443 : 48-54. - Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S,
et al . 2007. CRISPR provides acquired resistance against viruses in prokaryotes.Science 315 : 1709-1712. - Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N,
et al . 2013. Multiplex genome engineering using CRISPR/Cas systems.Science 339 : 819-823. - DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in
Saccharomyces cerevisiae using CRISPR-Cas systems.Nucleic Acids Res. 41 : 4336-4343. - Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system.
Nat. Methods 10 : 741-743. - Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat. Biotechnol. 31 : 233-239. - Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J,
et al . 2013. Multiplex and homologous recombination-mediated genome editing inArabidopsis andNicotiana benthamiana using guide RNA and Cas9.Nat. Biotechnol. 31 : 688-691. - Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science 337 : 816-821. - Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases.
Science 300 : 764. - Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A,
et al . 2010. Targeting DNA double-strand breaks with TAL effector nucleases.Genetics 186 : 757-761. - Rouet P, Smih F, Jasin M. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease.
Mol. Cell Biol. 14 : 8096-8106. - Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science 346 : 1258096. - Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature 513 : 569-573. - Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system.
Microbiology 155 : 733-740. - Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes.
ACS Synth. Biol. 4 : 1020-1029. - Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E,
et al . 2017. CRISPR-Cas9 strategy for activation of silentStreptomyces biosynthetic gene clusters.Nat. Chem. Biol. 13 : 607-609. - Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y,
et al . 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene inStreptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system.Appl. Microbiol. Biotechnol. 99 : 10575-10585. - Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. 2017. Multiplexed site-specific genome engineering for over-producing bioactive secondary metabolites in actinomycetes.
Metab. Eng. 40 : 80-92. - Meng J, Feng R, Zheng G, Ge M, Mast Y, Wohlleben W,
et al . 2017. Improvement of pristinamycin I (PI) production inStreptomyces pristinaespiralis by metabolic engineering approaches.Synth. Syst. Biotechnol. 2 : 130-136. - Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA,
et al . 2017. Formicamycins, antibacterial polyketides produced byStreptomyces formicae isolated from African Tetraponera plant-ants.Chem. Sci. 8 : 3218-3227. - Wang Y, Cobb RE, Zhao H. 2016. High-efficiency genome editing of
Streptomyces species by an engineered CRISPR/Cas System.Methods Enzymol. 575 : 271-284. - Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. 2017. Development of a CRISPR/Cas9-mediated gene-editing tool in
Streptomyces rimosus .Microbiology 163 : 1148-1155. - Tao W, Yang A, Deng Z, Sun Y. 2018. CRISPR/Cas9-based editing of
Streptomyces for discovery, characterization, and production of natural products.Front Microbiol. 9 : 1660. - Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z,
et al . 2015. In vitro CRISPR/Cas9 system for efficient targeted DNA editing.MBio 6 : e01714-01715. - Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters.
Nat. Commun. 6 : 8101. - Kang HS, Charlop-Powers Z, Brady SF. 2016. Multiplexed CRISPR/Cas9-and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast.
ACS Synth. Biol. 5 : 1002-1010. - Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y,
et al . 2016. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis.Chem. Sci. 7 : 376-385. - Li L, Wei K, Liu X, Wu Y, Zhensg G, Chen S,
et al . 2019. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes.Metab. Eng. 52 : 7. - Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP,
et al . 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.Cell 152 : 1173-1183. - Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z,
et al . 2018. CRISPR/dCas9-mediated multiplex gene repression inStreptomyces .Biotechnol. J. 13 : e1800121. - Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z,
et al . 2017. Large-scale transposition mutagenesis ofStreptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis.Appl. Environ. Microbiol. 83 : e02889-02816. - Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized
Streptomyces host for the heterologous expression of secondary metabolism.Proc. Natl. Acad. Sci. USA 107 : 2646-2651. - Gomez-Escribano JP, Bibb MJ. 2011. Engineering
Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters.Microb. Biotechnol. 4 : 207-215. - Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P,
et al . 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Cell 163 : 759-771. - Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W,
et al . 2018. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression inStreptomyces .Appl. Environ. Microbiol. 84 : e00827-00818. - Xu M, Wright GD. 2018. Heterologous expression-facilitated natural products’ discovery in actinomycetes.
J. Ind. Microbiol. Biotechnol. 46 : 415-431. - Liu R, Deng Z, Liu T. 2018.
Streptomyces species: Ideal chassis for natural product discovery and overproduction.Metab. Eng. 50 : 74-84. - Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. 2017. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in
Streptomyces Species.Front. Microbiol. 8 : 394. - Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters.
Nat. Rev. Microbiol. 13 : 509-523. - Katz M, Hover BM, Brady SF. 2016. Culture-independent discovery of natural products from soil metagenomes.
J. Ind. Microbiol Biotechnol. 43 : 129-141. - Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using
Streptomyces artificial chromosome system.Microb. Cell Fact. 16 : 96. - Nah HJ, Woo MW, Choi SS, Kim ES. 2015. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using
Streptomyces artificial chromosome system.Microb. Cell Fact. 14 : 140. - Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. 2015. Genome engineering and direct cloning of antibiotic gene clusters via phage varphiBT1 integrase-mediated site-specific recombination in
Streptomyces .Sci Rep. 5 : 8740. - Greunke C, Duell ER, Glockle A, Lamm K, Gulder TAM, D’Agostino PM. 2018. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential.
Metab. Eng. 47 : 334-345. - Shao Z, Luo Y, Zhao H. 2011. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler.
Mol. Biosyst. 7 : 1056-1059. - Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM,
et al . 2012. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for biopro-specting.Nat. Biotechnol. 30 : 440-446. - Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V,
et al . 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A.Proc. Natl. Acad. Sci. USA 111 : 1957-1962. - Orr-Weaver TL, Szostak JW, Rothstein RJ. 1981. Yeast transformation: a model system for the study of recombination.
Proc. Natl. Acad. Sci USA 78 : 6354-6358. - Lee NC, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast.
Nucleic Acids Res. 43 : e55. - Bu QT, Yu P, Wang J, Li ZY, Chen XA, Mao XM,
et al . 2019. Rational construction of genome-reduced and high-efficient industrialStreptomyces chassis based on multiple comparative genomic approaches.Microb. Cell Fact. 18 : 16. - Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. 2018. Generation of a cluster-free
Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters.Metab. Eng. 49 : 316-324. - Xu M, Wang Y, Zhao Z, Gao G, Huang SX, Kang Q,
et al . 2016. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library inStreptomyces spp.Appl. Environ. Microbiol. 82 : 5795-5805. - Liu Q, Xiao L, Zhou Y, Deng K, Tan G, Han Y,
et al . 2016. Development ofStreptomyces sp. FR-008 as an emerging chassis.Synth. Syst. Biotechnol. 1 : 207-214. - Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M,
et al . 2013. EngineeredStreptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites.ACS Synth. Biol. 2 : 384-396. - Daniels W, Bouvin J, Busche T, Kalinowski J, Bernaerts K. 2016. Finding targets for genome reduction in
Streptomyces lividans TK24 using flux balance analysis.IFAC-PapersOnLine 49 : 252-257. - Toro L, Pinilla L, Avignone-Rossa C, Rios-Estepa R. 2018. An enhanced genome-scale metabolic reconstruction of
Streptomyces clavuligerus identifies novel strain improvement strategies.Bioprocess Biosyst. Eng. 41 : 657-669. - Kallifidas D, Jiang G, Ding Y, Luesch H. 2018. Rational engineering of
Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters.Microb. Cell Fact. 17 : 25. - Machado H, Tuttle RN, Jensen PR. 2017. Omics-based natural product discovery and the lexicon of genome mining.
Curr. Opin. Microbiol. 39 : 136-142. - Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ,
et al . 2015. In vivo genome editing usingStaphylococcus aureus Cas9.Nature 520 : 186-191. - Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM,
et al . 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors.Nature 566 : 218-223. - Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.
Nucleic Acids Res. 41 : 7429-7437. - Siu KH, Chen W. 2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function.
Nat. Chem. Biol. 15 : 217-220. - Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N,
et al . 2011. Characterization and manipulation of the pathway-specific late regulator AlpW revealsStreptomyces ambofaciens as a new producer of Kinamycins.J. Bacteriol. 193 : 1142-1153. - Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A,
et al . 2005. Daptomycin biosynthesis inStreptomyces roseosporus : cloning and analysis of the gene cluster and revision of peptide stereochemistry.Microbiology 151 : 1507-1523. - Myronovskyi M, Rosenkranzer B, Luzhetskyy A. 2014. Iterative marker excision system.
Appl. Microbiol. Biotechnol. 98 : 4557-4570. - Thapa LP, Oh TJ, Lee HC, Liou K, Park JW, Yoon YJ,
et al . 2007. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) inStreptomyces venezuelae YJ003.Appl. Microbiol. Biotechnol. 76 : 1357-1364. - Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. 2013. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster.
