전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. Methods Mol. Biol. 861: 3-30.
    Pubmed CrossRef
  2. Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414: 313-325.
    Pubmed CrossRef
  3. Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, et al. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 31: 1846-1859.
    Pubmed CrossRef
  4. Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397.
    CrossRef
  5. Hui DY, Howles PN. 2002. Carboxyl ester lipase: structurefunction relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43: 2017-2030.
    Pubmed CrossRef
  6. Holmquist M. 2000. Alpha/beta-hydrolase fold enzymes:structures, functions and mechanisms. Curr. Protein Pept. Sci. 1: 209-235.
    Pubmed CrossRef
  7. Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781.
    Pubmed CrossRef
  8. Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, et al. 2016. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem. Soc. Rev. 45: 6855-6887.
    Pubmed CrossRef
  9. Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, et al. 2014. From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed. Res. Int. 2014: 684506.
    Pubmed PMC CrossRef
  10. Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. 2011. The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis. Gene 477: 1-11.
    Pubmed CrossRef
  11. Lass A, Zimmermann R, Oberer M, Zechner R. 2011. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50: 14-27.
    Pubmed PMC CrossRef
  12. Arner P, Langin D. 2007. The role of neutral lipases in human adipose tissue lipolysis. Curr. Opin. Lipidol. 18: 246-250.
    Pubmed CrossRef
  13. Lafontan M, Langin D. 2009. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48: 275-297.
    Pubmed CrossRef
  14. Yeaman SJ. 2004. Hormone-sensitive lipase - new roles for an old enzyme. Biochem. J. 379: 11-22.
    Pubmed PMC CrossRef
  15. Krintel C, Klint C, Lindvall H, Mörgelin M, Holm C. 2010. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS One 5: e11193.
    Pubmed PMC CrossRef
  16. Smith GM, Garton AJ, Aitken A, Yeaman SJ. 1996. Evidence for a multi-domain structure for hormone-sensitive lipase. FEBS Lett. 396: 90-94.
    CrossRef
  17. Osterlund T. 2001. Structure-function relationships of hormone-sensitive lipase. Eur. J. Biochem. 268: 1899-1907.
    Pubmed CrossRef
  18. Smith AJ, Sanders MA, Juhlmann BE, Hertzel AV, Bernlohr DA. 2008. Mapping of the hormone-sensitive lipase binding site on the adipocyte fatty acid-binding protein (AFABP). Identification of the charge quartet on the AFABP/aP2 helix-turn-helix domain. J. Biol. Chem. 283: 33536-33543.
    Pubmed PMC CrossRef
  19. Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. 2003. Fatty acid-binding protein hormone-sensitive lipase interaction. Fatty acid dependence on binding. J. Biol. Chem. 278: 47636-47643.
    Pubmed CrossRef
  20. Osterlund T, Contreras JA, Holm C. 1997. Identification of essential aspartic acid and histidine residues of hormonesensitive lipase: apparent residues of the catalytic triad. FEBS Lett. 403: 259-262.
    CrossRef
  21. Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414: 313-325.
    Pubmed CrossRef
  22. Langin D, Laurell H, Holst LS, Belfrage P, Holm C. 1993. Gene organization and primary structure of human hormonesensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc. Natl. Acad. Sci. USA 90: 4897-4901.
    Pubmed PMC CrossRef
  23. Feller G, Thiry M, Gerday C. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381-388.
    Pubmed CrossRef
  24. Reddy PG, Allon R, Mevarech M, Mendelovitz S, Sato Y, Gutnick DL. 1989. Cloning and expression in Escherichia coli of an esterase-coding gene from the oil-degrading bacterium Acinetobacter calcoaceticus RAG-1. Gene 76: 145-152.
    CrossRef
  25. Raibaud A, Zalacain M, Holt TG, Tizard R, Thompson CJ. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454-4463.
    Pubmed PMC CrossRef
  26. Langin D, Holm C. 1993. Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes. Trends Biochem. Sci. 18: 466-467.
    CrossRef
  27. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
    Pubmed PMC
  28. Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M. 1998. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem. J. 332: 203-212.
    Pubmed PMC CrossRef
  29. Mizuguchi S, Amada K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 1999. Identification of the gene encoding esterase, a homolog of hormone-sensitive lipase, from an oildegrading bacterium, strain HD-1. J. Biochem. 126: 731-737.
    Pubmed CrossRef
  30. Kanaya S, Koyanagi T, Kanaya E. 1998. An esterase from Escherichia coli with a sequence similarity to hormonesensitive lipase. Biochem. J. 332: 75-80.
    Pubmed PMC CrossRef
  31. Manco G, Giosuè E, D’Auria S, Herman P, Carrea G, Rossi M. 2000. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch. Biochem. Biophys. 373: 182-192.
    Pubmed CrossRef
  32. Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300:gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.
    Pubmed CrossRef
  33. Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, et al. 2004. Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur. J. Biochem. 271: 3953-3961.
    Pubmed CrossRef
  34. Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE. 2006. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem. 281: 3866-3875.
    Pubmed PMC CrossRef
  35. Delorme V, Diomandé SV, Dedieu L, Cavalier JF, Carrière F, Kremer L, et al. 2012. MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormonesensitive lipase family and alters mycobacterial growth. PLoS One 7: e46493.
    Pubmed PMC CrossRef
  36. Soror SH, Rao R, Cullum J. 2009. Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of Streptomyces coelicolor A3 (2). Protein Eng. Des. Sel. 36: 333-339.
