전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Jang S, Lee E, Kim W. 2007. Analysis of research and development papers on lettuce in Korea. Korean Journal of Horticultural Science & Technology.25: 295-303.
  2. Oyinlola LA, Obadina AO, Omemu AM, Oyewole OB. 2017. Prevention of microbial hazard on fresh‐cut lettuce through adoption of food safety and hygienic practices by lettuce farmers. Food science & nutrition.5: 67-75.
    Pubmed PMC CrossRef
  3. Wachtel MR, Whitehand LC, Mandrell RE. 2002. Association of Escherichia coli O157: H7 with preharvest leaf lettuce upon exposure to contaminated irrigation water. Journal of food protection.65: 18-25.
    Pubmed CrossRef
  4. Ackers M-L, Mahon BE, Leahy E, Goode B, Damrow T, Hayes PS, et al. 1998. An outbreak of Escherichia coli O157: H7 infections associated with leaf lettuce consumption. Journal of infectious diseases.177: 1588-1593.
    Pubmed CrossRef
  5. Szabo E, Scurrah K, Burrows J. 2000. Survey for psychrotrophic bacterial pathogens in minimally processed lettuce. Letters in applied microbiology.30: 456-460.
    Pubmed CrossRef
  6. Kim YJ, Kim HS, Kim KY, Chon JW, Kim DH, Seo KH. 2016. High Occurrence Rate and Contamination Level of Bacillus cereus in Organic Vegetables on Sale in Retail Markets. Foodborne pathogens and disease.13: 656-660.
    Pubmed CrossRef
  7. Jackson KA, Stroika S, Katz LS, Beal J, Brandt E, Nadon C, et al. 2016. Use of Whole Genome Sequencing and Patient Interviews To Link a Case of Sporadic Listeriosis to Consumption of Prepackaged Lettuce. J Food Prot.79: 806-809.
    Pubmed PMC CrossRef
  8. Heaton JC, Jones K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of applied microbiology.104: 613-626.
    Pubmed CrossRef
  9. Streit WR, Schmitz RA. 2004. Metagenomics–the key to the uncultured microbes. Current opinion in microbiology.7: 492-498.
    Pubmed CrossRef
  10. Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome biology.14: 209.
    Pubmed PMC CrossRef
  11. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology.75: 748-757.
    Pubmed PMC CrossRef
  12. Shade A, McManus PS, Handelsman J. 2013. Unexpected diversity during community succession in the apple flower microbiome. MBio.4: e00602-00612.
    Pubmed PMC CrossRef
  13. Morris CE, and Kinkel LL. 2002. Fifty years of phyllosphere microbiology: significant contributions to research in related fields. pp. 365–375. In Lindow SE, Hecht‐Poinar EI, and Elliott VJ. (eds), Phyllosphere Microbiology.APS Press,St Paul.
    Pubmed
  14. Atamna‐Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, et al. 2012. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental microbiology.14: 140-146.
    Pubmed PMC CrossRef
  15. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM. 2013. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist.198: 264-273.
    Pubmed CrossRef
  16. Berg G, Grube M, Schloter M, Smalla K. 2014. Unraveling the plant microbiome: looking back and future perspectives. Frontiers in microbiology.5.
    CrossRef
  17. van der Heijden MG, Hartmann M. 2016. Networking in the plant microbiome. PLoS biology.14: e1002378.
    Pubmed PMC CrossRef
  18. Naravaneni R, Jamil K. 2005. Rapid detection of food-borne pathogens by using molecular techniques. Journal of medical microbiology.54: 51-54.
    Pubmed CrossRef
  19. Miller RA, Jian J, Beno SM, Wiedmann M, Kovac J. 2018. Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Applied and Environmental Microbiology.84: e02479-02417.
    Pubmed PMC CrossRef
  20. Frentzel H, Thanh MD, Krause G, Appel B, Mader A. 2018. Quantification and differentiation of Bacillus cereus group species in spices and herbs by real-time PCR. Food Control.83: 99-108.
    CrossRef
  21. Wang RF, Cao WW, Cerniglia C. 1997. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. Journal of applied microbiology.83: 727-736.
    Pubmed CrossRef
  22. Dutka-Malen S, Evers S, Courvalin P. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of clinical microbiology.33: 24-27.
    Pubmed PMC
  23. Dong D, Liu W, Li H, Wang Y, Li X, Zou D, et al. 2015. Survey and rapid detection of Klebsiella pneumoniae in clinical samples targeting the rcsA gene in Beijing, China. Frontiers in microbiology.6: 519.
    CrossRef
  24. Spilker T, Coenye T, Vandamme P, LiPuma JJ. 2004. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of clinical microbiology.42: 2074-2079.
    Pubmed PMC CrossRef
  25. Hanshew AS, Mason CJ, Raffa KF, Currie CR. 2013. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. Journal of microbiological methods.95: 149-155.
    Pubmed PMC CrossRef
  26. Kumar PS, Brooker MR, Dowd SE, Camerlengo T. 2011. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PloS one.6: e20956.
    Pubmed PMC CrossRef
  27. Lee M-J, Lee J-J, Chung HY, Choi SH, Kim B-S. 2016. Analysis of microbiota on abalone (Haliotis discus hannai) in South Korea for improved product management. International journal of food microbiology.234: 45-52.
    Pubmed CrossRef
  28. Williams TR, Moyne A-L, Harris LJ, Marco ML. 2013. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PloS one.8: e68642.
    Pubmed PMC CrossRef
  29. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics.27: 2194-2200.
    Pubmed PMC CrossRef
  30. Dehingia M, Talukdar NC, Talukdar R, Reddy N, Mande SS, Deka M, et al. 2015. Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Scientific reports.5: 18563.