PLoS One 8 : e69319. - Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L. 2000. Identification of the novobiocin biosynthetic gene cluster of
Streptomyces spheroides NCIB 11891.Antimicrob. Agents Chemother. 44 : 1214-1222. - Zhao Z, Shi T, Xu M, Brock NL, Zhao YL, Wang Y,
et al . 2016. Hybrubins: Bipyrrole tetramic acids obtained by crosstalk between a truncated undecylprodigiosin pathway and heterologous tetramic acid biosynthetic genes.Org. Lett. 18 : 572-575.
Related articles in JMB
Article
Review
J. Microbiol. Biotechnol. 2019; 29(5): 667-686
Published online May 28, 2019 https://doi.org/10.4014/jmb.1904.04015
Copyright © The Korean Society for Microbiology and Biotechnology.
Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces
Namil Lee 1, Soonkyu Hwang 1, Yongjae Lee 1, Suhyung Cho 1, Bernhard Palsson 3, 4, 5 and Byung-Kwan Cho 1, 2*
1Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
2Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
3Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA 4Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
5Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
Correspondence to:Byung-Kwan Cho
bcho@kaist.ac.kr
Abstract
Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.
Keywords: Streptomyces, secondary metabolites, biosynthetic gene cluster, antibiotics, synthetic biology, genome editing, CRISPR/Cas9, heterologous expression
Introduction
To activate silent SM-BGCs, various strategies have been applied, including culture media modifications, chemical or antibiotic treatments, heterologous gene expression in different hosts, and co-culture with cohabiting microbes [4]. However, these methods are untargeted, resulting in non-directed activation of silent SM-BGCs in
-
Figure 1.
Overview of synthetic biology strategy to produce novel secondary metabolite from Abbreviations: BGC, biosynthetic gene cluster; CDS, coding sequence; 5’ UTR, 5’ untranslated region; RBS, ribosome binding site; WT, wild type; LA, left homology arm; RA, right homology arm.Streptomyces .
Mining of Secondary Metabolite Biosynthetic Gene Clusters
In the pre-genome mining era, most of the secondary metabolites in
In general, each
Genetic Parts for Streptomyces Synthetic Biology
Genomic information on
-
Table 1 . Genetic parts for
Streptomyces. .Genetic parts Feature Reference Constitutive promoters ermE * promoterMutation at the promoter of the erythromycin resistance gene of Streptomyces erythraeus [31] SF14P promoterGenome of Streptomyces ghanaensis phage I19[34] kasOP promoterPromoter of SARP family regulator in Stretpomyces coelicolor A3[33] gapdh promoterPromoter of glyceraldehyde-3-phosphate dehydrogenase in Streptomyces griseus [35] rpsL promoterPromoter of 30S ribosomal protein S12 in Streptomyces griseus [35] 195 native or synthetic promoters High-throughput screening in S. venezueale [58] 32 native promoters Transcriptome data-based selection in S. albus [38] 166 native promoters Transcriptome data-based selection in S. coelicolor [39] 2 native promoters Multi-omics data-based selection in S. coelicolor [59] Inducible promoters tipA promoterThiostrepton-induced promoter [40] nitA promoterε-caprolactam-induced promoter [45] xylA promoterXylose-induced promoter [46] tcp830 Tetracycline-induced promoter [43] PA3-rolO Resorcinol-induced promoter [44] P21-cmt Cumate-induced promoter [44] Terminators Fd Bidirectional transcription termination originated from E. coli phage fd[48] TD1 Bidirectional transcription termination originated from Bacillus subtilis phage Φ29[49] RBS AAAGGAGG Typical RBS sequence of S. coelicolor [134] 192 native or synthetic RBSs High-throughput screening in S. venezueale [58] 4 native RBSs Multi-omics data-based selection in S. coelicolor [59] Reporter genes luxAB cassetten-Decanal as substrate; absorbance at 490 nm wavelength [61] amy geneSoluble starch with 3,5-dinitrosalycilic acid (DNS) as substrate; absorbance at 540 nm wavelength [64] xylE geneCatecol as substrate; absorbance at 375 nm wavelength [62] gusA genep-Nitrophenyl-β-D-glucuronide as substrate; absorbance at 415 nm wavelength [63] eGFP Green fluorescent protein; excitation wavelength 470-490 nm and emission wavelength 515 nm [65] sfGFP Green fluorescent protein; excitation wavelength 488 nm and emission wavelength 500~550 nm [58] mRFP Red fluorescent protein; excitation wavelength 584 nm and emission wavelength 607 nm [67] mCherry Red fluorescent protein; excitation wavelength 587 nm and emission wavelength 610 nm [68]
Genetic Parts for Transcriptional Regulation in Streptomyces
In bacterial cells, a transcription unit is defined as a basic unit of regulation and is composed of several genes and accessory genetic elements, including promoters, transcrip-tion start sites (TSS), RBSs, and terminators. Design and utilization of these genetic parts, at appropriate strengths, is critical for precise transcriptional and translational regulation of targeted gene expression. In transcriptional regulation, the most important genetic part is the promoter, which is the binding site of RNA polymerase to initiate transcription. However, widely used promoters for bacterial genetic engineering, such as
First, constitutive promoters, which generate constant gene expression levels regardless of growth phases, are extensively used for SM-BGC expression in
Second, expression of SM-BGC genes under constitutive promoters sometimes causes growth retardation. Therefore, it is desirable to establish a controllable gene expression system in
Further, only a limited number of terminator sequences is available in
Taken together, many efforts in molecular biology of
Genetic Parts for Translational Regulation in Streptomyces
Because cellular protein level does not directly correlate with mRNA abundance, yet depends on translational efficiency, transcriptional regulation alone is not sufficient to design an efficient gene expression system in
First, in
Reporter Systems for High-Throughput Screening
For high-throughput characterization of genetic parts developed for
CRISPR/Cas-Based Genome-Engineering Tools for Streptomyces
To utilize genetic parts and reconstruct metabolic pathways for secondary metabolite production, efficient genome engineering tools are required. Conventional genome engineering of
Recently, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) has emerged as a promising tool for genome engineering of
-
Table 2 . Application of CRISPR/Cas9-mediated engineering in
Streptomyces ..Cas Target Strategy Vector Repair Organism Related secondary metabolite Remark Ref SpCas9 actI-orf1 Disruption pCRISPR-Cas9 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD expression [86] actVB Disruption pCRISPR-Cas9 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD expression actI-orf2 Disruption pWHU NHEJ S. coelicolor ACT codA(sm)-based screening system for plasmid-cured strain [88] zwf2 Disruption pCRISPomyces NHEJ S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene [93] devB Disruption pCRISPomyces NHEJ S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene sshg_00040 - sshg_00050 Deletion pCRISPomyces HDR S. albus Lanthipeptide - [50] sshg_05713 Deletion pCRISPomyces HDR S. albus Polycylic tetramic acid macrolactam - Formicamycin cluster Deletion pCRISPomyces HDR S. formicae Formicamycin - [91] forV Deletion pCRISPomyces HDR S. formicae Formicamycin - actVA-orf5 Deletion pCRISPomyces HDR S. lividans ACT - [50] redD - redF Deletion pCRISPomyces HDR S. lividans RED - redN Deletion pCRISPomyces HDR S. lividans RED - actVA-orf5 and redN Deletion pCRISPomyces HDR S. lividans ACT and RED Multiplexed editing devB Deletion pCRISPomyces HDR S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene [93] zwf2 Deletion pCRISPomyces HDR S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene phpD Deletion pCRISPomyces HDR S. viridochromogenes Phosphinothricin tripeptide - [50] phpM Deletion pCRISPomyces HDR S. viridochromogenes Phosphinothricin tripeptide - sceN Deletion pCRISPR-Cas9 HDR Streptomyces sp.SD85BGC11 (sceliphrolactam) - [18] sceQ-sceR fusion Deletion pCRISPR-Cas9 HDR Streptomyces sp.SD85BGC11 (sceliphrolactam) Fusion of sceQ and sce R by deleting stop codon of sceQ, intergenic region between sceQ and sceR, and start codon of sceR actI-orf1 Deletion pCRISPR-Cas9 HDR S. coelicolor ACT - [86] actVB Deletion pCRISPR-Cas9 HDR S. coelicolor ACT - SpCas9 ACT cluster Deletion pKCCas9 HDR S. coelicolor ACT - [42] actII-orf4 Deletion pKCCas9 HDR S. coelicolor ACT - actII-orf4 and redD Deletion pKCCas9 HDR S. coelicolor ACT and RED Multiplexed editing CDA cluster Deletion pKCCas9 HDR S. coelicolor CDA - glnR Deletion pKCCas9 HDR S. coelicolor - - RED cluster Deletion pKCCas9 HDR S. coelicolor RED - redD Deletion pKCCas9 HDR S. coelicolor RED - papR3 Deletion pKCCas9 HDR S. pristinaespiralis pristinamycin - [90] snaE1 and snaE2 Deletion pKCCas9 HDR S. pristinaespiralis pristinamycin - actI-orf2 Deletion pWHU HDR S. coelicolor ACT Development of codA(sm)-based selection system for screening plasmid-cured strain [88] rpsL Point mutation pKCCas9 HDR S. coelicolor - Lys88Glu mutation [42] ACT, CDA, CPK, RED deleted region Replacement pKCCas9 HDR S. coelicolor M1146, M1152- ΦC31 attB integration [89] Non-target BGCs Replacement pKCCas9 HDR S. pristinaespiralis BGC2, 3, 5, 13, and 15 Non-target BGC replacement with ΦC31 attB or ΦBT1 attB site indC-like indigoidine synthase Insertion pCRISPomyces HDR S. albus Indigoidine KasO* promoter knock-in to activate silent BGCs [87] redD Insertion pCRISPomyces HDR S. lividans RED KasO* promoter knock-in to activate silent BGCs actII-orf4 Insertion pCRISPomyces HDR S. lividans ACT KasO* promoter knock-in to activate silent BGCs frbD operon and frbC homolog Insertion pCRISPomyces HDR S. roseosporus FR-900098 KasO* promoter knock-in to activate silent BGCs main synthase gene Insertion pCRISPomyces HDR S. roseosporus BGC3 (T1pks) KasO* promoter knock-in to activate silent BGCs luxR-type regulator Insertion pCRISPomyces HDR S. roseosporus BGC18 (T1pks) KasO* promoter knock-in to activate silent BGCs SSGG_RS0133915 Insertion pCRISPomyces HDR S. roseosporus BGC24 (Nrps-t1pks) KasO* promoter knock-in to activate silent BGCs rppA and cytochrome P450 Insertion pCRISPomyces HDR S. venezuelae BGC16 (T3pks) KasO* promoter knock-in to activate silent BGCs SSQG_RS26895-RS26920 operon Insertion pCRISPomyces HDR S. viridochromogenes BGC22 (T2pks) KasO* promoter knock-in to activate silent BGCs rkD Cloning - - - RK-682 ICE [95] homE Cloning - - - Holomycin ICE stuE~stuF2 Cloning - - - Tü 3010 ICE [98] stuD1, stuD2 Cloning - - - Tü 3010 ICE SpCas9 Tetarimycin BGC Cloning - - - Tetarimycin mCRISTAR [97] spr1 region (pglE - snbC) Cloning - - - Pristinamycin mCRISTAR [90] 5-oxomilbemycin BGC Cloning - - - 5-oxomilbemycin mCRISTAR [99] Jadomycin and chlortetracycline BGC Cloning - - - Jadomycin, and chlortetracycline CATCH [96] Chloramphenicol, YM-216391, and pristinamycin II BGCs Cloning - - - Chloramphenicol, YM-216391, and pristinamycin CRISPR/Cas9 cleavage and Gibson assembly [89] SpdCas9 actI-orf1 CRISPRi pCRISPR-dCas9 - S. coelicolor ACT - [86] actI-orf1 CRISPRi pSET-dCas9 - S. coelicolor ACT - [101] actII-orf4 CRISPRi pSET-dCas9 - S. coelicolor ACT - cdaPS1 CRISPRi pSET-dCas9 - S. coelicolor CDA - cpkA CRISPRi pSET-dCas9 - S. coelicolor CPK - redQ CRISPRi pSET-dCas9 - S. coelicolor RED - actI-orf1 and cdaPS1 CRISPRi pSET-dCas9 - S. coelicolor ACT, CDA Multiplexed editing actI-orf1 and cdaPS1, cpkA CRISPRi pSET-dCas9 - S. coelicolor ACT, CDA, and CPK Multiplexed editing actI-orf1, cdaPS1, and cpkA, redQ CRISPRi pSET-dCas9 - S. coelicolor ACT, RED, CDA, and CPK Multiplexed editing Proteins with AmiR and NasR Transcriptional Antiterminator Regulator domain (ANTAR) CRISPRi pSET-dCas9 - S. coelicolor - Gene essentiality test FnCpf1 actI-orf1 Disruption pKCCpf1 NHEJ S. coelicolor ACT - [106] actI-orf1 Disruption pKCCpf1 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD and Ku expression redX Disruption pKCCpf1 NHEJ S. coelicolor RED - redX Disruption pKCCpf1 NHEJ S. coelicolor RED Reconstituted NHEJ with ligD and Ku expression redX, redG Deletion pKCCpf1 NHEJ S. coelicolor RED Deletion by reconstituted NHEJ with ligD and Ku expression at two cleavage sites actI-orfI Deletion pKCCpf1 HDR S. coelicolor ACT - redX Deletion pKCCpf1 HDR S. coelicolor RED - actI-orf1, redX Deletion pKCCpf1 HDR S. coelicolor ACT and RED Multiplexed editing SBI00792 Deletion pKCCpf1 HDR S. hygroscopicus Adjacent to 5-oxomilbemycin - FnddCpf1 actI-orf1 CRISPRi pSETddCpf1 - S. coelicolor ACT - redX CRISPRi pSETddCpf1 - S. coelicolor RED - cpkA CRISPRi pSETddCpf1 - S. coelicolor CPK - redX, actI-orf1, and cpkA CRISPRi pSETddCpf1 - S. coelicolor RED, ACT, and CPK Multiplexed editing
Editing Streptomyces Genomes and Secondary Metabolite Biosynthetic Gene Clusters
The DSB by Cas9 occurs only if a specific sequence motif, called a protospacer adjacent motif (PAM), is present next to the protospacer [84]. All applications of the CRISPR/Cas9 system in
CRISPR/Cas9-based approaches can be divided by the type of DSB repair, NHEJ and HDR. NHEJ-mediated genome engineering generates random mutation, insertion or deletion of a few nucleotides, to disrupt a gene of interest [86, 88, 93]. Further, it has been applied to
In addition to the in vivo genome engineering, CRISPR/Cas9 can be utilized for cloning and refactoring of large SM-BGCs [89, 95-99]. Restriction enzymes or PCR-based cloning strategies are not suitable for manipulation of large-sized DNA fragments due to the limited restriction sites and DNA amplification errors. The high-resolution site-specific cleavage activity of the CRISPR/Cas9 system enables efficient
CRISPR/Cas9-Based Transcriptional Repression and Activation
Cas9 contains two nuclease domains, RuvC1 and HNH, which are responsible for DSB formation at the target DNA sequence [79]. Introduction of two silencing mutations to the RuvC1 and HNH nuclease domains (D10A and H840A) generates catalytically dead Cas9 (dCas9), which lacks nuclease activity yet retains DNA binding activity. By guiding dCas9 to the promoter region or coding region of the target gene, transcription initiation or transcription elongation can be blocked, respectively [100]. The CRISPR/dCas9-based transcriptional repression system, called CRISPR interference (CRISPRi), has been exploited for transcriptional repression of genes in
Cpf1 as an Alternative to Cas9
Since SpCas9 recognizes 5’-NGG as the PAM sequence, there are considerable target sites in the GC-rich
Heterologous Expression of Secondary Metabolite Biosynthetic Gene Clusters
Compared to secondary metabolite production in the native host, heterologous expression has several advantages, including: (1) it enables SM-BGCs expression of unculturable or slow-growing native host strains, (2) it overcomes the difficult genetic manipulation of the native host, and (3) it bypasses the innate regulatory network of the native host [107]. In fact, the
There are four steps to express the SM-BGC in the heterologous expression host, which include (1) acquisition of the target SM-BGC from the native host genome, (2) ligation or assembly of the SM-BGC to the vector, (3) transfer of the SM-BGC-encoded vector to the heterologous expression host, and (4) target of secondary metabolite production (Table 3).
-
Table 3 . Different strategy for BGC cloning..