    Pubmed CrossRef
  37. Sumby KM, Matthews AH, Grbin PR, Jiranek V. 2009. Cloning and characterization of an intracellular esterase from the wine-associated lactic acid bacterium Oenococcus oeni. Appl. Environ. Microbiol. 75: 6729-6735.
    Pubmed PMC CrossRef
  38. Bassegoda A, Fillat A, Pastor FI, Diaz P. 2013. Special Rhodococcus sp. CR-53 esterase Est4 contains a GGG(A)Xoxyanion hole conferring activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 97: 8559-8568.
    Pubmed CrossRef
  39. Virk AP, Sharma P , Cap alash N. 2 011. A n ew e sterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. J. Microbiol. Biotechnol. 21: 667-674.
    Pubmed CrossRef
  40. Benavente R, Esteban-Torres M, Acebrón I, de Las Rivas B, Muñoz R, Alvarez Y, et al. 2013. Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1. FEBS J. 280: 6658-6671.
    Pubmed CrossRef
  41. Alvarez Y, Esteban-Torres M, Cortés-Cabrera A, Gago F, Acebrón I, Benavente R, et al. 2014. Esterase LpEst1 from Lactobacillus plantarum: a novel and atypical member of the αβ hydrolase superfamily of enzymes. PLoS One 9: e92257.
    Pubmed PMC CrossRef
  42. Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. 2016. Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role in Xenobiotic degradation. J. Cell. Biochem. 117: 390-401.
    Pubmed CrossRef
  43. Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, Xie J. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16.
    Pubmed CrossRef
  44. Lin Y, Li Q, Xie L, Xie J. 2017. Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expr. Purif. 129: 143-149.
    Pubmed CrossRef
  45. Dua A, Gupta R. 2017. Functional characterization of hormone-sensitive-like lipase from Bacillus halodurans:synthesis and recovery of pNP-laurate with high yields. Extremophiles DOI: 10.1007/s00792-017-0949-8 [In Press].
    CrossRef
  46. Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726.
    Pubmed CrossRef
  47. Rhee JK, Ahn DG, Kim YG, Oh JW. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825.
    Pubmed PMC CrossRef
  48. Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr. Purif. 45: 315-323.
    Pubmed CrossRef
  49. Hong KS, Lim HK, Chung EJ, Park EJ, Lee MH, Kim JC, et al. 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol. 17: 1655-1660.
    Pubmed
  50. Hårdeman F, Sjöling S. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524-534.
    Pubmed CrossRef
  51. Chu X, He H, Guo C, Sun B. 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol. 80: 615-625.
    Pubmed CrossRef
  52. Roh C, Villatte F. 2008. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J. Appl. Microbiol. 105: 116-123.
    Pubmed CrossRef
  53. Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY. 2009. Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase. Biochem. Biophys. Res. Commun. 379: 553-556.
    Pubmed CrossRef
  54. Rashamuse K, Ronneburg T, Hennessy F, Visser D, van Heerden E, Piater L, et al. 2009. Discovery of a novel carboxylesterase through functional screening of a preenriched environmental library. J. Appl. Microbiol. 106: 1532-1539.
    Pubmed CrossRef
  55. Bunterngsook B, Kanokratana P, Thongaram T, Tanapongpipat S, Uengwetwanit T, Rachdawong S, et al. 2010. Identification and characterization of lipolytic enzymes from a peatswamp forest soil metagenome. Biosci. Biotechnol. Biochem. 74: 1848-1854.
    Pubmed CrossRef
  56. Tao W, Lee MH, Yoon MY, Kim JC, Malhotra S, Wu J, et al. 2011. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J. Microbiol. Biotechnol. 21: 1203-1210.
    Pubmed CrossRef
  57. Ko KC, Rim SO, Han Y, Shin BS, Kim GJ, Choi JH, et al. 2012. Identification and characterization of a novel coldadapted esterase from a metagenomic library of mountain soil. J. Ind. Microbiol. Biotechnol. 39: 681-689.
    Pubmed CrossRef
  58. Jiang X, Xu X, Huo Y, Wu Y, Zhu X, Zhang X, et al. 2012. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 194: 207-214.
    Pubmed CrossRef
  59. Jeon JH, Lee HS, Kim JT, Kim SJ, Choi SH, Kang SG, et al. 2012. Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl. Microbiol. Biotechnol. 93: 623-631.
    Pubmed CrossRef
  60. Biver S, Vandenbol M. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200.
    Pubmed CrossRef
  61. Li PY, Ji P, Li CY, Zhang Y, Wang GL, Zhang XY, et al. 2014. Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J. Biol. Chem. 289: 19031-19041.
    Pubmed PMC CrossRef
  62. Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, et al. 2016. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol. Ecol. 92: fiw046.
    Pubmed CrossRef
  63. Petrovskaya LE, Novototskaya-Vlasova KA, Gapizov SS, Spirina EV, Durdenko EV, Rivkina EM. 2016. New member of the hormone-sensitive lipase family from the permafrost microbial community. Bioengineered 7: 1-4
  64. Dukunde A, Schneider D, Lu M, Brady S, Daniel R. 2017. A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol. Lett. 39: 577-587.
    Pubmed CrossRef
  65. Ben Ali Y, Chahinian H, Petry S, Muller G, Lebrun R, Verger R, et al. 2006. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 45: 14183-14191.
