Articles Service
Research article
Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity
1Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea, 2Department of Agrofood Resources, National Institute of Agricultural Science, RDA, Wanju 54875, Republic of Korea, 3School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea
J. Microbiol. Biotechnol. 2017; 27(12): 2228-2236
Published December 28, 2017 https://doi.org/10.4014/jmb.1710.10001
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
References
- McKinlay SM, Brambilla DJ, Posner JG. 1992. The normal menopause transition. Maturitas 14: 103-115.
- Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, et al. 1988. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241: 84-86.
- Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson JB, Clarke AC. 1976. Long-term prevention of postmenopausal osteoporosis by oestrogen. Evidence for an increased bone mass after delayed onset of oestrogen treatment. Lancet 1: 1038-1041.
- Riggs BL, Khosla S, Melton LJ 3rd. 1998. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13: 763-773.
- Paganini-Hill A, Henderson VW. 1994. Estrogen deficiency and risk of Alzheimer’s disease in women. Am. J. Epidemiol. 140: 256-261.
- Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, et al. 2005. Brain estrogen deficiency accelerates Aβ plaque formation in an Alzheimer’s disease animal model. Proc. Natl. Acad. Sci. USA 102: 19198-19203.
- Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW. 2001. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int. J. Obes. Relat. Metab. Disord. 25: 1680-1688.
- Lovejoy JC, Champagne CM, d e Jonge L, X ie H , Smith SR. 2008. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32: 949-958.
- Shimizu H, Shimomura Y, Nakanishi Y, Futawatari T, Ohtani K, Sato N, et al. 1997. Estrogen increases in vivo leptin production in rats and human subjects. J. Endocrinol. 154: 285-292.
- Carr MC. 2003. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 88: 2404-2411.
- Dosi R, Bhatt N, Shah P, Patell R. 2014. Cardiovascular disease and menopause. J. Clin. Diagn. Res. 8: 62-64.
- Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M, Manson JE, et al. 1999. Age at natural menopause and risk of cardiovascular disease. Arch. Intern. Med. 159: 1061-1066.
- Ramezani Tehrani F, Behboudi-Gandevani S, Ghanbarian A, Azizi F. 2014. Effect of menopause on cardiovascular disease and its risk factors: a 9-year follow-up study. Climacteric 17: 164-172.
- Coylewright M, Reckelhoff JF, Ouyang P. 2008. Menopause and hypertension: an age-old debate. Hypertension 51: 952-959.
- Rappelli A. 2 002. H y pertension a nd o besity after t he menopause. J. Hypertens. Suppl. 20: S26-S28.
- Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. 2002. Postmenopausal hormone replacement therapy: scientific review. JAMA 288: 872-881.
- Hummelen R, Macklaim JM, Bisanz JE, Hammond JA, McMillan A, Vongsa R, et al. 2011. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One 6: e26602.
- Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. 2014. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 21: 450-458.
- Cauci S, Driussi S, De Santo D, Penacchioni P, Iannicelli T, Lanzafame P, et al. 2002. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J. Clin. Microbiol. 40: 2147-2152.
- Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, et al. 2014. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 99: 4632-4640.
- Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. 2012. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 10: 253.
- Menon R, Watson SE, Thomas LN, Allred CD, Dabney A, Azcarate-Peril MA, et al. 2013. Diet complexity and estrogen receptor beta status affect the composition of the murine intestinal microbiota. Appl. Environ. Microbiol. 79: 5763-5773.
- Kwa M, Plottel CS, Blaser MJ, Adams S. 2016. The intestinal microbiome and estrogen receptor-positive female breast cancer. J. Natl. Cancer Inst. 108: djw029.
- Brahe L K, L e Chatelier E, P rifti E, P ons N, K ennedy S, Hansen T, et al. 2015. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr. Diabetes 5: e159.
- Lawley B, Tannock GW. 2017. Analysis of 16S rRNA gene amplicon sequences using the QIIME software package. Methods Mol. Biol. 1537: 153-163.
- DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072.
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.
- Hamady M, Lozupone C, Knight R. 2010. Fast UniFrac:facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4: 17-27.
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.
- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29.
- Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45: D353-D361.
- The R project for statistical computing. Available from http://www.r-project.org. Accessed 18 September 2017.
- Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382.
- Cox-York KA, Sheflin AM, Foster MT, Gentile CL, Kahl A, Koch LG, et al. 2015. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiol. Rep. 3: e12488.