    Pubmed PMC CrossRef
  31. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME journal.6: 1812-1822.
    Pubmed PMC CrossRef
  32. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, et al. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences.106: 16428-16433.
    Pubmed PMC CrossRef
  33. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA. 2010. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. The ISME journal.4: 719-728.
    Pubmed CrossRef
  34. Williams TR, Marco ML. 2014. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. Mbio.5: e01564-01514.
    Pubmed PMC CrossRef
  35. Pérez-García A, Romero D, De Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology.22: 187-193.
    Pubmed CrossRef
  36. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. 2011. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial ecology.62: 188-197.
    Pubmed CrossRef
  37. Ibáñez F, Angelini J, Taurian T, Tonelli ML, Fabra A. 2009. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Systematic and applied microbiology.32: 49-55.
    Pubmed CrossRef
  38. Grüter D, Schmid B, Brandl H. 2006. Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. Bmc Microbiology.6: 68.
    Pubmed PMC CrossRef
  39. Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G. 2015. Bacterial networks and co‐occurrence relationships in the lettuce root microbiota. Environmental microbiology.17: 239-252.
    Pubmed CrossRef
  40. Wahab AA. 1975. Phyllosphere microflora of some Egyptian plants. Folia microbiologica.20: 236.
    CrossRef
  41. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A. 2014. The family Oxalobacteraceae.pp. 919-974.InRosenverg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.),The prokaryotes - alphaproteobacteria and betaproteobacteria, Springer, Berlin/Heidelberg.
  42. Pearson MD, Noller HF. 2011. The draft genome of Planococcus donghaensis MPA1U2 reveals nonsporulation pathways controlled by a conserved Spo0A regulon. Journal of bacteriology.193: 6106-6106.
    Pubmed PMC CrossRef
  43. Vishnivetskaya TA, Kathariou S, Tiedje JM. 2009. The Exiguobacterium genus: biodiversity and biogeography. Extremophiles.13: 541-555.
    Pubmed CrossRef
  44. White RA, Grassa CJ, Suttle CA. 2013. Draft genome sequence of Exiguobacterium pavilionensis strain RW-2, with wide thermal, salinity, and pH tolerance, isolated from modern freshwater microbialites. Genome announcements.1: e00597-00513.
    Pubmed PMC CrossRef
  45. Behrendt U, Ulrich A, Schumann P. 2003. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. International journal of systematic and evolutionary microbiology.53: 1461-1469.
    Pubmed CrossRef
  46. Nair J, Singh G, Sekar V. 2002. Isolation and characterization of a novel Bacillus strain from coffee phyllosphere showing antifungal activity. Journal of applied microbiology.93: 772-780.
    Pubmed CrossRef
  47. McSpadden Gardener BB. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology.94: 1252-1258.
    Pubmed CrossRef
  48. Berg G, Eberl L, Hartmann A. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology.7: 1673-1685.
    Pubmed CrossRef
  49. Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L. 2014. Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Research International.65: 156-162.
    CrossRef
  50. Chernin L, Ismailov Z, Haran S, Chet I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Applied and Environmental Microbiology.61: 1720-1726.
    Pubmed PMC
  51. Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of industrial microbiology & biotechnology.34: 635-648.
    Pubmed CrossRef
  52. Karthick Raja Namasivayam S, Sahayaraj K. 1998. Changes in bacterial and actinomycetes diversity of groundnut Phyllosphere with reference to plant age, kinds of leaves and seasons adapting culture dependent method. International journal of microbiology.6:1-6.
  53. Jawad A, Heritage J, Snelling A, Gascoyne-Binzi D, Hawkey P. 1996. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. Journal of clinical microbiology.34: 2881-2887.
    Pubmed PMC
  54. Granum PE, Lund T. 1997. Bacillus cereus and its food poisoning toxins. FEMS microbiology letters.157: 223-228.
    Pubmed CrossRef
  55. Reid KC, Cockerill III FR, Patel R. 2001. Clinical and epidemiological features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum bacteremia: a report of 20 cases. Clinical infectious diseases.32: 1540-1546.
    Pubmed CrossRef
  56. Calbo E, Freixas N, Xercavins M, Riera M, Nicolás C, Monistrol O, et al. 2011. Foodborne nosocomial outbreak of SHV1 and CTX-M-15–producing Klebsiella pneumoniae: epidemiology and control. Clinical Infectious Diseases.52: 743-749.
    Pubmed CrossRef
  57. Sabota JM, Hoppes WL, Ziegler Jr JR, DuPont H, Mathewson J, Rutecki GW. 1998. A new variant of food poisoning: enteroinvasive Klebsiella pneumoniae and Escherichia coli sepsis from a contaminated hamburger. The American journal of gastroenterology.93: 118.
    Pubmed CrossRef
  58. Hirano SS, Upper CD. 1991. Bacterial community dynamics, pp. 271-294. InMicrobial ecology of leaves, Springer, New York, NY.
  59. Tauxe RV. 2002. Emerging foodborne pathogens. International journal of food microbiology.78: 31-41.
    CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2018; 28(8): 1318-1331