BGC cloning steps Strategies Representative examples Ref Acquisition of the target BGC from the native host genome Genomic library Cosmid, fosmid, BAC, and PAC [135] Cut off both ends of target BGC Restriction: pSBAC [113] Integrase: IR [114] CRISPR: CATCH, mCRISTAR, and CRISPR-TAR [96, 97, 120] PCR amplification DNA assembler [116] Ligation or assembly of the target BGC to the vector In vitro Sticky end ligation: pSBAC [113] Blunt end ligation: ICE [95] Gibson assembly: CATCH and MSGE [89, 96] In vivo Recombination in native host: IR [114] Recombination in E. coli : LLHR[117] Recombination in yeast: TAR, DNA assembler, DiPac, and mCRISTAR [97, 115, 116, 118] Transferring BGC vector to the expression host Conjugation pUWLcre [136] Protoplast transformation pSKC2 and pOJ446 [137] Target secondary metabolite production by expression of the BGC vector Integrative pSET152, pCAP01, and pESAC [118, 138] Replicative pSKC2 and pUWL201 [139]
The most frequently used method for acquisition of the target SM-BGC is the genomic library construction using cosmid, fosmid, BAC, and PAC vectors [109]. This method can be applied to a broad range of
Ligation or assembly methods of target SM-BGC to the heterologous expression vector can be largely divided into two groups,
In most cases, constructed SM-BGC vectors have been transformed to the heterologous expression host through conjugation between
Streptomyces Chassis Strains for Heterologous Gene Expression
To improve yields of secondary metabolites,
-
Table 4 . Representative examples of
Streptomyces chassis strain for optimal heterologous expression..Heterologous host Engineering Target genes or regions Deletion method Expressed BGC BGC vector Effect Limitation Ref Streptomyces coelicolor M145BGC deletion and Pleiotropic gene engineering Deletion of four BGCs (ACT, RED, CPK, and CDA) Point mutations of rpoB and rpsL. Homologous recombination by double crossover of the plasmid Shlorampheniocol and congocidine Cosmid Improved production, clean profile of background metabolites Low fitness [104] Streptomyces sp. FR-008BGC deletion Deletion of three BGCs (candicidin, type III PKS, and type I PKS) Homologous recombination by double crossover of the plasmid None None Improved fitness, sporulation, and clean profile of background metabolites Heterologous expression was not tested [124] Streptomyces lividans TK24BGC deletion Deletion of three BGCs (ACT, RED, and CDA) One copy integration of AfsRS by attB integrase Homologous recombination by double crossover of the plasmid Streptothiricins, borrelidin, and linear lipopeptides BAC High-throughput functional genome mining of Streptomyces rocheiLow fitness, laborious screening of BAC libraries [123] Streptomyces lividans TK24BGC deletion Deletion of three BGCs (ACT, RED, and CDA) Additional copies integration of AfsRS by attB integrase Homologous recombination by double crossover of the plasmid Hybrubins BAC High-throughput functional genome mining of Streptomyces variabilis Pathway crosstalk between incompletely deleted RED cluster.Low fitness [140] Streptomyces albus J1074BGC deletion Deletion of fifteen BGCs (Frontalamide, Paulomycin, Geosmin, Lantibiotic, carotenoid, flaviolin, candicidin, antimycin, 2 PKSNRPS, and 4 NRPS) Homologous recombination by double crossover of the plasmid using λ-red system Tunicamycin B2, moenomycin M, griseorhodin A, pyridinopyrone A, bhimamycin A, didesmethylmensacarcin, didemethoxyaranciamycino ne, aloesaponarin II, and cinnamycin, fralnimycin Fosmid and BAC Improved production, clean profile of background metabolites Moenomycin M productivity was reduced. [122] Streptomyces avermitilis Nonessential region deletion and BGC deletion Deletion of 1.48 Mb left arm determined by comparative genomics Homologous recombination by double crossover of the plasmid using λ-red system Cre/loxP system Streptomycin, cephamycin C, and pladienolide Cosmidand BAC Improved production by additional introduction of regulatory gene and optimization of codon usage Low conjugation efficiency [103] Streptomyces avermitilis Nonessential region deletion Deletion of 1.48 Mb left arm and some regions determined by comparative genomics Homologous recombination by double crossover of the plasmid using λ-red system Cre/loxP system Streptomycin, ribostamycin, kasugamycin, pholipomycin, oxytetracycline, resistomycin, pladienolide B, erythromycin A, bafilimycin B1, nemadectin α, aureothin, leptomycin, cephamycin C, holomycin, lactacystin, clavulanic acid, rebeccamycin, novobiocin, chloramphenicol, 2-methylisoborneol, pentalenolactone, amorpha-1,4-diene, taxa-4,11-diene, levopimaradiene, and abietatriene Cosmid and BAC Improved production, fitness, clean profile of background metabolites. Broad precursor capacity (sugar, polyketide, peptide, shikimate, and MVA or MEP) Ribostamycin, oxytetracycline productivity were reduced [125] Streptomyces chattanoogensis L10Nonessential region deletion Deletion of 1.3 Mb and 0.7 Mb nonessential arms determined by comparative genomics and prediction tools Cre/loxP recombination ACT pMM1 Improved production, fitness, ATP, NADPH, transformation efficiency, and genetic stability. Dispersed morphology. 1.3 Mb deleted strain was detrimental due to deletion of some unknown genes [121] Streptomyces albus J1074Pleiotropic gene engineering and BGC deletion Deletion of pfk ,wblA , overexpression of cpk, and deletion of one BGC (paulomycin)Homologous recombination by double crossover of the plasmid using λ-red system ACT Fosmid Improved production, fitness, and NADPH. Undesirable effects might be incurred due to the global change of transcriptome [128]
Nonessential genomic regions (NGR) are usually located at the ends of linear chromosomes, which are not conserved in all species and dispensable for cell growth. They include genomic islands (GI), IS elements, and endogenous CRISPR array regions that decrease genomic stability. For example, NGRs in
Genes with pleiotropic functions can be additionally engineered to improve productivity of target secondary metabolites. For instance, deletion of phosphofructokinase gene
Future Perspective
In this review, we summarized a synthetic biology strategy to produce novel secondary metabolites in
Although genetic tools based on the CRISPR/Cas system have offered diverse strategies to enhance secondary metabolite production and activate silent SM-BGCs [87, 89, 90, 93, 99], further optimization of the CRISPR/Cas system for
Development of synthetic biology tools can also be exploited to construct the
Acknowledgments
This work was supported by a grant from the Novo Nordisk Foundation (grant number NNF10CC1016517). This research was also supported by the Basic Science Research Program (2018R1A1A3A04079196 to S.C.), the Basic Core Technology Development Program for the Oceans and the Polar Regions (2016M1A5A1027458 to B.-K.C.), and the Bio & Medical Technology Development Program (2018M3A9F3079664 to B.-K.C.) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT.
Conflict of Interest
The authors have no financial conflicts of interest to declare.
- Abstract
- Introduction
- Mining of Secondary Metabolite Biosynthetic Gene Clusters
- Genetic Parts for
Streptomyces Synthetic Biology - CRISPR/Cas-Based Genome-Engineering Tools for
Streptomyces - Heterologous Expression of Secondary Metabolite Biosynthetic Gene Clusters
Streptomyces Chassis Strains for Heterologous Gene Expression- Future Perspective
- Acknowledgments
- Conflict of Interest
Fig 1.
-
Table 1 . Genetic parts for
