전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Babitskaia VG, Shcherba VV, Filimonova TV, Grigorchuk EZ. 2000. Melanin pigments of the fungi Paecilomyces variotii and Aspergillus carbonarius. Prikl. Biokhim. Mikrobiol. 36: 153-159.
    Pubmed
  2. Chen LY, Price TV, Silvapulle MJ. 2005. Dark leaf spot (Alternaria brassicicola) on Chinese cabbage: spatial patterns. Aust. J. Agric. Res. 56: 699-714.
    CrossRef
  3. Chen RE, Thorner J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773: 1311-1340.
    Pubmed PMC CrossRef
  4. Cho Y, Cramer RA Jr, Kim KH, Davis J, Mitchell TK, Figuli P, et al. 2007. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet. Biol. 44: 543-553.
    Pubmed CrossRef
  5. Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, et al. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol. Microbiol. 72: 1316-1333.
    Pubmed CrossRef
  6. Hamel LP, Nicole MC, Duplessis S, Ellis BE. 2012. Mitogenactivated protein kinase signaling in plant-interacting fungi:distinct messages from conserved messengers. Plant Cell 24: 1327-1351.
    Pubmed PMC CrossRef
  7. Jenczmionka NJ, Maier FJ, Lösch AP, Schäfer W. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87-95.
    Pubmed
  8. Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, et al. 2011. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell. Microbiol. 13: 62-80.
    Pubmed CrossRef
  9. Lin CH, Yang SL, Chung KR. 2011. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. Curr. Microbiol. 62: 807-815.
    Pubmed CrossRef
  10. Lin CH, Yang SL, Wang NY, Chung KR. 2010. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Fungal Genet. Biol. 47: 381-391.
    Pubmed CrossRef
  11. Montemurro N, Visconti A. 1992. Alternaria metabolites –chemical and biological data, pp. 449-541. In Chelkowski J, Visconti A (eds.). Alternaria: Biology, Plant Diseases and Metabolites. Elsevier Science Publishers, Amsterdam, The Netherlands.
  12. Moriwaki A, Kihara J , Mori C, Arase S. 2007. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol. Res. 162: 108-114.
    Pubmed CrossRef
  13. Park JA, Kim JM, Park SM, Kim DH. 2012. Characterization of CpSte11, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway. Mol. Plant Pathol. 13: 240-250.
    Pubmed CrossRef
  14. Priegnitz BE, Brandt U, Pahirulzaman KA, Dickschat JS, Fleißner A . 2015. T he A ngFus3 m itogen-activated p rotein kinase controls hyphal differentiation and secondary metabolism in Aspergillus niger. Eukaryot. Cell 14: 602-615.
    Pubmed PMC CrossRef
  15. Román E, Arana DM, Nombela C, Alonso-Monge R, Pla J. 2007. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15: 181-190.
    Pubmed CrossRef
  16. Rop NK, Kiprop EK, Ochuodho JO. 2009. Alternaria species causing black spot disease of Brassicas in Kenya, pp. 635-640. In Tenywa JS, Joubert GD, Marais D, Rubaihayo PR, Nampala MP (eds.). Proceedings of the 9th African Crop Science, Conference, Cape Town, South Africa, 28 September- 2 October 2009.
  17. Salo PM, Arbes SJ Jr, Sever M, Jaramillo R, Cohn RD, London SJ, Zeldin DC. 2006. Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J. Allergy Clin. Immunol. 118: 892-898.
    Pubmed PMC CrossRef
  18. Su'udi M, Park JM, Park SR, Hwang DJ, Bae SC, Kim S, Ahn IP. 2013. Quantification o f Alternaria brassicicola infection in the Arabidopsis thaliana and Brassica rapa subsp. pekinensis. Microbiology 159: 1946-1955.
    Pubmed CrossRef
  19. Sweigard JA, Chumley F, Carroll A, Farrall L, Valent B. 1997. A series of vectors for fungal transformation. Fungal Genet. Newsl. 44: 52-53.
  20. Xu HJ , Wang YJ , Zhao PB, Zhang YB, Xu RY, Li DC. 2011. A cAMP-dependent protein kinase gene, aapk1, is required for mycelia growth, toxicity and pathogenicity of Alternaria alternata on tobacco. J. Phytopathol. 159: 208-216.
    CrossRef
  21. Xu JR. 2000. Map kinases in fungal pathogens. Fungal Genet. Biol. 31: 137-152.
    Pubmed CrossRef
  22. Xu JR, Hamer JE. 2010. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706.
    CrossRef
  23. Yago JI, Lin CH, Chung KR. 2011. The SLT2 mitogenactivated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. Mol. Plant Pathol. 12: 653-665.
    Pubmed CrossRef
  24. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981.
    Pubmed CrossRef
  25. Zhao X, Mehrabi R, Xu JR. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6: 1701-1714.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(7): 1311-1319

Published online July 28, 2016 https://doi.org/10.4014/jmb.1603.03048

Copyright © The Korean Society for Microbiology and Biotechnology.