Published online August 28, 2018 https://doi.org/10.4014/jmb.1803.03007

Copyright © The Korean Society for Microbiology and Biotechnology.

Analysis of the Microbiota on Lettuce (Lactuca sativa L.) Cultivated in South Korea to Identify Foodborne Pathogens

Yeon-Cheol Yu , Su-Jin Yum , Da-Young Jeon and Hee-Gon Jeong *

Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea

Received: March 8, 2018; Accepted: June 20, 2018

Abstract

Lettuce (Lactuca sativa L.) is a major ingredient used in many food recipes in South Korea.
Lettuce samples were collected during their maximum production period between April
and July in order to investigate the microbiota of lettuce during different seasons. 16S
rRNA gene-based sequencing was conducted using Illumina MiSeq, and real-time PCR was
performed for quantification. The number of total bacterial was greater in lettuce collected
in July than in that collected in April, albeit with reduced diversity. The bacterial
compositions varied according to the site and season of sample collection. Potential
pathogenic species such as Bacillus spp., Enterococcus casseliflavus, Klebsiella pneumoniae, and
Pseudomonas aeruginosa showed season-specific differences. Results of the network cooccurrence
analysis with core genera correlations showed characteristics of bacterial
species in lettuce, and provided clues regarding the role of different microbes, including
potential pathogens, in this microbiota. Although further studies are needed to determine
the specific effects of regional and seasonal characteristics on the lettuce microbiota, our
results imply that the 16S rRNA gene-based sequencing approach can be used to detect
pathogenic bacteria in lettuce.