Streptomyces. .Genetic parts Feature Reference Constitutive promoters ermE * promoterMutation at the promoter of the erythromycin resistance gene of Streptomyces erythraeus [31] SF14P promoterGenome of Streptomyces ghanaensis phage I19[34] kasOP promoterPromoter of SARP family regulator in Stretpomyces coelicolor A3[33] gapdh promoterPromoter of glyceraldehyde-3-phosphate dehydrogenase in Streptomyces griseus [35] rpsL promoterPromoter of 30S ribosomal protein S12 in Streptomyces griseus [35] 195 native or synthetic promoters High-throughput screening in S. venezueale [58] 32 native promoters Transcriptome data-based selection in S. albus [38] 166 native promoters Transcriptome data-based selection in S. coelicolor [39] 2 native promoters Multi-omics data-based selection in S. coelicolor [59] Inducible promoters tipA promoterThiostrepton-induced promoter [40] nitA promoterε-caprolactam-induced promoter [45] xylA promoterXylose-induced promoter [46] tcp830 Tetracycline-induced promoter [43] PA3-rolO Resorcinol-induced promoter [44] P21-cmt Cumate-induced promoter [44] Terminators Fd Bidirectional transcription termination originated from E. coli phage fd[48] TD1 Bidirectional transcription termination originated from Bacillus subtilis phage Φ29[49] RBS AAAGGAGG Typical RBS sequence of S. coelicolor [134] 192 native or synthetic RBSs High-throughput screening in S. venezueale [58] 4 native RBSs Multi-omics data-based selection in S. coelicolor [59] Reporter genes luxAB cassetten-Decanal as substrate; absorbance at 490 nm wavelength [61] amy geneSoluble starch with 3,5-dinitrosalycilic acid (DNS) as substrate; absorbance at 540 nm wavelength [64] xylE geneCatecol as substrate; absorbance at 375 nm wavelength [62] gusA genep-Nitrophenyl-β-D-glucuronide as substrate; absorbance at 415 nm wavelength [63] eGFP Green fluorescent protein; excitation wavelength 470-490 nm and emission wavelength 515 nm [65] sfGFP Green fluorescent protein; excitation wavelength 488 nm and emission wavelength 500~550 nm [58] mRFP Red fluorescent protein; excitation wavelength 584 nm and emission wavelength 607 nm [67] mCherry Red fluorescent protein; excitation wavelength 587 nm and emission wavelength 610 nm [68]
-
Table 2 . Application of CRISPR/Cas9-mediated engineering in
Streptomyces ..Cas Target Strategy Vector Repair Organism Related secondary metabolite Remark Ref SpCas9 actI-orf1 Disruption pCRISPR-Cas9 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD expression [86] actVB Disruption pCRISPR-Cas9 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD expression actI-orf2 Disruption pWHU NHEJ S. coelicolor ACT codA(sm)-based screening system for plasmid-cured strain [88] zwf2 Disruption pCRISPomyces NHEJ S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene [93] devB Disruption pCRISPomyces NHEJ S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene sshg_00040 - sshg_00050 Deletion pCRISPomyces HDR S. albus Lanthipeptide - [50] sshg_05713 Deletion pCRISPomyces HDR S. albus Polycylic tetramic acid macrolactam - Formicamycin cluster Deletion pCRISPomyces HDR S. formicae Formicamycin - [91] forV Deletion pCRISPomyces HDR S. formicae Formicamycin - actVA-orf5 Deletion pCRISPomyces HDR S. lividans ACT - [50] redD - redF Deletion pCRISPomyces HDR S. lividans RED - redN Deletion pCRISPomyces HDR S. lividans RED - actVA-orf5 and redN Deletion pCRISPomyces HDR S. lividans ACT and RED Multiplexed editing devB Deletion pCRISPomyces HDR S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene [93] zwf2 Deletion pCRISPomyces HDR S. rimosus - Oxytetracycline production enhancement by disruption of competitive gene phpD Deletion pCRISPomyces HDR S. viridochromogenes Phosphinothricin tripeptide - [50] phpM Deletion pCRISPomyces HDR S. viridochromogenes Phosphinothricin tripeptide - sceN Deletion pCRISPR-Cas9 HDR Streptomyces sp.SD85BGC11 (sceliphrolactam) - [18] sceQ-sceR fusion Deletion pCRISPR-Cas9 HDR Streptomyces sp.SD85BGC11 (sceliphrolactam) Fusion of sceQ and sce R by deleting stop codon of sceQ, intergenic region between sceQ and sceR, and start codon of sceR actI-orf1 Deletion pCRISPR-Cas9 HDR S. coelicolor ACT - [86] actVB Deletion pCRISPR-Cas9 HDR S. coelicolor ACT - SpCas9 ACT cluster Deletion pKCCas9 HDR S. coelicolor ACT - [42] actII-orf4 Deletion pKCCas9 HDR S. coelicolor ACT - actII-orf4 and redD Deletion pKCCas9 HDR S. coelicolor ACT and RED Multiplexed editing CDA cluster Deletion pKCCas9 HDR S. coelicolor CDA - glnR Deletion pKCCas9 HDR S. coelicolor - - RED cluster Deletion pKCCas9 HDR S. coelicolor RED - redD Deletion pKCCas9 HDR S. coelicolor RED - papR3 Deletion pKCCas9 HDR S. pristinaespiralis pristinamycin - [90] snaE1 and snaE2 Deletion pKCCas9 HDR S. pristinaespiralis pristinamycin - actI-orf2 Deletion pWHU HDR S. coelicolor ACT Development of codA(sm)-based selection system for screening plasmid-cured strain [88] rpsL Point mutation pKCCas9 HDR S. coelicolor - Lys88Glu mutation [42] ACT, CDA, CPK, RED deleted region Replacement pKCCas9 HDR S. coelicolor M1146, M1152- ΦC31 attB integration [89] Non-target BGCs Replacement pKCCas9 HDR S. pristinaespiralis BGC2, 3, 5, 13, and 15 Non-target BGC replacement with ΦC31 attB or ΦBT1 attB site indC-like indigoidine synthase Insertion pCRISPomyces HDR S. albus Indigoidine KasO* promoter knock-in to activate silent BGCs [87] redD Insertion pCRISPomyces HDR S. lividans RED KasO* promoter knock-in to activate silent BGCs actII-orf4 Insertion pCRISPomyces HDR S. lividans ACT KasO* promoter knock-in to activate silent BGCs frbD operon and frbC homolog Insertion pCRISPomyces HDR S. roseosporus FR-900098 KasO* promoter knock-in to activate silent BGCs main synthase gene Insertion pCRISPomyces HDR S. roseosporus BGC3 (T1pks) KasO* promoter knock-in to activate silent BGCs luxR-type regulator Insertion pCRISPomyces HDR S. roseosporus BGC18 (T1pks) KasO* promoter knock-in to activate silent BGCs SSGG_RS0133915 Insertion pCRISPomyces HDR S. roseosporus BGC24 (Nrps-t1pks) KasO* promoter knock-in to activate silent BGCs rppA and cytochrome P450 Insertion pCRISPomyces HDR S. venezuelae BGC16 (T3pks) KasO* promoter knock-in to activate silent BGCs SSQG_RS26895-RS26920 operon Insertion pCRISPomyces HDR S. viridochromogenes BGC22 (T2pks) KasO* promoter knock-in to activate silent BGCs rkD Cloning - - - RK-682 ICE [95] homE Cloning - - - Holomycin ICE stuE~stuF2 Cloning - - - Tü 3010 ICE [98] stuD1, stuD2 Cloning - - - Tü 3010 ICE SpCas9 Tetarimycin BGC Cloning - - - Tetarimycin mCRISTAR [97] spr1 region (pglE - snbC) Cloning - - - Pristinamycin mCRISTAR [90] 5-oxomilbemycin BGC Cloning - - - 5-oxomilbemycin mCRISTAR [99] Jadomycin and chlortetracycline BGC Cloning - - - Jadomycin, and chlortetracycline CATCH [96] Chloramphenicol, YM-216391, and pristinamycin II BGCs Cloning - - - Chloramphenicol, YM-216391, and pristinamycin CRISPR/Cas9 cleavage and Gibson assembly [89] SpdCas9 actI-orf1 CRISPRi pCRISPR-dCas9 - S. coelicolor ACT - [86] actI-orf1 CRISPRi pSET-dCas9 - S. coelicolor ACT - [101] actII-orf4 CRISPRi pSET-dCas9 - S. coelicolor ACT - cdaPS1 CRISPRi pSET-dCas9 - S. coelicolor CDA - cpkA CRISPRi pSET-dCas9 - S. coelicolor CPK - redQ CRISPRi pSET-dCas9 - S. coelicolor RED - actI-orf1 and cdaPS1 CRISPRi pSET-dCas9 - S. coelicolor ACT, CDA Multiplexed editing actI-orf1 and cdaPS1, cpkA CRISPRi pSET-dCas9 - S. coelicolor ACT, CDA, and CPK Multiplexed editing actI-orf1, cdaPS1, and cpkA, redQ CRISPRi pSET-dCas9 - S. coelicolor ACT, RED, CDA, and CPK Multiplexed editing Proteins with AmiR and NasR Transcriptional Antiterminator Regulator domain (ANTAR) CRISPRi pSET-dCas9 - S. coelicolor - Gene essentiality test FnCpf1 actI-orf1 Disruption pKCCpf1 NHEJ S. coelicolor ACT - [106] actI-orf1 Disruption pKCCpf1 NHEJ S. coelicolor ACT Reconstituted NHEJ with ligD and Ku expression redX Disruption pKCCpf1 NHEJ S. coelicolor RED - redX Disruption pKCCpf1 NHEJ S. coelicolor RED Reconstituted NHEJ with ligD and Ku expression redX, redG Deletion pKCCpf1 NHEJ S. coelicolor RED Deletion by reconstituted NHEJ with ligD and Ku expression at two cleavage sites actI-orfI Deletion pKCCpf1 HDR S. coelicolor ACT - redX Deletion pKCCpf1 HDR S. coelicolor RED - actI-orf1, redX Deletion pKCCpf1 HDR S. coelicolor ACT and RED Multiplexed editing SBI00792 Deletion pKCCpf1 HDR S. hygroscopicus Adjacent to 5-oxomilbemycin - FnddCpf1 actI-orf1 CRISPRi pSETddCpf1 - S. coelicolor ACT - redX CRISPRi pSETddCpf1 - S. coelicolor RED - cpkA CRISPRi pSETddCpf1 - S. coelicolor CPK - redX, actI-orf1, and cpkA CRISPRi pSETddCpf1 - S. coelicolor RED, ACT, and CPK Multiplexed editing
-
Table 3 . Different strategy for BGC cloning..