    Pubmed CrossRef
  66. Ascione G, de Pascale D, De Santi C, Pedone C, Dathan NA, Monti SM. 2012. Native expression and purification of hormone-sensitive lipase from Psychrobacter sp. TA144 enhances protein stability and activity. Biochem. Biophys. Res. Commun. 420: 542-546.
    Pubmed CrossRef
  67. Álvarez Y, Esteban-Torres M, Acebrón I, de las Rivas B, Muñoz R, Martínez-Ripoll M, et al. 2011. Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from Lactobacillus plantarum. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 67: 1436-1439.
    Pubmed PMC CrossRef
  68. Wei Y, Contreras JA, Sheffield P, Osterlund T, Derewenda U, Kneusel RE, et al. 1999. Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormonesensitive lipase. Nat. Struct. Biol. 6: 340-345.
    Pubmed CrossRef
  69. De Simone G, Galdiero S, Manco G, Lang D, Rossi M, Pedone C. 2000. A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J. Mol. Biol. 303: 761-771.
    Pubmed CrossRef
  70. De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, et al. 2001. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314: 507-518.
    Pubmed CrossRef
  71. Byun JS, Rhee JK, Kim ND, Yoon J, Kim DU, Koh E, et al. 2007. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct. Biol. 7: 47
    Pubmed PMC CrossRef
  72. Nam KH, Kim SJ, Priyadarshi A, Kim HS, Hwang KY. 2009. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads. Biochem. Biophys. Res. Commun. 389: 247-250.
    Pubmed CrossRef
  73. Angkawidjaja C, Koga Y, Takano K, Kanaya S. 2012. Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. FEBS J. 279: 3071-3084.
    Pubmed CrossRef
  74. Nam KH, Kim MY, Kim SJ, Priyadarshi A, Kwon ST, Koo BS, et al. 2009. Structural and functional analysis of a novel hormone-sensitive lipase from a metagenome library. Proteins 74: 1036-1040.
    Pubmed CrossRef
  75. Palm GJ, Fernández-Álvaro E, Bogdanović X, Bartsch S, Sczodrok J, Singh RK, et al. 2011. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Appl. Microbiol. Biotechnol. 91: 1061-1072.
    Pubmed CrossRef
  76. Zheng X, Guo J, Xu L, Li H, Zhang D, Zhang K, et al. 2011. Crystal structure of a novel esterase Rv0045c from Mycobacterium tuberculosis. PLoS One 6: e20506.
    Pubmed PMC CrossRef
  77. Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, et al. 2013. Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. Acta Crystallogr. D Biol. Crystallogr. 69: 1726-1737.
    Pubmed CrossRef
  78. Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y, et al. 2015. Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormonesensitive lipase family. J. Biol. Chem. 290: 11188-11198.
    Pubmed PMC CrossRef
  79. Huang J, Huo YY, Ji R, Kuang S, Ji C, Xu XW, et al. 2016. Structural insights of a hormone-sensitive lipase homologue Est22. Sci. Rep. 6: 28550.
    Pubmed PMC CrossRef
  80. Rauwerdink A, Kazlauskas RJ. 2015. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal. 5: 6153-6176.
    Pubmed PMC CrossRef
  81. Marchot P, Chatonnet A. 2012. Enzymatic activity and protein interactions in alpha/beta hydrolase fold proteins:moonlighting versus promiscuity. Protein Pept. Lett. 19: 132-143.
    Pubmed CrossRef
  82. Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. 2011. Protein engineering of α/β-hydrolase fold enzymes. Chembiochem 12: 1508-1517.
    Pubmed CrossRef
  83. Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, et al. 2005. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J. Mol. Biol. 345: 501-512.
    Pubmed CrossRef
  84. Wang J, Shen WJ, Patel S, Harada K, Kraemer FB. 2005. Mutational analysis of the “regulatory module” of hormonesensitive lipase. Biochemistry 44: 1953-1959.
    Pubmed CrossRef
  85. Krintel C, Mörgelin M, Logan DT, Holm C. 2009. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276: 4752-4762.
    Pubmed CrossRef
  86. Sherlin D, Anishetty S. 2015. Mechanistic insights from molecular dynamic simulation of Rv0045c esterase in Mycobacterium tuberculosis. J. Mol. Model. 21: 90.
    Pubmed CrossRef
  87. Manco G, Febbraio F, Adinolfi E, Rossi M. 1999. Homology modeling and active-site residues probing of the thermophilic Alicyclobacillus acidocaldarius esterase 2. Protein Sci. 8: 1789-1796.
    Pubmed PMC CrossRef
  88. Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya, S. 1999. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett. 454: 262-266.
    CrossRef
  89. Mandrich L, Menchise V, Alterio V, De Simone G, Pedone C, Rossi M, et al. 2008. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Proteins 71: 1721-1731.
    Pubmed CrossRef
  90. Neves Petersen MT, Fojan P, Petersen SB. How do lipases and esterases work: the electrostatic contribution. J. Biotechnol. 85: 115-147.
    CrossRef
  91. Kourist R, Krishna S, Patel JS, Bartnek F, Hitchman TS, Weiner DP, et al. 2007. Identification of a metagenomederived esterase with high enantioselectivity in the kinetic resolution of arylaliphatic tertiary alcohols. Org. Biomol. Chem. 5: 3310-3313.