Keywords: Lettuce, foodborne illness, 16S rRNA gene, bacterial diversity

References

  1. Jang S, Lee E, Kim W. 2007. Analysis of research and development papers on lettuce in Korea. Korean Journal of Horticultural Science & Technology.25: 295-303.
  2. Oyinlola LA, Obadina AO, Omemu AM, Oyewole OB. 2017. Prevention of microbial hazard on fresh‐cut lettuce through adoption of food safety and hygienic practices by lettuce farmers. Food science & nutrition.5: 67-75.
    Pubmed KoreaMed CrossRef
  3. Wachtel MR, Whitehand LC, Mandrell RE. 2002. Association of Escherichia coli O157: H7 with preharvest leaf lettuce upon exposure to contaminated irrigation water. Journal of food protection.65: 18-25.
    Pubmed CrossRef
  4. Ackers M-L, Mahon BE, Leahy E, Goode B, Damrow T, Hayes PS, et al. 1998. An outbreak of Escherichia coli O157: H7 infections associated with leaf lettuce consumption. Journal of infectious diseases.177: 1588-1593.
    Pubmed CrossRef
  5. Szabo E, Scurrah K, Burrows J. 2000. Survey for psychrotrophic bacterial pathogens in minimally processed lettuce. Letters in applied microbiology.30: 456-460.
    Pubmed CrossRef
  6. Kim YJ, Kim HS, Kim KY, Chon JW, Kim DH, Seo KH. 2016. High Occurrence Rate and Contamination Level of Bacillus cereus in Organic Vegetables on Sale in Retail Markets. Foodborne pathogens and disease.13: 656-660.
    Pubmed CrossRef
  7. Jackson KA, Stroika S, Katz LS, Beal J, Brandt E, Nadon C, et al. 2016. Use of Whole Genome Sequencing and Patient Interviews To Link a Case of Sporadic Listeriosis to Consumption of Prepackaged Lettuce. J Food Prot.79: 806-809.
    Pubmed KoreaMed CrossRef
  8. Heaton JC, Jones K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of applied microbiology.104: 613-626.
    Pubmed CrossRef
  9. Streit WR, Schmitz RA. 2004. Metagenomics–the key to the uncultured microbes. Current opinion in microbiology.7: 492-498.
    Pubmed CrossRef
  10. Turner TR, James EK, Poole PS. 2013. The plant microbiome. Genome biology.14: 209.
    Pubmed KoreaMed CrossRef
  11. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology.75: 748-757.
    Pubmed KoreaMed CrossRef
  12. Shade A, McManus PS, Handelsman J. 2013. Unexpected diversity during community succession in the apple flower microbiome. MBio.4: e00602-00612.
    Pubmed KoreaMed CrossRef
  13. Morris CE, and Kinkel LL. 2002. Fifty years of phyllosphere microbiology: significant contributions to research in related fields. pp. 365–375. In Lindow SE, Hecht‐Poinar EI, and Elliott VJ. (eds), Phyllosphere Microbiology.APS Press,St Paul.
    Pubmed
  14. Atamna‐Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, et al. 2012. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environmental microbiology.14: 140-146.
    Pubmed KoreaMed CrossRef
  15. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM. 2013. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist.198: 264-273.
    Pubmed CrossRef
  16. Berg G, Grube M, Schloter M, Smalla K. 2014. Unraveling the plant microbiome: looking back and future perspectives. Frontiers in microbiology.5.
    CrossRef
  17. van der Heijden MG, Hartmann M. 2016. Networking in the plant microbiome. PLoS biology.14: e1002378.
    Pubmed KoreaMed CrossRef
  18. Naravaneni R, Jamil K. 2005. Rapid detection of food-borne pathogens by using molecular techniques. Journal of medical microbiology.54: 51-54.
    Pubmed CrossRef
  19. Miller RA, Jian J, Beno SM, Wiedmann M, Kovac J. 2018. Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Applied and Environmental Microbiology.84: e02479-02417.
    Pubmed KoreaMed CrossRef