BGC cloning steps Strategies Representative examples Ref Acquisition of the target BGC from the native host genome Genomic library Cosmid, fosmid, BAC, and PAC [135] Cut off both ends of target BGC Restriction: pSBAC [113] Integrase: IR [114] CRISPR: CATCH, mCRISTAR, and CRISPR-TAR [96, 97, 120] PCR amplification DNA assembler [116] Ligation or assembly of the target BGC to the vector In vitro Sticky end ligation: pSBAC [113] Blunt end ligation: ICE [95] Gibson assembly: CATCH and MSGE [89, 96] In vivo Recombination in native host: IR [114] Recombination in E. coli : LLHR[117] Recombination in yeast: TAR, DNA assembler, DiPac, and mCRISTAR [97, 115, 116, 118] Transferring BGC vector to the expression host Conjugation pUWLcre [136] Protoplast transformation pSKC2 and pOJ446 [137] Target secondary metabolite production by expression of the BGC vector Integrative pSET152, pCAP01, and pESAC [118, 138] Replicative pSKC2 and pUWL201 [139]
-
Table 4 . Representative examples of
Streptomyces chassis strain for optimal heterologous expression..Heterologous host Engineering Target genes or regions Deletion method Expressed BGC BGC vector Effect Limitation Ref Streptomyces coelicolor M145BGC deletion and Pleiotropic gene engineering Deletion of four BGCs (ACT, RED, CPK, and CDA) Point mutations of rpoB and rpsL. Homologous recombination by double crossover of the plasmid Shlorampheniocol and congocidine Cosmid Improved production, clean profile of background metabolites Low fitness [104] Streptomyces sp. FR-008BGC deletion Deletion of three BGCs (candicidin, type III PKS, and type I PKS) Homologous recombination by double crossover of the plasmid None None Improved fitness, sporulation, and clean profile of background metabolites Heterologous expression was not tested [124] Streptomyces lividans TK24BGC deletion Deletion of three BGCs (ACT, RED, and CDA) One copy integration of AfsRS by attB integrase Homologous recombination by double crossover of the plasmid Streptothiricins, borrelidin, and linear lipopeptides BAC High-throughput functional genome mining of Streptomyces rocheiLow fitness, laborious screening of BAC libraries [123] Streptomyces lividans TK24BGC deletion Deletion of three BGCs (ACT, RED, and CDA) Additional copies integration of AfsRS by attB integrase Homologous recombination by double crossover of the plasmid Hybrubins BAC High-throughput functional genome mining of Streptomyces variabilis Pathway crosstalk between incompletely deleted RED cluster.Low fitness [140] Streptomyces albus J1074BGC deletion Deletion of fifteen BGCs (Frontalamide, Paulomycin, Geosmin, Lantibiotic, carotenoid, flaviolin, candicidin, antimycin, 2 PKSNRPS, and 4 NRPS) Homologous recombination by double crossover of the plasmid using λ-red system Tunicamycin B2, moenomycin M, griseorhodin A, pyridinopyrone A, bhimamycin A, didesmethylmensacarcin, didemethoxyaranciamycino ne, aloesaponarin II, and cinnamycin, fralnimycin Fosmid and BAC Improved production, clean profile of background metabolites Moenomycin M productivity was reduced. [122] Streptomyces avermitilis Nonessential region deletion and BGC deletion Deletion of 1.48 Mb left arm determined by comparative genomics Homologous recombination by double crossover of the plasmid using λ-red system Cre/loxP system Streptomycin, cephamycin C, and pladienolide Cosmidand BAC Improved production by additional introduction of regulatory gene and optimization of codon usage Low conjugation efficiency [103] Streptomyces avermitilis Nonessential region deletion Deletion of 1.48 Mb left arm and some regions determined by comparative genomics Homologous recombination by double crossover of the plasmid using λ-red system Cre/loxP system Streptomycin, ribostamycin, kasugamycin, pholipomycin, oxytetracycline, resistomycin, pladienolide B, erythromycin A, bafilimycin B1, nemadectin α, aureothin, leptomycin, cephamycin C, holomycin, lactacystin, clavulanic acid, rebeccamycin, novobiocin, chloramphenicol, 2-methylisoborneol, pentalenolactone, amorpha-1,4-diene, taxa-4,11-diene, levopimaradiene, and abietatriene Cosmid and BAC Improved production, fitness, clean profile of background metabolites. Broad precursor capacity (sugar, polyketide, peptide, shikimate, and MVA or MEP) Ribostamycin, oxytetracycline productivity were reduced [125] Streptomyces chattanoogensis L10Nonessential region deletion Deletion of 1.3 Mb and 0.7 Mb nonessential arms determined by comparative genomics and prediction tools Cre/loxP recombination ACT pMM1 Improved production, fitness, ATP, NADPH, transformation efficiency, and genetic stability. Dispersed morphology. 1.3 Mb deleted strain was detrimental due to deletion of some unknown genes [121] Streptomyces albus J1074Pleiotropic gene engineering and BGC deletion Deletion of pfk ,wblA , overexpression of cpk, and deletion of one BGC (paulomycin)Homologous recombination by double crossover of the plasmid using λ-red system ACT Fosmid Improved production, fitness, and NADPH. Undesirable effects might be incurred due to the global change of transcriptome [128]
References
- Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H,
et al . 2008. Genome sequence of the streptomycin-producing microorganismStreptomyces griseus IFO 13350.J. Bacteriol. 190 : 4050-4060. - Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M,
et al . 2011.Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products.Environ. Microbiol. 13 : 391-403. - Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes.
J. Antibiot. (Tokyo) 70 : 865-870. - Lim FY, Sanchez JF, Wang CC, Keller NP. 2012. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi.
Methods Enzymol. 517 : 303-324. - Medema MH, Alam MT, Breitling R, Takano E. 2011. The future of industrial antibiotic production: from random mutagenesis to synthetic biology.
Bioeng. Bugs. 2 : 230-233. - Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E. 2012. Metabolomics methods for the synthetic biology of secondary metabolism.
FEBS Lett. 586 : 2177-2183. - Yang YH, Song E, Lee BR, Kim EJ, Park SH, Kim YG,
et al . 2010. Rapid functional screening ofStreptomyces coelicolor regulators by use of a pH indicator and application to the MarR-like regulator AbsC.Appl. Environ. Microbiol. 76 : 3645-3656. - Myronovskyi M, Luzhetskyy A. 2016. Native and engineered promoters in natural product discovery.
Nat. Prod. Rep. 33 : 1006-1019. - Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes -a review.
Nat. Prod. Rep. 33 : 988-1005. - Harrison J, Studholme DJ. 2014. Recently published
Streptomyces genome sequences.Microb. Biotechnol. 7 : 373-380. - Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD,
et al . 2002. Complete genome sequence of the model actinomyceteStreptomyces coelicolor A3(2).Nature 417 : 141-147. - Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y, Tamura T. 2018. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close
Streptomyces strains.Sci. Rep. 8 : 6888. - Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D. 2008. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and
in silico prediction of novel chemical structures.Nucleic Acids Res. 36 : 6882-6892. - Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH. 2009. Automated genome mining for natural products.
BMC Bioinformatics 10 : 185. - Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL,
et al . 2015. Genomes to natural products prediction informatics for secondary metabolomes (PRISM).Nucleic Acids Res. 43 : 9645-9662. - Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA,
et al . 2017. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification.Nucleic Acids Res. 45 : W36-W41. - Weber T, Kim HU. 2016. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production.
Synth. Syst. Biotechnol. 1 : 69-79. - Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H,
et al . 2018. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in aStreptomyces strain isolated from mangrove sediment.Sci. Rep. 8 : 1594. - Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. 2017. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci. Rep. 7: 44786.
- Zhang G, Yu D, Sang B, Feng J, Han L, Zhang X. 2017. Genome-wide analysis reveals the secondary metabolome in
Streptomyces kanasensis ZX01.Genes (Basel) 8 : 346. - Ansari MZ, Yadav G, Gokhale RS, Mohanty D. 2004. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases.
Nucleic Acids Res. 32 : W405-413. - Kim MS, Cho WJ, Song MC, Park SW, Kim K, Kim E,
et al . 2017. Engineered biosynthesis of milbemycins in the avermectin high-producing strainStreptomyces avermitilis .Microb. Cell Fact. 16 : 9. - Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T,
et al . 2003. Complete genome sequence and comparative analysis of the industrial microorganismStreptomyces avermitilis .Nat. Biotechnol. 21 : 526-531. - Bode HB, Bethe B, Hofs R, Zeeck A. 2002. Big effects from small changes: possible ways to explore nature’s chemical diversity.
Chembiochem. 3 : 619-627. - Marmann A, Aly AH, Lin W, Wang B, Proksch P. 2014. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms.
Mar. Drugs. 12 : 1043-1065. - Baral B, Akhgari A, Metsa-Ketela M. 2018. Activation of microbial secondary metabolic pathways: Avenues and challenges.
Synth. Syst. Biotechnol. 3 : 163-178. - King AA, Chater KF. 1986. The expression of the
Escherichia coli lacZ gene inStreptomyces .J. Gen. Microbiol. 132 : 1739-1752. - Lussier FX, Denis F, Shareck F. 2010. Adaptation of the highly productive T7 expression system to
Streptomyces lividans .Appl. Environ. Microbiol. 76 : 967-970. - Mitra A, Angamuthu K, Jayashree HV, Nagaraja V. 2009. Occurrence, divergence and evolution of intrinsic terminators across eubacteria.
Genomics 94 : 110-116. - Bibb MJ, White J, Ward JM, Janssen GR. 1994. The mRNA for the 23S rRNA methylase encoded by the
ermE gene ofSaccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site.Mol. Microbiol. 14 : 533-545. - Bibb MJ, Janssen GR, Ward JM. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (
ermE ) ofStreptomyces erythraeus .Gene 38 : 215-226. - Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. 2000. Practical
Streptomyces Genetics. John Innes Foundation, Norwich, England. - Wang W, Li X, Wang J, Xiang S, Feng X, Yang K. 2013. An engineered strong promoter for Streptomycetes.