    Pubmed CrossRef
  92. Rehdorf J, Behrens GA, Nguyen GS, Kourist R, Bornscheuer UT. 2012. Pseudomonas putida esterase contains a GGG(A)Xmotif confering activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 93: 1119-1126.
    Pubmed CrossRef
  93. Schiefner A, Gerber K, Brosig A, Boos W. 2014 Structural and mutational analyses of Aes, an inhibitor of MalT in Escherichia coli. Proteins 82: 268-277.
    Pubmed CrossRef
  94. Truongvan N, Chung HS, Jang SH, Lee C. 2016. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site. Extremophiles 20: 187-193.
    Pubmed CrossRef
  95. Yuhong Z, Shi P, Liu W, Meng K, Bai Y, Wang G, et al. 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19: 888-897.
    Pubmed CrossRef
  96. Rhee JK, Kim DY, Ahn DG, Yun JH, Jang SH, Shin HC, et al. 2006. Analysis of the thermostability determinants of hyperthermophilic esterase EstE1 based on its predicted three-dimensional structure. Appl. Environ. Microbiol. 72: 3021-3025.
    Pubmed PMC CrossRef
  97. Pezzullo M, Del Vecchio P, Mandrich L, Nucci R, Rossi M, Manco G. 2013. Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2. Protein Eng. Des. Sel. 26: 47-58.
    Pubmed CrossRef
  98. Mandrich L, Merone L, Manco G. 2009. Structural and kinetic overview of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius: a comparison with the other members of the HSL family. Protein Pept. Lett. 16: 1189-1200.
    Pubmed CrossRef
  99. De Santi C, Tutino ML, Mandrich L, Giuliani M, Parrilli E, Del Vecchio P, et al. 2010. The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie 92: 949-957.
    Pubmed CrossRef
  100. Manco G, Mandrich L, Rossi M. 2001. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. J. Biol. Chem. 276: 37482-37490.
    Pubmed CrossRef
  101. De Simone G, Mandrich L, Menchise V, Giordano V, Febbraio F, Rossi M, et al. 2004. A substrate-induced switch in the reaction mechanism of a thermophilic esterase: kinetic evidences and structural basis. J. Biol. Chem. 279: 6815-6823.
    Pubmed CrossRef
  102. Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, et al. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16.
    Pubmed CrossRef
  103. Kim S, Joo S, Yoon HC, Ryu Y, Kim KK, Kim TD. 2007. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 63: 579-581.
    Pubmed PMC CrossRef
  104. Manco G, Carrea G, Giosuè E, Ottolina G, Adamo G, Rossi M. 2002. Modification of the enantioselectivity of two homologous thermophilic carboxylesterases from Alicyclobacillus acidocaldarius and Archaeoglobus fulgidus by random mutagenesis and screening. Extremophiles 6: 325-331.
    Pubmed CrossRef
  105. Febbraio F, Merone L, Cetrangolo GP, Rossi M, Nucci R, Manco G. 2011. Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal. Chem. 83: 1530-1536.
    Pubmed CrossRef
  106. Pöhlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M. 2009. Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens. Bioelectron. 24: 2766-2771.
    Pubmed CrossRef
  107. Zhu X, Larsen NA, Basran A, Bruce NC, Wilson IA. 2003. Observation of an arsenic adduct in an acetyl esterase crystal structure. J. Biol. Chem. 278: 2008-2014.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2017; 27(11): 1907-1915

Published online November 28, 2017 https://doi.org/10.4014/jmb.1708.08004

Copyright © The Korean Society for Microbiology and Biotechnology.

Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications

T. Doohun Kim *

Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Republic of Korea

Received: August 3, 2017; Accepted: September 16, 2017

Abstract

Lipases are important enzymes with biotechnological applications in dairy, detergent, food,
fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is
an intracellular lipase that can be stimulated by several hormones, such as catecholamine,
glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs),
which are homologous to the C-terminal domain of HSL, have α/β-hydrolase fold with a
catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of
industrial applications because of their high activity, broad substrate specificity, and
remarkable stability. In this review, the relationships among HSLs, the microbiological
origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.

Keywords: Hormone-sensitive lipase, cap domain, promiscuity, substrate specificities, industrial applications

References

  1. Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. Methods Mol. Biol. 861: 3-30.
    Pubmed CrossRef
  2. Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem J. 414: 313-325.
    Pubmed CrossRef
  3. Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, et al. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 31: 1846-1859.
    Pubmed CrossRef
  4. Jaeger KE, Eggert T. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390-397.
    CrossRef
  5. Hui DY, Howles PN. 2002. Carboxyl ester lipase: structurefunction relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid Res. 43: 2017-2030.
    Pubmed CrossRef
  6. Holmquist M. 2000. Alpha/beta-hydrolase fold enzymes:structures, functions and mechanisms. Curr. Protein Pept. Sci. 1: 209-235.
    Pubmed CrossRef
  7. Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781.
    Pubmed CrossRef
  8. Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, et al. 2016. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem. Soc. Rev. 45: 6855-6887.
    Pubmed CrossRef
  9. Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, et al. 2014. From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed. Res. Int. 2014: 684506.
    Pubmed KoreaMed CrossRef
  10. Lampidonis AD, Rogdakis E, Voutsinas GE, Stravopodis DJ. 2011. The resurgence of hormone-sensitive lipase (HSL) in mammalian lipolysis. Gene 477: 1-11.