  20. Frentzel H, Thanh MD, Krause G, Appel B, Mader A. 2018. Quantification and differentiation of Bacillus cereus group species in spices and herbs by real-time PCR. Food Control.83: 99-108.
    CrossRef
  21. Wang RF, Cao WW, Cerniglia C. 1997. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. Journal of applied microbiology.83: 727-736.
    Pubmed CrossRef
  22. Dutka-Malen S, Evers S, Courvalin P. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of clinical microbiology.33: 24-27.
    Pubmed KoreaMed
  23. Dong D, Liu W, Li H, Wang Y, Li X, Zou D, et al. 2015. Survey and rapid detection of Klebsiella pneumoniae in clinical samples targeting the rcsA gene in Beijing, China. Frontiers in microbiology.6: 519.
    CrossRef
  24. Spilker T, Coenye T, Vandamme P, LiPuma JJ. 2004. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. Journal of clinical microbiology.42: 2074-2079.
    Pubmed KoreaMed CrossRef
  25. Hanshew AS, Mason CJ, Raffa KF, Currie CR. 2013. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. Journal of microbiological methods.95: 149-155.
    Pubmed KoreaMed CrossRef
  26. Kumar PS, Brooker MR, Dowd SE, Camerlengo T. 2011. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PloS one.6: e20956.
    Pubmed KoreaMed CrossRef
  27. Lee M-J, Lee J-J, Chung HY, Choi SH, Kim B-S. 2016. Analysis of microbiota on abalone (Haliotis discus hannai) in South Korea for improved product management. International journal of food microbiology.234: 45-52.
    Pubmed CrossRef
  28. Williams TR, Moyne A-L, Harris LJ, Marco ML. 2013. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PloS one.8: e68642.
    Pubmed KoreaMed CrossRef
  29. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics.27: 2194-2200.
    Pubmed KoreaMed CrossRef
  30. Dehingia M, Talukdar NC, Talukdar R, Reddy N, Mande SS, Deka M, et al. 2015. Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Scientific reports.5: 18563.
    Pubmed KoreaMed CrossRef
  31. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. The ISME journal.6: 1812-1822.
    Pubmed KoreaMed CrossRef
  32. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, et al. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proceedings of the National Academy of Sciences.106: 16428-16433.
    Pubmed KoreaMed CrossRef
  33. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA. 2010. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. The ISME journal.4: 719-728.
    Pubmed CrossRef
  34. Williams TR, Marco ML. 2014. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. Mbio.5: e01564-01514.
    Pubmed KoreaMed CrossRef
  35. Pérez-García A, Romero D, De Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology.22: 187-193.
    Pubmed CrossRef
  36. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A. 2011. Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial ecology.62: 188-197.
    Pubmed CrossRef
  37. Ibáñez F, Angelini J, Taurian T, Tonelli ML, Fabra A. 2009. Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Systematic and applied microbiology.32: 49-55.
    Pubmed CrossRef
  38. Grüter D, Schmid B, Brandl H. 2006. Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity. Bmc Microbiology.6: 68.
    Pubmed KoreaMed CrossRef
  39. Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G. 2015. Bacterial networks and co‐occurrence relationships in the lettuce root microbiota. Environmental microbiology.17: 239-252.
    Pubmed CrossRef
  40. Wahab AA. 1975. Phyllosphere microflora of some Egyptian plants. Folia microbiologica.20: 236.
    CrossRef