- Keenan MJ, Janes M, Robert J, Martin RJ, Raggio AM, McCutcheon KL, et al. 2013. Resistant starch from high amy lose m aize (HAM-RS2) r educes body fat a nd i ncreases gut bacteria in ovariectomized (OVX) rats. Obesity 21: 981-984.
- Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137: 1716-1724.e1-2.
- Turnbaugh PJ, Baeckhed F, Fulton L, Gordon JI. 2008. Dietinduced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213-223.
- Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.
- Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, et al. 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci. Rep. 6: 32484.
- Liu TW, Park YM, Holscher HD, Padilla J, Scroggins RJ, Welly R, et al. 2015. Physical activity differentially affects the cecal microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity. PLoS One 10: e0136150.
- Krebs CJ, Jarvis ED, Pfaff DW. 1999. The 70-kDa heat shock cognate protein (Hsc73) gene is enhanced by ovarian hormones in the ventromedial hypothalamus. Proc. Natl. Acad. Sci. USA 96: 1686-1691.
- Sarvari M, Kallo I, Hrabovszky E, Solymosi N, Liposits Z. 2014. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One 9: e88540.
- Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071.
- Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63: 727-735.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2017; 27(12): 2228-2236
Published online December 28, 2017 https://doi.org/10.4014/jmb.1710.10001
Copyright © The Korean Society for Microbiology and Biotechnology.
Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity
Sungmi Choi 1, Yu-Jin Hwang 2, Min-Jeong Shin 1, 3 and Hana Yi 1, 3*
1Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea, 2Department of Agrofood Resources, National Institute of Agricultural Science, RDA, Wanju 54875, Republic of Korea, 3School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea
Abstract
During menopausal transition, the imbalance of estrogen causes body weight gain. Although
gut microbiome dysbiosis has been reported in postmenopausal obesity, it is not clear whether
there is any difference in the microbiome profile between dietary-induced obesity and
postmenopausal obesity. Therefore, in this study, we analyzed intestinal samples from
ovariectomized mice and compared them with those of mice with high-fat diet-induced
obesity. To further evaluate the presence of menopause-specific bacteria-gene interactions, we
also analyzed the liver transcriptome. Investigation of the 16S rRNA V3-V4 region amplicon
sequence profile revealed that menopausal obesity and dietary obesity resulted in similar gut
microbiome structures. However, Bifidobacterium animalis was exclusively observed in the
ovariectomized mice, which indicated that menopausal obesity resulted in a different
intestinal microbiome than dietary obesity. Additionally, several bacterial taxa (Dorea species,
Akkermansia muciniphila, and Desulfovibrio species) were found when the ovariectomized mice
were treated with a high-fat diet. A significant correlation between the above-mentioned
menopause-specific bacteria and the genes for female hormone metabolism was also observed,
suggesting the possibility of bacteria-gene interactions in menopausal obesity. Our findings
revealed the characteristics of the intestinal microbiome in menopausal obesity in the mouse
model, which is very similar to the dietary obesity microbiome but having its own diagnostic
bacteria.
Keywords: Microbiome, menopause, obesity, ovariectomy
References
- McKinlay SM, Brambilla DJ, Posner JG. 1992. The normal menopause transition. Maturitas 14: 103-115.
- Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, et al. 1988. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241: 84-86.
- Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson JB, Clarke AC. 1976. Long-term prevention of postmenopausal osteoporosis by oestrogen. Evidence for an increased bone mass after delayed onset of oestrogen treatment. Lancet 1: 1038-1041.
- Riggs BL, Khosla S, Melton LJ 3rd. 1998. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Miner. Res. 13: 763-773.
- Paganini-Hill A, Henderson VW. 1994. Estrogen deficiency and risk of Alzheimer’s disease in women. Am. J. Epidemiol. 140: 256-261.
- Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, et al. 2005. Brain estrogen deficiency accelerates Aβ plaque formation in an Alzheimer’s disease animal model. Proc. Natl. Acad. Sci. USA 102: 19198-19203.
- Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW. 2001. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int. J. Obes. Relat. Metab. Disord. 25: 1680-1688.
- Lovejoy JC, Champagne CM, d e Jonge L, X ie H , Smith SR. 2008. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32: 949-958.
- Shimizu H, Shimomura Y, Nakanishi Y, Futawatari T, Ohtani K, Sato N, et al. 1997. Estrogen increases in vivo leptin production in rats and human subjects. J. Endocrinol. 154: 285-292.
