전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G. 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556.
    Pubmed CrossRef
  2. Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336.
    Pubmed CrossRef
  3. Rashid N, Rehman MSU, Han J-I. 2013. Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75: 101-107.
    CrossRef
  4. Li K, Liu S, Liu X. 2014. An overview of algae bioethanol production. Int. J. Energy Res. 38: 965-977.
    CrossRef
  5. Kim KH, Choi IS, Kim HM, Wi SG, Bae H-J. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour. Technol. 153: 47-54.
    Pubmed CrossRef
  6. Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A. 2013. Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind. Crops Prod. 49: 580-585.
    CrossRef
  7. Nguyen TH, Sunwoo IY, Kim S-K. 2016. Evaluation of galactose adapted yeasts for bioethanol fermentation from Kappaphycus alvarezii hydrolyzates. J. Microbiol. Biotechnol. 26: 1259-1266.
    Pubmed CrossRef
  8. Wu C-H, Chien W-C, Chou H-K, Yang J, Lin H. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253.
    Pubmed CrossRef
  9. Choi S-J, Lee S-M, Lee J-H. 2012. Production of bio-ethanol from red algae by acid hydrolysis and enzyme treatment. Appl. Chem. Eng. 23: 279-283.
  10. Jard G, Dumas C, Delgenes J, Marfaing H, Sialve B, Steyer J, Carrère H. 2013. Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 79: 253-258.
    CrossRef
  11. Talukder MMR, Das P, Wu JC. 2012. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Eng. J. 68: 109-113.
    CrossRef
  12. Talukder MMR, Das P, Wu JC. 2014. Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 91: 53-57.
    CrossRef
  13. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116.
    CrossRef
  14. Niizawa I, Heinrich JM, Irazoqui HA. 2014. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochem. Eng. J. 90: 214-223.
    CrossRef
  15. Kothari R, Pathak VV, Kumar V, Singh D. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116:466-470.
    Pubmed CrossRef
  16. Borines MG, de Leon RL, Cuello JL. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22-29.
    Pubmed CrossRef
  17. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, et al. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185.
    Pubmed CrossRef
  18. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156.
    Pubmed CrossRef
  19. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.
    Pubmed CrossRef
  20. Wells RD, Hall J, Clayton J, Champion P, Payne G, Hofstra D. 1999. The rise and fall of water net (Hydrodictyon reticulatum) in New Zealand. J. Aquat. Plant Manag. 37: 49-55.
  21. Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466-7469.
    Pubmed CrossRef
  22. Tan IS, Lam MK, Lee KT. 2013. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym. 94: 561-566.
    Pubmed CrossRef
  23. Chou J-Y, Chang J-S, Wang W-L. 2006. Hydrodictyon reticulatum (Hydrodictyaceae, Chlorophyta), a new recorded genus and species of freshwater macroalga in Taiwan. Bio Formosa 41: 1-8.
  24. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10.
    CrossRef
  25. Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489.
    CrossRef
  26. Yamada T, Sakaguchi K. 1982. Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13.
    CrossRef
  27. Kim JH, Kim SK, Ko EH, Kim JC, Kim JS. 2013. Hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga water-net (Hydrodictyon reticulatum). Korean J. Weed Sci. 2: 176-183.
    CrossRef
  28. Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, et al. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulatum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour. Technol. 110: 552-559.
    Pubmed CrossRef
  29. Nguyen CM, Nguyen TN, Choi GJ, Choi YH, Jang KS, Park Y-J, et al. 2014. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour. Technol. 151:227-235.
    Pubmed CrossRef
  30. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydraterich microalgae biomass as feedstock. Bioresour. Technol. 135:191-198.
    Pubmed CrossRef
  31. Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, et al. 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol – comparison of five pretreatment technologies. Bioresour. Technol. 140: 36-42.
    Pubmed CrossRef
  32. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.
    CrossRef
  33. Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625.
    Pubmed CrossRef
  34. King FG, Hossain MA. 1982. The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotech. Lett. 4: 531-536.
    CrossRef
  35. Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401.
    CrossRef
  36. Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.
    CrossRef
  37. Pfeifer P, Bonn G, Bobleter O. 1984. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W34. Biotechnol. Lett. 6: 541-546.
    CrossRef
  38. Taherzadeh M, Gustafsson L, Niklasson C, Lidén G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.
    Pubmed CrossRef
  39. Ghaffour N, Missimer TM, Amy GL. 2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309: 197-207.
    CrossRef
  40. Kim S-K, Hwang H-J, Kim J-D, Ko E-H, Choi J-S, Kim J-S. 2012. Usefulness of freshwater alga water-net (Hydrodictyon reticulatum) as resources for production of fermentable sugars. Korean J. Weed Sci. 32: 85-97.
    CrossRef
  41. John RP, Anisha G, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.
    Pubmed CrossRef
  42. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J. 2015. Macroalgae in biofuel production. Phycol. Res. 63: 1-18.
    CrossRef
  43. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.
    CrossRef
  44. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. 2014. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem. Eng. J. 90: 103-113.
    CrossRef
  45. Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.
    CrossRef
  46. Scholz MJ, Riley MR, Cuello JL. 2013. Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48: 59-65.
    CrossRef
  47. Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G. 2013. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 127: 422-428.
    Pubmed CrossRef
  48. Ho S-H, Li P-J, Liu C-C, Chang J-S. 2013. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 145: 142-149.
    Pubmed CrossRef
  49. Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RA, Min B, Song H, et al. 2011. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ. Environ. Sci. 4: 3513-3520.
    CrossRef
  50. Harun R, Danquah MK. 2011. Influence of acid pretreatment on microalgal biomass for bioethanol production. Process Biochem. 46: 304-309.
    CrossRef
  51. Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19:161-166.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(6): 1112-1119