  41. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M, Hartmann A. 2014. The family Oxalobacteraceae.pp. 919-974.InRosenverg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.),The prokaryotes - alphaproteobacteria and betaproteobacteria, Springer, Berlin/Heidelberg.
  42. Pearson MD, Noller HF. 2011. The draft genome of Planococcus donghaensis MPA1U2 reveals nonsporulation pathways controlled by a conserved Spo0A regulon. Journal of bacteriology.193: 6106-6106.
    Pubmed KoreaMed CrossRef
  43. Vishnivetskaya TA, Kathariou S, Tiedje JM. 2009. The Exiguobacterium genus: biodiversity and biogeography. Extremophiles.13: 541-555.
    Pubmed CrossRef
  44. White RA, Grassa CJ, Suttle CA. 2013. Draft genome sequence of Exiguobacterium pavilionensis strain RW-2, with wide thermal, salinity, and pH tolerance, isolated from modern freshwater microbialites. Genome announcements.1: e00597-00513.
    Pubmed KoreaMed CrossRef
  45. Behrendt U, Ulrich A, Schumann P. 2003. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. International journal of systematic and evolutionary microbiology.53: 1461-1469.
    Pubmed CrossRef
  46. Nair J, Singh G, Sekar V. 2002. Isolation and characterization of a novel Bacillus strain from coffee phyllosphere showing antifungal activity. Journal of applied microbiology.93: 772-780.
    Pubmed CrossRef
  47. McSpadden Gardener BB. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology.94: 1252-1258.
    Pubmed CrossRef
  48. Berg G, Eberl L, Hartmann A. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology.7: 1673-1685.
    Pubmed CrossRef
  49. Sutthiwong N, Fouillaud M, Valla A, Caro Y, Dufossé L. 2014. Bacteria belonging to the extremely versatile genus Arthrobacter as novel source of natural pigments with extended hue range. Food Research International.65: 156-162.
    CrossRef
  50. Chernin L, Ismailov Z, Haran S, Chet I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Applied and Environmental Microbiology.61: 1720-1726.
    Pubmed KoreaMed
  51. Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of industrial microbiology & biotechnology.34: 635-648.
    Pubmed CrossRef
  52. Karthick Raja Namasivayam S, Sahayaraj K. 1998. Changes in bacterial and actinomycetes diversity of groundnut Phyllosphere with reference to plant age, kinds of leaves and seasons adapting culture dependent method. International journal of microbiology.6:1-6.
  53. Jawad A, Heritage J, Snelling A, Gascoyne-Binzi D, Hawkey P. 1996. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. Journal of clinical microbiology.34: 2881-2887.
    Pubmed KoreaMed
  54. Granum PE, Lund T. 1997. Bacillus cereus and its food poisoning toxins. FEMS microbiology letters.157: 223-228.
    Pubmed CrossRef
  55. Reid KC, Cockerill III FR, Patel R. 2001. Clinical and epidemiological features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum bacteremia: a report of 20 cases. Clinical infectious diseases.32: 1540-1546.
    Pubmed CrossRef
  56. Calbo E, Freixas N, Xercavins M, Riera M, Nicolás C, Monistrol O, et al. 2011. Foodborne nosocomial outbreak of SHV1 and CTX-M-15–producing Klebsiella pneumoniae: epidemiology and control. Clinical Infectious Diseases.52: 743-749.
    Pubmed CrossRef
  57. Sabota JM, Hoppes WL, Ziegler Jr JR, DuPont H, Mathewson J, Rutecki GW. 1998. A new variant of food poisoning: enteroinvasive Klebsiella pneumoniae and Escherichia coli sepsis from a contaminated hamburger. The American journal of gastroenterology.93: 118.
    Pubmed CrossRef
  58. Hirano SS, Upper CD. 1991. Bacterial community dynamics, pp. 271-294. InMicrobial ecology of leaves, Springer, New York, NY.
  59. Tauxe RV. 2002. Emerging foodborne pathogens. International journal of food microbiology.78: 31-41.
    CrossRef