- Carr MC. 2003. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 88: 2404-2411.
- Dosi R, Bhatt N, Shah P, Patell R. 2014. Cardiovascular disease and menopause. J. Clin. Diagn. Res. 8: 62-64.
- Hu FB, Grodstein F, Hennekens CH, Colditz GA, Johnson M, Manson JE, et al. 1999. Age at natural menopause and risk of cardiovascular disease. Arch. Intern. Med. 159: 1061-1066.
- Ramezani Tehrani F, Behboudi-Gandevani S, Ghanbarian A, Azizi F. 2014. Effect of menopause on cardiovascular disease and its risk factors: a 9-year follow-up study. Climacteric 17: 164-172.
- Coylewright M, Reckelhoff JF, Ouyang P. 2008. Menopause and hypertension: an age-old debate. Hypertension 51: 952-959.
- Rappelli A. 2 002. H y pertension a nd o besity after t he menopause. J. Hypertens. Suppl. 20: S26-S28.
- Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. 2002. Postmenopausal hormone replacement therapy: scientific review. JAMA 288: 872-881.
- Hummelen R, Macklaim JM, Bisanz JE, Hammond JA, McMillan A, Vongsa R, et al. 2011. Vaginal microbiome and epithelial gene array in post-menopausal women with moderate to severe dryness. PLoS One 6: e26602.
- Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. 2014. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 21: 450-458.
- Cauci S, Driussi S, De Santo D, Penacchioni P, Iannicelli T, Lanzafame P, et al. 2002. Prevalence of bacterial vaginosis and vaginal flora changes in peri- and postmenopausal women. J. Clin. Microbiol. 40: 2147-2152.
- Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, et al. 2014. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 99: 4632-4640.
- Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. 2012. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 10: 253.
- Menon R, Watson SE, Thomas LN, Allred CD, Dabney A, Azcarate-Peril MA, et al. 2013. Diet complexity and estrogen receptor beta status affect the composition of the murine intestinal microbiota. Appl. Environ. Microbiol. 79: 5763-5773.
- Kwa M, Plottel CS, Blaser MJ, Adams S. 2016. The intestinal microbiome and estrogen receptor-positive female breast cancer. J. Natl. Cancer Inst. 108: djw029.
- Brahe L K, L e Chatelier E, P rifti E, P ons N, K ennedy S, Hansen T, et al. 2015. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr. Diabetes 5: e159.
- Lawley B, Tannock GW. 2017. Analysis of 16S rRNA gene amplicon sequences using the QIIME software package. Methods Mol. Biol. 1537: 153-163.
- DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072.
- Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.
- Hamady M, Lozupone C, Knight R. 2010. Fast UniFrac:facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 4: 17-27.
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.
- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29.
- Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45: D353-D361.
- The R project for statistical computing. Available from http://www.r-project.org. Accessed 18 September 2017.
- Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382.
- Cox-York KA, Sheflin AM, Foster MT, Gentile CL, Kahl A, Koch LG, et al. 2015. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiol. Rep. 3: e12488.
- Keenan MJ, Janes M, Robert J, Martin RJ, Raggio AM, McCutcheon KL, et al. 2013. Resistant starch from high amy lose m aize (HAM-RS2) r educes body fat a nd i ncreases gut bacteria in ovariectomized (OVX) rats. Obesity 21: 981-984.
- Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137: 1716-1724.e1-2.
- Turnbaugh PJ, Baeckhed F, Fulton L, Gordon JI. 2008. Dietinduced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213-223.
- Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.
- Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, et al. 2016. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci. Rep. 6: 32484.
- Liu TW, Park YM, Holscher HD, Padilla J, Scroggins RJ, Welly R, et al. 2015. Physical activity differentially affects the cecal microbiota of ovariectomized female rats selectively bred for high and low aerobic capacity. PLoS One 10: e0136150.
- Krebs CJ, Jarvis ED, Pfaff DW. 1999. The 70-kDa heat shock cognate protein (Hsc73) gene is enhanced by ovarian hormones in the ventromedial hypothalamus. Proc. Natl. Acad. Sci. USA 96: 1686-1691.
- Sarvari M, Kallo I, Hrabovszky E, Solymosi N, Liposits Z. 2014. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One 9: e88540.
- Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071.
- Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63: 727-735.