    Pubmed CrossRef
  11. Lass A, Zimmermann R, Oberer M, Zechner R. 2011. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50: 14-27.
    Pubmed KoreaMed CrossRef
  12. Arner P, Langin D. 2007. The role of neutral lipases in human adipose tissue lipolysis. Curr. Opin. Lipidol. 18: 246-250.
    Pubmed CrossRef
  13. Lafontan M, Langin D. 2009. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48: 275-297.
    Pubmed CrossRef
  14. Yeaman SJ. 2004. Hormone-sensitive lipase - new roles for an old enzyme. Biochem. J. 379: 11-22.
    Pubmed KoreaMed CrossRef
  15. Krintel C, Klint C, Lindvall H, Mörgelin M, Holm C. 2010. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS One 5: e11193.
    Pubmed KoreaMed CrossRef
  16. Smith GM, Garton AJ, Aitken A, Yeaman SJ. 1996. Evidence for a multi-domain structure for hormone-sensitive lipase. FEBS Lett. 396: 90-94.
    CrossRef
  17. Osterlund T. 2001. Structure-function relationships of hormone-sensitive lipase. Eur. J. Biochem. 268: 1899-1907.
    Pubmed CrossRef
  18. Smith AJ, Sanders MA, Juhlmann BE, Hertzel AV, Bernlohr DA. 2008. Mapping of the hormone-sensitive lipase binding site on the adipocyte fatty acid-binding protein (AFABP). Identification of the charge quartet on the AFABP/aP2 helix-turn-helix domain. J. Biol. Chem. 283: 33536-33543.
    Pubmed KoreaMed CrossRef
  19. Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. 2003. Fatty acid-binding protein hormone-sensitive lipase interaction. Fatty acid dependence on binding. J. Biol. Chem. 278: 47636-47643.
    Pubmed CrossRef
  20. Osterlund T, Contreras JA, Holm C. 1997. Identification of essential aspartic acid and histidine residues of hormonesensitive lipase: apparent residues of the catalytic triad. FEBS Lett. 403: 259-262.
    CrossRef
  21. Watt MJ, Steinberg GR. 2008. Regulation and function of triacylglycerol lipases in cellular metabolism. Biochem. J. 414: 313-325.
    Pubmed CrossRef
  22. Langin D, Laurell H, Holst LS, Belfrage P, Holm C. 1993. Gene organization and primary structure of human hormonesensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc. Natl. Acad. Sci. USA 90: 4897-4901.
    Pubmed KoreaMed CrossRef
  23. Feller G, Thiry M, Gerday C. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381-388.
    Pubmed CrossRef
  24. Reddy PG, Allon R, Mevarech M, Mendelovitz S, Sato Y, Gutnick DL. 1989. Cloning and expression in Escherichia coli of an esterase-coding gene from the oil-degrading bacterium Acinetobacter calcoaceticus RAG-1. Gene 76: 145-152.
    CrossRef
  25. Raibaud A, Zalacain M, Holt TG, Tizard R, Thompson CJ. 1991. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J. Bacteriol. 173: 4454-4463.
    Pubmed KoreaMed CrossRef
  26. Langin D, Holm C. 1993. Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes. Trends Biochem. Sci. 18: 466-467.
    CrossRef
  27. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
    Pubmed KoreaMed
  28. Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M. 1998. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem. J. 332: 203-212.
    Pubmed KoreaMed CrossRef
  29. Mizuguchi S, Amada K, Haruki M, Imanaka T, Morikawa M, Kanaya S. 1999. Identification of the gene encoding esterase, a homolog of hormone-sensitive lipase, from an oildegrading bacterium, strain HD-1. J. Biochem. 126: 731-737.
    Pubmed CrossRef
  30. Kanaya S, Koyanagi T, Kanaya E. 1998. An esterase from Escherichia coli with a sequence similarity to hormonesensitive lipase. Biochem. J. 332: 75-80.
    Pubmed KoreaMed CrossRef
  31. Manco G, Giosuè E, D’Auria S, Herman P, Carrea G, Rossi M. 2000. Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch. Biochem. Biophys. 373: 182-192.
    Pubmed CrossRef
  32. Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300:gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.
    Pubmed CrossRef
  33. Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, et al. 2004. Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur. J. Biochem. 271: 3953-3961.
    Pubmed CrossRef
  34. Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE. 2006. A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol. Chem. 281: 3866-3875.
    Pubmed KoreaMed CrossRef
  35. Delorme V, Diomandé SV, Dedieu L, Cavalier JF, Carrière F, Kremer L, et al. 2012. MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormonesensitive lipase family and alters mycobacterial growth. PLoS One 7: e46493.
    Pubmed KoreaMed CrossRef
  36. Soror SH, Rao R, Cullum J. 2009. Mining the genome sequence for novel enzyme activity: characterisation of an unusual member of the hormone-sensitive lipase family of esterases from the genome of Streptomyces coelicolor A3 (2). Protein Eng. Des. Sel. 36: 333-339.
    Pubmed CrossRef
  37. Sumby KM, Matthews AH, Grbin PR, Jiranek V. 2009. Cloning and characterization of an intracellular esterase from the wine-associated lactic acid bacterium Oenococcus oeni. Appl. Environ. Microbiol. 75: 6729-6735.