Published online June 28, 2017 https://doi.org/10.4014/jmb.1607.07066

Copyright © The Korean Society for Microbiology and Biotechnology.

Bioethanol Production from Hydrodictyon reticulatum by Fed-Batch Fermentation Using Saccharomyces cerevisiae KCTC7017

Seul Ki Kim 1, Cuong Mai Nguyen 1, 2, Eun Hye Ko 1, In-Chul Kim 1, Jin-Seog Kim 1 and Jin-Cheol Kim 1, 3*

1Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea, 2Department of Phytochemistry, Vietnam Institute of Industrial Chemistry, Hoan Kiem, Hanoi 10999, Vietnam, 3Division of Applied Bioscience and Biotechnology, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea

Received: July 28, 2016; Accepted: March 31, 2017

Abstract

The aim of this study was to develop a potential process for bioethanol production from
Hydrodictyon reticulatum (HR), a filamentous freshwater alga, using Saccharomyces cerevisiae
(KCTC7017). From the sugar solutions prepared by the four different hydrolysis methods,
bioethanol production ranged from 11.0 g/100 g dried material (acid hydrolysis) to 22.3 g/
100 g dried material (enzymatic hydrolysis, EH). Bioethanol was fermented from a highly
concentrated sugar solution obtained by a decompression-mediated (vacuum) enrichment
method (VE). As the results, ethanol was more efficiently produced from HR when sugar
solutions were concentrated by VE following EH (EH/VE). Using multiple feeding of the
sugar solution prepared by EH/VE from HR, ethanol reached up to a concentration of 54.3 g/l,
corresponding to 24.9 g/100 g dried material, which attained the economic level of product
concentration (approximately 5%). The results indicate that by using HR, it is feasible to
establish a bioethanol production process, which is effective for using microalgae as the raw
material for ethanol production.

Keywords: Bioethanol, fermentation, freshwater algae, Hydrodictyon reticulatum, hydrolysis