Appl. Environ. Microbiol. 79 : 4484-4492. - Labes G, Bibb M, Wohlleben W. 1997. Isolation and characterization of a strong promoter element from the
Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1 ) of Tn 1696 as reporter.Microbiology 143 : 1503-1512. - Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. 2013. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold.
ACS Synth. Biol. 2 : 662-669. - Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. 2014. Synthetic promoter library for modulation of actinorhodin production in
Streptomyces coelicolor A3(2).PLoS One 9 : e99701. - Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ. 2011. The construction of a library of synthetic promoters revealed some specific features of strong
Streptomyces promoters.Appl. Microbiol. Biotechnol. 90 : 615-623. - Luo Y, Zhang L, Barton KW, Zhao H. 2015. Systematic identification of a panel of strong constitutive promoters from
Streptomyces albus .ACS Synth. Biol. 4 : 1001-1010. - Li S, Wang J, Li X, Yin S, Wang W, Yang K. 2015. Genome-wide identification and evaluation of constitutive promoters in Streptomycetes.
Microb. Cell Fact. 14 : 172. - Murakami T, Holt TG, Thompson CJ. 1989. Thiostrepton-induced gene expression in
Streptomyces lividans .J. Bacteriol. 171 : 1459-1466. - Takano E, White J, Thompson CJ, Bibb MJ. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in
Streptomyces spp.Gene 166 : 133-137. - Huang H, Zheng G, Jiang W, Hu H, Lu Y. 2015. One-step high-efficiency CRISPR/Cas9-mediated genome editing in
Streptomyces .Acta Biochim. Biophys. Sin (Shanghai) 47 : 231-243. - Rodriguez-Garcia A, Combes P, Perez-Redondo R, Smith MC, Smith MC. 2005. Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria
Streptomyces .Nucleic Acids Res. 33 : e87. - Horbal L, Fedorenko V, Luzhetskyy A. 2014. Novel and tightly regulated resorcinol and cumate-inducible expression systems for
Streptomyces and other actinobacteria.Appl. Microbiol. Biotechnol. 98 : 8641-8655. - Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S,
et al . 2004. Hyper-inducible expression system for Streptomycetes.Proc. Natl. Acad. Sci. USA 101 : 14031-14035. - Noguchi Y, Kashiwagi N, Uzura A, Ogino C, Kondo A, Ikeda H,
et al . 2018. Development of a strictly regulated xylose-induced expression system inStreptomyces .Microb. Cell Fact. 17 : 151. - Hindle Z, Smith CP. 1994. Substrate induction and catabolite repression of the
Streptomyces coelicolor glycerol operon are mediated through the GylR protein.Mol. Microbiol. 12 : 737-745. - Ward JM, Janssen GR, Kieser T, Bibb MJ, Buttner MJ, Bibb MJ. 1986. Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for
Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator.Mol. Gen. Genet. 203 : 468-478. - Pulido D, Jimenez A, Salas M, Mellado RP. 1987. A
Bacillus subtilis phage phi 29 transcription terminator is efficiently recognized inStreptomyces lividans .Gene 56 : 277-282. - Cobb RE, Wang Y, Zhao H. 2015. High-efficiency multiplex genome editing of
Streptomyces species using an engineered CRISPR/Cas system.ACS Synth. Biol. 4 : 723-728. - West S, Proudfoot NJ. 2009. Transcriptional termination enhances protein expression in human cells.
Mol. Cell. 33 : 354-364. - Mapendano CK, Lykke-Andersen S, Kjems J, Bertrand E, Jensen TH. 2010. Crosstalk between mRNA 3’ end processing and transcription initiation.
Mol. Cell. 40 : 410-422. - Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P,
et al . 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.Science 352 : aad9822. - Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation.
Nat. Biotechnol. 25 : 117-124. - Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ,
et al . 2016. The dynamic transcriptional and translational landscape of the model antibiotic producerStreptomyces coelicolor A3(2).Nat. Commun. 7 : 11605. - Makrides SC. 1996. Strategies for achieving high-level expression of genes in
Escherichia coli .Microbiol. Rev. 60 : 512-538. - Na D, Lee D. 2010. RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression.
Bioinformatics 26 : 2633-2634. - Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J,
et al . 2015. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products inStreptomyces .Proc. Natl. Acad. Sci. USA 112 : 12181-12186. - Yi JS, Kim MW, Kim M, Jeong Y, Kim EJ, Cho BK,
et al . 2017. A novel approach for gene expression optimization through native promoter and 5’ UTR combinations based on RNA-seq, Ribo-seq, and TSS-seq ofStreptomyces coelicolor .ACS Synth. Biol. 6 : 555-565. - Janssen GR, Bibb MJ. 1990. Tandem promoters,
tsr p1 andtsr p2, direct transcription of the thiostrepton resistance gene (tsr ) ofStreptomyces azureus : transcriptional initiation fromtsr p2 occurs after deletion of the -35 region.Mol. Gen. Genet. 221 : 339-346. - Sohaskey CD, Im H, Nelson AD, Schauer AT. 1992. Tn4556 and luciferase: synergistic tools for visualizing transcription in
Streptomyces .Gene 115 : 67-71. - Ingram C, Brawner M, Youngman P, Westpheling J. 1989.
xylE functions as an efficient reporter gene inStreptomyces spp.: use for the study ofgal P1, a catabolite-controlled promoter.J. Bacteriol. 171 : 6617-6624. - Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A. 2011. Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes.
Appl. Environ Microbiol. 77 : 5370-5383. - Flores FJ, Rincon J, Martin JF. 2003. Characterization of the iron-regulated
desA promoter ofStreptomyces pilosus as a system for controlled gene expression in actinomycetes.Microb. Cell Fact. 2 : 5. - Willemse J, van Wezel GP. 2009. Imaging of
Streptomyces coelicolor A3(2) with reduced autofluorescence reveals a novel stage of FtsZ localization.PLoS One 4 : e4242. - Santos-Beneit F, Errington J. 2017. Green fluorescent protein as a reporter for the spatial and temporal expression of
actIII inStreptomyces coelicolor .Arch. Microbiol. 199 : 875-880. - Nguyen KD, Au-Young SH, Nodwell JR. 2007. Monomeric red fluorescent protein as a reporter for macromolecular localization in
Streptomyces coelicolor .Plasmid 58 : 167-173. - Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG,
et al . 2017. Development of next generation synthetic biology tools for use inStreptomyces venezuelae .ACS Synth. Biol. 6 : 159-166. - Siegl T, Luzhetskyy A. 2012. Actinomycetes genome engineering approaches.
Antonie Van Leeuwenhoek. 102 : 503-516. - Herrmann S, Siegl T, Luzhetska M, Petzke L, Jilg C, Welle E,
et al . 2012. Site-specific recombination strategies for engineering actinomycete genomes.Appl. Environ. Microbiol. 78 : 1804-1812. - Khodakaramian G, Lissenden S, Gust B, Moir L, Hoskisson PA, Chater KF,
et al . 2006. Expression of Cre recombinase during transient phage infection permits efficient marker removal inStreptomyces .Nucleic Acids Res. 34 : e20. - Zelyas N, Tahlan K, Jensen SE. 2009. Use of the native
flp gene to generate in-frame unmarked mutations inStreptomyces spp.Gene 443 : 48-54. - Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S,
et al . 2007. CRISPR provides acquired resistance against viruses in prokaryotes.Science 315 : 1709-1712. - Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N,
et al . 2013. Multiplex genome engineering using CRISPR/Cas systems.Science 339 : 819-823. - DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in
Saccharomyces cerevisiae using CRISPR-Cas systems.Nucleic Acids Res. 41 : 4336-4343. - Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA. 2013. Heritable genome editing in C. elegans via a CRISPR-Cas9 system.
Nat. Methods 10 : 741-743. - Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat. Biotechnol. 31 : 233-239. - Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J,
et al . 2013. Multiplex and homologous recombination-mediated genome editing inArabidopsis andNicotiana benthamiana using guide RNA and Cas9.Nat. Biotechnol. 31 : 688-691. - Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Science 337 : 816-821. - Bibikova M, Beumer K, Trautman JK, Carroll D. 2003. Enhancing gene targeting with designed zinc finger nucleases.
Science 300 : 764. - Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A,
et al . 2010. Targeting DNA double-strand breaks with TAL effector nucleases.Genetics 186 : 757-761. - Rouet P, Smih F, Jasin M. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease.
Mol. Cell Biol. 14 : 8096-8106. - Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9.
Science 346 : 1258096. - Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature 513 : 569-573. - Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system.
Microbiology 155 : 733-740. - Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes.
ACS Synth. Biol. 4 : 1020-1029. - Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E,
et al . 2017. CRISPR-Cas9 strategy for activation of silentStreptomyces biosynthetic gene clusters.Nat. Chem. Biol. 13 : 607-609. - Zeng H, Wen S, Xu W, He Z, Zhai G, Liu Y,
et al . 2015. Highly efficient editing of the actinorhodin polyketide chain length factor gene inStreptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system.Appl. Microbiol. Biotechnol. 99 : 10575-10585. - Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y. 2017. Multiplexed site-specific genome engineering for over-producing bioactive secondary metabolites in actinomycetes.