    Pubmed KoreaMed CrossRef
  38. Bassegoda A, Fillat A, Pastor FI, Diaz P. 2013. Special Rhodococcus sp. CR-53 esterase Est4 contains a GGG(A)Xoxyanion hole conferring activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 97: 8559-8568.
    Pubmed CrossRef
  39. Virk AP, Sharma P , Cap alash N. 2 011. A n ew e sterase, belonging to hormone-sensitive lipase family, cloned from Rheinheimera sp. isolated from industrial effluent. J. Microbiol. Biotechnol. 21: 667-674.
    Pubmed CrossRef
  40. Benavente R, Esteban-Torres M, Acebrón I, de Las Rivas B, Muñoz R, Alvarez Y, et al. 2013. Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1. FEBS J. 280: 6658-6671.
    Pubmed CrossRef
  41. Alvarez Y, Esteban-Torres M, Cortés-Cabrera A, Gago F, Acebrón I, Benavente R, et al. 2014. Esterase LpEst1 from Lactobacillus plantarum: a novel and atypical member of the αβ hydrolase superfamily of enzymes. PLoS One 9: e92257.
    Pubmed KoreaMed CrossRef
  42. Jadeja D, Dogra N, Arya S, Singh G, Singh G, Kaur J. 2016. Characterization of LipN (Rv2970c) of Mycobacterium tuberculosis H37Rv and its probable role in Xenobiotic degradation. J. Cell. Biochem. 117: 390-401.
    Pubmed CrossRef
  43. Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, Xie J. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16.
    Pubmed CrossRef
  44. Lin Y, Li Q, Xie L, Xie J. 2017. Mycobacterium tuberculosis rv1400c encodes functional lipase/esterase. Protein Expr. Purif. 129: 143-149.
    Pubmed CrossRef
  45. Dua A, Gupta R. 2017. Functional characterization of hormone-sensitive-like lipase from Bacillus halodurans:synthesis and recovery of pNP-laurate with high yields. Extremophiles DOI: 10.1007/s00792-017-0949-8 [In Press].
    CrossRef
  46. Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726.
    Pubmed CrossRef
  47. Rhee JK, Ahn DG, Kim YG, Oh JW. 2005. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl. Environ. Microbiol. 71: 817-825.
    Pubmed KoreaMed CrossRef
  48. Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW. 2006. Screening and characterization of a novel esterase from a metagenomic library. Protein Expr. Purif. 45: 315-323.
    Pubmed CrossRef
  49. Hong KS, Lim HK, Chung EJ, Park EJ, Lee MH, Kim JC, et al. 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol. 17: 1655-1660.
    Pubmed
  50. Hårdeman F, Sjöling S. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524-534.
    Pubmed CrossRef
  51. Chu X, He H, Guo C, Sun B. 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol. 80: 615-625.
    Pubmed CrossRef
  52. Roh C, Villatte F. 2008. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J. Appl. Microbiol. 105: 116-123.
    Pubmed CrossRef
  53. Nam KH, Kim MY, Kim SJ, Priyadarshi A, Lee WH, Hwang KY. 2009. Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase. Biochem. Biophys. Res. Commun. 379: 553-556.
    Pubmed CrossRef
  54. Rashamuse K, Ronneburg T, Hennessy F, Visser D, van Heerden E, Piater L, et al. 2009. Discovery of a novel carboxylesterase through functional screening of a preenriched environmental library. J. Appl. Microbiol. 106: 1532-1539.
    Pubmed CrossRef
  55. Bunterngsook B, Kanokratana P, Thongaram T, Tanapongpipat S, Uengwetwanit T, Rachdawong S, et al. 2010. Identification and characterization of lipolytic enzymes from a peatswamp forest soil metagenome. Biosci. Biotechnol. Biochem. 74: 1848-1854.
    Pubmed CrossRef
  56. Tao W, Lee MH, Yoon MY, Kim JC, Malhotra S, Wu J, et al. 2011. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J. Microbiol. Biotechnol. 21: 1203-1210.
    Pubmed CrossRef
  57. Ko KC, Rim SO, Han Y, Shin BS, Kim GJ, Choi JH, et al. 2012. Identification and characterization of a novel coldadapted esterase from a metagenomic library of mountain soil. J. Ind. Microbiol. Biotechnol. 39: 681-689.
    Pubmed CrossRef
  58. Jiang X, Xu X, Huo Y, Wu Y, Zhu X, Zhang X, et al. 2012. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 194: 207-214.
    Pubmed CrossRef
  59. Jeon JH, Lee HS, Kim JT, Kim SJ, Choi SH, Kang SG, et al. 2012. Identification of a new subfamily of salt-tolerant esterases from a metagenomic library of tidal flat sediment. Appl. Microbiol. Biotechnol. 93: 623-631.
    Pubmed CrossRef
  60. Biver S, Vandenbol M. 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol. 40: 191-200.
    Pubmed CrossRef
  61. Li PY, Ji P, Li CY, Zhang Y, Wang GL, Zhang XY, et al. 2014. Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family. J. Biol. Chem. 289: 19031-19041.
    Pubmed KoreaMed CrossRef
  62. Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, et al. 2016. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol. Ecol. 92: fiw046.
    Pubmed CrossRef
  63. Petrovskaya LE, Novototskaya-Vlasova KA, Gapizov SS, Spirina EV, Durdenko EV, Rivkina EM. 2016. New member of the hormone-sensitive lipase family from the permafrost microbial community. Bioengineered 7: 1-4
  64. Dukunde A, Schneider D, Lu M, Brady S, Daniel R. 2017. A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum. Biotechnol. Lett. 39: 577-587.