References

  1. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G. 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556.
    Pubmed CrossRef
  2. Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336.
    Pubmed CrossRef
  3. Rashid N, Rehman MSU, Han J-I. 2013. Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75: 101-107.
    CrossRef
  4. Li K, Liu S, Liu X. 2014. An overview of algae bioethanol production. Int. J. Energy Res. 38: 965-977.
    CrossRef
  5. Kim KH, Choi IS, Kim HM, Wi SG, Bae H-J. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour. Technol. 153: 47-54.
    Pubmed CrossRef
  6. Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A. 2013. Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind. Crops Prod. 49: 580-585.
    CrossRef
  7. Nguyen TH, Sunwoo IY, Kim S-K. 2016. Evaluation of galactose adapted yeasts for bioethanol fermentation from Kappaphycus alvarezii hydrolyzates. J. Microbiol. Biotechnol. 26: 1259-1266.
    Pubmed CrossRef
  8. Wu C-H, Chien W-C, Chou H-K, Yang J, Lin H. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253.
    Pubmed CrossRef
  9. Choi S-J, Lee S-M, Lee J-H. 2012. Production of bio-ethanol from red algae by acid hydrolysis and enzyme treatment. Appl. Chem. Eng. 23: 279-283.
  10. Jard G, Dumas C, Delgenes J, Marfaing H, Sialve B, Steyer J, Carrère H. 2013. Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 79: 253-258.
    CrossRef
  11. Talukder MMR, Das P, Wu JC. 2012. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Eng. J. 68: 109-113.
    CrossRef
  12. Talukder MMR, Das P, Wu JC. 2014. Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 91: 53-57.
    CrossRef
  13. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116.
    CrossRef
  14. Niizawa I, Heinrich JM, Irazoqui HA. 2014. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochem. Eng. J. 90: 214-223.
    CrossRef
  15. Kothari R, Pathak VV, Kumar V, Singh D. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116:466-470.
    Pubmed CrossRef
  16. Borines MG, de Leon RL, Cuello JL. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22-29.
    Pubmed CrossRef
  17. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, et al. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185.
    Pubmed CrossRef
  18. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156.
    Pubmed CrossRef
  19. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.
    Pubmed CrossRef
  20. Wells RD, Hall J, Clayton J, Champion P, Payne G, Hofstra D. 1999. The rise and fall of water net (Hydrodictyon reticulatum) in New Zealand. J. Aquat. Plant Manag. 37: 49-55.
  21. Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466-7469.
    Pubmed CrossRef
  22. Tan IS, Lam MK, Lee KT. 2013. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym. 94: 561-566.
    Pubmed CrossRef
  23. Chou J-Y, Chang J-S, Wang W-L. 2006. Hydrodictyon reticulatum (Hydrodictyaceae, Chlorophyta), a new recorded genus and species of freshwater macroalga in Taiwan. Bio Formosa 41: 1-8.
  24. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10.
    CrossRef
  25. Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489.
    CrossRef
  26. Yamada T, Sakaguchi K. 1982. Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13.
    CrossRef
  27. Kim JH, Kim SK, Ko EH, Kim JC, Kim JS. 2013. Hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga water-net (Hydrodictyon reticulatum). Korean J. Weed Sci. 2: 176-183.
    CrossRef
  28. Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, et al. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulatum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour. Technol. 110: 552-559.
    Pubmed CrossRef
  29. Nguyen CM, Nguyen TN, Choi GJ, Choi YH, Jang KS, Park Y-J, et al. 2014. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour. Technol. 151:227-235.
    Pubmed CrossRef
  30. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydraterich microalgae biomass as feedstock. Bioresour. Technol. 135:191-198.
    Pubmed CrossRef
  31. Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, et al. 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol – comparison of five pretreatment technologies. Bioresour. Technol. 140: 36-42.
    Pubmed CrossRef
  32. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.
    CrossRef
  33. Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625.
    Pubmed CrossRef
  34. King FG, Hossain MA. 1982. The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotech. Lett. 4: 531-536.
    CrossRef
  35. Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401.
    CrossRef
  36. Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.
    CrossRef
  37. Pfeifer P, Bonn G, Bobleter O. 1984. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W34. Biotechnol. Lett. 6: 541-546.
    CrossRef
  38. Taherzadeh M, Gustafsson L, Niklasson C, Lidén G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.
    Pubmed CrossRef
  39. Ghaffour N, Missimer TM, Amy GL. 2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309: 197-207.
    CrossRef
  40. Kim S-K, Hwang H-J, Kim J-D, Ko E-H, Choi J-S, Kim J-S. 2012. Usefulness of freshwater alga water-net (Hydrodictyon reticulatum) as resources for production of fermentable sugars. Korean J. Weed Sci. 32: 85-97.
    CrossRef
  41. John RP, Anisha G, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.
    Pubmed CrossRef
  42. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J. 2015. Macroalgae in biofuel production. Phycol. Res. 63: 1-18.
    CrossRef
  43. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.
    CrossRef
  44. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. 2014. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem. Eng. J. 90: 103-113.
    CrossRef
  45. Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.
    CrossRef
  46. Scholz MJ, Riley MR, Cuello JL. 2013. Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48: 59-65.
    CrossRef
  47. Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G. 2013. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 127: 422-428.
    Pubmed CrossRef
  48. Ho S-H, Li P-J, Liu C-C, Chang J-S. 2013. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 145: 142-149.
    Pubmed CrossRef
  49. Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RA, Min B, Song H, et al. 2011. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ. Environ. Sci. 4: 3513-3520.
    CrossRef
  50. Harun R, Danquah MK. 2011. Influence of acid pretreatment on microalgal biomass for bioethanol production. Process Biochem. 46: 304-309.
    CrossRef
  51. Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19:161-166.
    Pubmed CrossRef