Metab. Eng. 40 : 80-92. - Meng J, Feng R, Zheng G, Ge M, Mast Y, Wohlleben W,
et al . 2017. Improvement of pristinamycin I (PI) production inStreptomyces pristinaespiralis by metabolic engineering approaches.Synth. Syst. Biotechnol. 2 : 130-136. - Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA,
et al . 2017. Formicamycins, antibacterial polyketides produced byStreptomyces formicae isolated from African Tetraponera plant-ants.Chem. Sci. 8 : 3218-3227. - Wang Y, Cobb RE, Zhao H. 2016. High-efficiency genome editing of
Streptomyces species by an engineered CRISPR/Cas System.Methods Enzymol. 575 : 271-284. - Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L. 2017. Development of a CRISPR/Cas9-mediated gene-editing tool in
Streptomyces rimosus .Microbiology 163 : 1148-1155. - Tao W, Yang A, Deng Z, Sun Y. 2018. CRISPR/Cas9-based editing of
Streptomyces for discovery, characterization, and production of natural products.Front Microbiol. 9 : 1660. - Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z,
et al . 2015. In vitro CRISPR/Cas9 system for efficient targeted DNA editing.MBio 6 : e01714-01715. - Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF. 2015. Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters.
Nat. Commun. 6 : 8101. - Kang HS, Charlop-Powers Z, Brady SF. 2016. Multiplexed CRISPR/Cas9-and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast.
ACS Synth. Biol. 5 : 1002-1010. - Tao W, Yurkovich ME, Wen S, Lebe KE, Samborskyy M, Liu Y,
et al . 2016. A genomics-led approach to deciphering the mechanism of thiotetronate antibiotic biosynthesis.Chem. Sci. 7 : 376-385. - Li L, Wei K, Liu X, Wu Y, Zhensg G, Chen S,
et al . 2019. aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes.Metab. Eng. 52 : 7. - Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP,
et al . 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression.Cell 152 : 1173-1183. - Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z,
et al . 2018. CRISPR/dCas9-mediated multiplex gene repression inStreptomyces .Biotechnol. J. 13 : e1800121. - Xu Z, Wang Y, Chater KF, Ou HY, Xu HH, Deng Z,
et al . 2017. Large-scale transposition mutagenesis ofStreptomyces coelicolor identifies hundreds of genes influencing antibiotic biosynthesis.Appl. Environ. Microbiol. 83 : e02889-02816. - Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H. 2010. Genome-minimized
Streptomyces host for the heterologous expression of secondary metabolism.Proc. Natl. Acad. Sci. USA 107 : 2646-2651. - Gomez-Escribano JP, Bibb MJ. 2011. Engineering
Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters.Microb. Biotechnol. 4 : 207-215. - Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P,
et al . 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.Cell 163 : 759-771. - Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W,
et al . 2018. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression inStreptomyces .Appl. Environ. Microbiol. 84 : e00827-00818. - Xu M, Wright GD. 2018. Heterologous expression-facilitated natural products’ discovery in actinomycetes.
J. Ind. Microbiol. Biotechnol. 46 : 415-431. - Liu R, Deng Z, Liu T. 2018.
Streptomyces species: Ideal chassis for natural product discovery and overproduction.Metab. Eng. 50 : 74-84. - Nah HJ, Pyeon HR, Kang SH, Choi SS, Kim ES. 2017. Cloning and heterologous expression of a large-sized natural product biosynthetic gene cluster in
Streptomyces Species.Front. Microbiol. 8 : 394. - Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters.
Nat. Rev. Microbiol. 13 : 509-523. - Katz M, Hover BM, Brady SF. 2016. Culture-independent discovery of natural products from soil metagenomes.
J. Ind. Microbiol Biotechnol. 43 : 129-141. - Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using
Streptomyces artificial chromosome system.Microb. Cell Fact. 16 : 96. - Nah HJ, Woo MW, Choi SS, Kim ES. 2015. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using
Streptomyces artificial chromosome system.Microb. Cell Fact. 14 : 140. - Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. 2015. Genome engineering and direct cloning of antibiotic gene clusters via phage varphiBT1 integrase-mediated site-specific recombination in
Streptomyces .Sci Rep. 5 : 8740. - Greunke C, Duell ER, Glockle A, Lamm K, Gulder TAM, D’Agostino PM. 2018. Direct pathway cloning (DiPaC) to unlock natural product biosynthetic potential.
Metab. Eng. 47 : 334-345. - Shao Z, Luo Y, Zhao H. 2011. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler.
Mol. Biosyst. 7 : 1056-1059. - Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM,
et al . 2012. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for biopro-specting.Nat. Biotechnol. 30 : 440-446. - Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V,
et al . 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A.Proc. Natl. Acad. Sci. USA 111 : 1957-1962. - Orr-Weaver TL, Szostak JW, Rothstein RJ. 1981. Yeast transformation: a model system for the study of recombination.
Proc. Natl. Acad. Sci USA 78 : 6354-6358. - Lee NC, Larionov V, Kouprina N. 2015. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast.
Nucleic Acids Res. 43 : e55. - Bu QT, Yu P, Wang J, Li ZY, Chen XA, Mao XM,
et al . 2019. Rational construction of genome-reduced and high-efficient industrialStreptomyces chassis based on multiple comparative genomic approaches.Microb. Cell Fact. 18 : 16. - Myronovskyi M, Rosenkranzer B, Nadmid S, Pujic P, Normand P, Luzhetskyy A. 2018. Generation of a cluster-free
Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters.Metab. Eng. 49 : 316-324. - Xu M, Wang Y, Zhao Z, Gao G, Huang SX, Kang Q,
et al . 2016. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library inStreptomyces spp.Appl. Environ. Microbiol. 82 : 5795-5805. - Liu Q, Xiao L, Zhou Y, Deng K, Tan G, Han Y,
et al . 2016. Development ofStreptomyces sp. FR-008 as an emerging chassis.Synth. Syst. Biotechnol. 1 : 207-214. - Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I, Izumikawa M,
et al . 2013. EngineeredStreptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites.ACS Synth. Biol. 2 : 384-396. - Daniels W, Bouvin J, Busche T, Kalinowski J, Bernaerts K. 2016. Finding targets for genome reduction in
Streptomyces lividans TK24 using flux balance analysis.IFAC-PapersOnLine 49 : 252-257. - Toro L, Pinilla L, Avignone-Rossa C, Rios-Estepa R. 2018. An enhanced genome-scale metabolic reconstruction of
Streptomyces clavuligerus identifies novel strain improvement strategies.Bioprocess Biosyst. Eng. 41 : 657-669. - Kallifidas D, Jiang G, Ding Y, Luesch H. 2018. Rational engineering of
Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters.Microb. Cell Fact. 17 : 25. - Machado H, Tuttle RN, Jensen PR. 2017. Omics-based natural product discovery and the lexicon of genome mining.
Curr. Opin. Microbiol. 39 : 136-142. - Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ,
et al . 2015. In vivo genome editing usingStaphylococcus aureus Cas9.Nature 520 : 186-191. - Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM,
et al . 2019. CasX enzymes comprise a distinct family of RNA-guided genome editors.Nature 566 : 218-223. - Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.
Nucleic Acids Res. 41 : 7429-7437. - Siu KH, Chen W. 2019. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function.
Nat. Chem. Biol. 15 : 217-220. - Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N,
et al . 2011. Characterization and manipulation of the pathway-specific late regulator AlpW revealsStreptomyces ambofaciens as a new producer of Kinamycins.J. Bacteriol. 193 : 1142-1153. - Miao V, Coeffet-Legal MF, Brian P, Brost R, Penn J, Whiting A,
et al . 2005. Daptomycin biosynthesis inStreptomyces roseosporus : cloning and analysis of the gene cluster and revision of peptide stereochemistry.Microbiology 151 : 1507-1523. - Myronovskyi M, Rosenkranzer B, Luzhetskyy A. 2014. Iterative marker excision system.
Appl. Microbiol. Biotechnol. 98 : 4557-4570. - Thapa LP, Oh TJ, Lee HC, Liou K, Park JW, Yoon YJ,
et al . 2007. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) inStreptomyces venezuelae YJ003.Appl. Microbiol. Biotechnol. 76 : 1357-1364. - Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. 2013. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster.
PLoS One 8 : e69319. - Steffensky M, Muhlenweg A, Wang ZX, Li SM, Heide L. 2000. Identification of the novobiocin biosynthetic gene cluster of
Streptomyces spheroides NCIB 11891.Antimicrob. Agents Chemother. 44 : 1214-1222. - Zhao Z, Shi T, Xu M, Brock NL, Zhao YL, Wang Y,
et al . 2016. Hybrubins: Bipyrrole tetramic acids obtained by crosstalk between a truncated undecylprodigiosin pathway and heterologous tetramic acid biosynthetic genes.Org. Lett. 18 : 572-575.