    Pubmed CrossRef
  65. Ben Ali Y, Chahinian H, Petry S, Muller G, Lebrun R, Verger R, et al. 2006. Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 45: 14183-14191.
    Pubmed CrossRef
  66. Ascione G, de Pascale D, De Santi C, Pedone C, Dathan NA, Monti SM. 2012. Native expression and purification of hormone-sensitive lipase from Psychrobacter sp. TA144 enhances protein stability and activity. Biochem. Biophys. Res. Commun. 420: 542-546.
    Pubmed CrossRef
  67. Álvarez Y, Esteban-Torres M, Acebrón I, de las Rivas B, Muñoz R, Martínez-Ripoll M, et al. 2011. Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from Lactobacillus plantarum. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 67: 1436-1439.
    Pubmed KoreaMed CrossRef
  68. Wei Y, Contreras JA, Sheffield P, Osterlund T, Derewenda U, Kneusel RE, et al. 1999. Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormonesensitive lipase. Nat. Struct. Biol. 6: 340-345.
    Pubmed CrossRef
  69. De Simone G, Galdiero S, Manco G, Lang D, Rossi M, Pedone C. 2000. A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J. Mol. Biol. 303: 761-771.
    Pubmed CrossRef
  70. De Simone G, Menchise V, Manco G, Mandrich L, Sorrentino N, Lang D, et al. 2001. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J. Mol. Biol. 314: 507-518.
    Pubmed CrossRef
  71. Byun JS, Rhee JK, Kim ND, Yoon J, Kim DU, Koh E, et al. 2007. Crystal structure of hyperthermophilic esterase EstE1 and the relationship between its dimerization and thermostability properties. BMC Struct. Biol. 7: 47
    Pubmed KoreaMed CrossRef
  72. Nam KH, Kim SJ, Priyadarshi A, Kim HS, Hwang KY. 2009. The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads. Biochem. Biophys. Res. Commun. 389: 247-250.
    Pubmed CrossRef
  73. Angkawidjaja C, Koga Y, Takano K, Kanaya S. 2012. Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. FEBS J. 279: 3071-3084.
    Pubmed CrossRef
  74. Nam KH, Kim MY, Kim SJ, Priyadarshi A, Kwon ST, Koo BS, et al. 2009. Structural and functional analysis of a novel hormone-sensitive lipase from a metagenome library. Proteins 74: 1036-1040.
    Pubmed CrossRef
  75. Palm GJ, Fernández-Álvaro E, Bogdanović X, Bartsch S, Sczodrok J, Singh RK, et al. 2011. The crystal structure of an esterase from the hyperthermophilic microorganism Pyrobaculum calidifontis VA1 explains its enantioselectivity. Appl. Microbiol. Biotechnol. 91: 1061-1072.
    Pubmed CrossRef
  76. Zheng X, Guo J, Xu L, Li H, Zhang D, Zhang K, et al. 2011. Crystal structure of a novel esterase Rv0045c from Mycobacterium tuberculosis. PLoS One 6: e20506.
    Pubmed KoreaMed CrossRef
  77. Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, et al. 2013. Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. Acta Crystallogr. D Biol. Crystallogr. 69: 1726-1737.
    Pubmed CrossRef
  78. Li PY, Chen XL, Ji P, Li CY, Wang P, Zhang Y, et al. 2015. Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormonesensitive lipase family. J. Biol. Chem. 290: 11188-11198.
    Pubmed KoreaMed CrossRef
  79. Huang J, Huo YY, Ji R, Kuang S, Ji C, Xu XW, et al. 2016. Structural insights of a hormone-sensitive lipase homologue Est22. Sci. Rep. 6: 28550.
    Pubmed KoreaMed CrossRef
  80. Rauwerdink A, Kazlauskas RJ. 2015. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal. 5: 6153-6176.
    Pubmed KoreaMed CrossRef
  81. Marchot P, Chatonnet A. 2012. Enzymatic activity and protein interactions in alpha/beta hydrolase fold proteins:moonlighting versus promiscuity. Protein Pept. Lett. 19: 132-143.
    Pubmed CrossRef
  82. Jochens H, Hesseler M, Stiba K, Padhi SK, Kazlauskas RJ, Bornscheuer UT. 2011. Protein engineering of α/β-hydrolase fold enzymes. Chembiochem 12: 1508-1517.
    Pubmed CrossRef
  83. Mandrich L, Merone L, Pezzullo M, Cipolla L, Nicotra F, Rossi M, et al. 2005. Role of the N terminus in enzyme activity, stability and specificity in thermophilic esterases belonging to the HSL family. J. Mol. Biol. 345: 501-512.
    Pubmed CrossRef
  84. Wang J, Shen WJ, Patel S, Harada K, Kraemer FB. 2005. Mutational analysis of the “regulatory module” of hormonesensitive lipase. Biochemistry 44: 1953-1959.
    Pubmed CrossRef
  85. Krintel C, Mörgelin M, Logan DT, Holm C. 2009. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276: 4752-4762.
    Pubmed CrossRef
  86. Sherlin D, Anishetty S. 2015. Mechanistic insights from molecular dynamic simulation of Rv0045c esterase in Mycobacterium tuberculosis. J. Mol. Model. 21: 90.
    Pubmed CrossRef
  87. Manco G, Febbraio F, Adinolfi E, Rossi M. 1999. Homology modeling and active-site residues probing of the thermophilic Alicyclobacillus acidocaldarius esterase 2. Protein Sci. 8: 1789-1796.
    Pubmed KoreaMed CrossRef
  88. Haruki M, Oohashi Y, Mizuguchi S, Matsuo Y, Morikawa M, Kanaya, S. 1999. Identification of catalytically essential residues in Escherichia coli esterase by site-directed mutagenesis. FEBS Lett. 454: 262-266.
    CrossRef
  89. Mandrich L, Menchise V, Alterio V, De Simone G, Pedone C, Rossi M, et al. 2008. Functional and structural features of the oxyanion hole in a thermophilic esterase from Alicyclobacillus acidocaldarius. Proteins 71: 1721-1731.
    Pubmed CrossRef
  90. Neves Petersen MT, Fojan P, Petersen SB. How do lipases and esterases work: the electrostatic contribution. J. Biotechnol. 85: 115-147.
    CrossRef
  91. Kourist R, Krishna S, Patel JS, Bartnek F, Hitchman TS, Weiner DP, et al. 2007. Identification of a metagenomederived esterase with high enantioselectivity in the kinetic resolution of arylaliphatic tertiary alcohols. Org. Biomol. Chem. 5: 3310-3313.
    Pubmed CrossRef
  92. Rehdorf J, Behrens GA, Nguyen GS, Kourist R, Bornscheuer UT. 2012. Pseudomonas putida esterase contains a GGG(A)Xmotif confering activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 93: 1119-1126.
    Pubmed CrossRef
  93. Schiefner A, Gerber K, Brosig A, Boos W. 2014 Structural and mutational analyses of Aes, an inhibitor of MalT in Escherichia coli. Proteins 82: 268-277.
    Pubmed CrossRef
  94. Truongvan N, Chung HS, Jang SH, Lee C. 2016. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site. Extremophiles 20: 187-193.
    Pubmed CrossRef
  95. Yuhong Z, Shi P, Liu W, Meng K, Bai Y, Wang G, et al. 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19: 888-897.
    Pubmed CrossRef
  96. Rhee JK, Kim DY, Ahn DG, Yun JH, Jang SH, Shin HC, et al. 2006. Analysis of the thermostability determinants of hyperthermophilic esterase EstE1 based on its predicted three-dimensional structure. Appl. Environ. Microbiol. 72: 3021-3025.
    Pubmed KoreaMed CrossRef
  97. Pezzullo M, Del Vecchio P, Mandrich L, Nucci R, Rossi M, Manco G. 2013. Comprehensive analysis of surface charged residues involved in thermal stability in Alicyclobacillus acidocaldarius esterase 2. Protein Eng. Des. Sel. 26: 47-58.
    Pubmed CrossRef
  98. Mandrich L, Merone L, Manco G. 2009. Structural and kinetic overview of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius: a comparison with the other members of the HSL family. Protein Pept. Lett. 16: 1189-1200.
    Pubmed CrossRef
  99. De Santi C, Tutino ML, Mandrich L, Giuliani M, Parrilli E, Del Vecchio P, et al. 2010. The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie 92: 949-957.
    Pubmed CrossRef
  100. Manco G, Mandrich L, Rossi M. 2001. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. J. Biol. Chem. 276: 37482-37490.
    Pubmed CrossRef
  101. De Simone G, Mandrich L, Menchise V, Giordano V, Febbraio F, Rossi M, et al. 2004. A substrate-induced switch in the reaction mechanism of a thermophilic esterase: kinetic evidences and structural basis. J. Biol. Chem. 279: 6815-6823.
    Pubmed CrossRef
  102. Li C, Li Q, Zhang Y, Gong Z, Ren S, Li P, et al. 2017. Characterization and function of Mycobacterium tuberculosis H37Rv lipase Rv1076 (LipU). Microbiol. Res. 196: 7-16.
    Pubmed CrossRef
  103. Kim S, Joo S, Yoon HC, Ryu Y, Kim KK, Kim TD. 2007. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 63: 579-581.
    Pubmed KoreaMed CrossRef
  104. Manco G, Carrea G, Giosuè E, Ottolina G, Adamo G, Rossi M. 2002. Modification of the enantioselectivity of two homologous thermophilic carboxylesterases from Alicyclobacillus acidocaldarius and Archaeoglobus fulgidus by random mutagenesis and screening. Extremophiles 6: 325-331.
    Pubmed CrossRef
  105. Febbraio F, Merone L, Cetrangolo GP, Rossi M, Nucci R, Manco G. 2011. Thermostable esterase 2 from Alicyclobacillus acidocaldarius as biosensor for the detection of organophosphate pesticides. Anal. Chem. 83: 1530-1536.
    Pubmed CrossRef
  106. Pöhlmann C, Wang Y, Humenik M, Heidenreich B, Gareis M, Sprinzl M. 2009. Rapid, specific and sensitive electrochemical detection of foodborne bacteria. Biosens. Bioelectron. 24: 2766-2771.
    Pubmed CrossRef
  107. Zhu X, Larsen NA, Basran A, Bruce NC, Wilson IA. 2003. Observation of an arsenic adduct in an acetyl esterase crystal structure. J. Biol. Chem. 278: 2008-2014.
    Pubmed CrossRef