AbSte7, a MAPKK Gene of Alternaria brassicicola, Is Involved in Conidiation, Salt/Oxidative Stress, and Pathogenicity

Houjuan Xu 1, Qianqian Zhang 1, Wenjuan Cui 1, Xiaofei Zhang 1, Weiyang Liu 1, Li Zhang 1, Md. Nurul Islam 2, Kwang-Hyun Baek 2* and Yujun Wang 1

1College of Plant Protection, Shandong Agricultural University, Tai’an 271018, P.R. China, 2Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea

Received: March 22, 2016; Accepted: April 29, 2016

Abstract

Alternaria brassicicola (Schwein.) invades Brassicaceae and causes black spot disease,
significantly lowering productivity. Mitogen-activated protein kinases (MAPKs) and their
upstream kinases, including MAPK kinases (MAPKKs) and MAPKK kinases (MAPKKK),
comprise one of the most important signaling pathways determining the pathogenicity of
diverse plant pathogens. The AbSte7 gene in the genome of A. brassicicola was predicted to be a
homolog of yeast Ste7, a MAPKK; therefore, the function was characterized by generating null
mutant strains with a gene replacement method. AbSte7 replacement mutants (RMs) had a
slower growth rate and altered colony morphology compared with the wild-type strain.
Disruption of the AbSte7 gene resulted in defects in conidiation and melanin accumulation.
AbSte7 was also involved in the resistance pathways in salt and oxidative stress, working to
negatively regulate salt tolerance and positively regulate oxidative stress. Pathogenicity
assays revealed that AbSte7 RMs could not infect intact cabbage leaves, but only formed very
small lesions in wounded leaves, whereas typical lesions appeared on both intact and
wounded leaves inoculated with the wild-type strain. As the first studied MAPKK in A.
brassicicola, these data strongly suggest that the AbSte7 gene is an essential element for the
growth, development, and pathogenicity of A. brassicicola.

Keywords: Alternaria brassicicola, conidiation, mitogen-activated protein kinase kinase (MAPKK), pathogenicity, oxidative stress, salt stress

References

  1. Babitskaia VG, Shcherba VV, Filimonova TV, Grigorchuk EZ. 2000. Melanin pigments of the fungi Paecilomyces variotii and Aspergillus carbonarius. Prikl. Biokhim. Mikrobiol. 36: 153-159.
    Pubmed
  2. Chen LY, Price TV, Silvapulle MJ. 2005. Dark leaf spot (Alternaria brassicicola) on Chinese cabbage: spatial patterns. Aust. J. Agric. Res. 56: 699-714.
    CrossRef
  3. Chen RE, Thorner J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773: 1311-1340.
    Pubmed KoreaMed CrossRef
  4. Cho Y, Cramer RA Jr, Kim KH, Davis J, Mitchell TK, Figuli P, et al. 2007. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet. Biol. 44: 543-553.
    Pubmed CrossRef
  5. Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, et al. 2009. Identification of novel virulence factors associated with signal transduction pathways in Alternaria brassicicola. Mol. Microbiol. 72: 1316-1333.
    Pubmed CrossRef
  6. Hamel LP, Nicole MC, Duplessis S, Ellis BE. 2012. Mitogenactivated protein kinase signaling in plant-interacting fungi:distinct messages from conserved messengers. Plant Cell 24: 1327-1351.
    Pubmed KoreaMed CrossRef
  7. Jenczmionka NJ, Maier FJ, Lösch AP, Schäfer W. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87-95.
    Pubmed
  8. Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, et al. 2011. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell. Microbiol. 13: 62-80.
    Pubmed CrossRef
  9. Lin CH, Yang SL, Chung KR. 2011. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. Curr. Microbiol. 62: 807-815.
    Pubmed CrossRef
  10. Lin CH, Yang SL, Wang NY, Chung KR. 2010. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Fungal Genet. Biol. 47: 381-391.
    Pubmed CrossRef
  11. Montemurro N, Visconti A. 1992. Alternaria metabolites –chemical and biological data, pp. 449-541. In Chelkowski J, Visconti A (eds.). Alternaria: Biology, Plant Diseases and Metabolites. Elsevier Science Publishers, Amsterdam, The Netherlands.
  12. Moriwaki A, Kihara J , Mori C, Arase S. 2007. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol. Res. 162: 108-114.
    Pubmed CrossRef
  13. Park JA, Kim JM, Park SM, Kim DH. 2012. Characterization of CpSte11, a MAPKKK gene of Cryphonectria parasitica, and initial evidence of its involvement in the pheromone response pathway. Mol. Plant Pathol. 13: 240-250.
    Pubmed CrossRef
  14. Priegnitz BE, Brandt U, Pahirulzaman KA, Dickschat JS, Fleißner A . 2015. T he A ngFus3 m itogen-activated p rotein kinase controls hyphal differentiation and secondary metabolism in Aspergillus niger. Eukaryot. Cell 14: 602-615.
    Pubmed KoreaMed CrossRef
  15. Román E, Arana DM, Nombela C, Alonso-Monge R, Pla J. 2007. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15: 181-190.
    Pubmed CrossRef
  16. Rop NK, Kiprop EK, Ochuodho JO. 2009. Alternaria species causing black spot disease of Brassicas in Kenya, pp. 635-640. In Tenywa JS, Joubert GD, Marais D, Rubaihayo PR, Nampala MP (eds.). Proceedings of the 9th African Crop Science, Conference, Cape Town, South Africa, 28 September- 2 October 2009.
  17. Salo PM, Arbes SJ Jr, Sever M, Jaramillo R, Cohn RD, London SJ, Zeldin DC. 2006. Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J. Allergy Clin. Immunol. 118: 892-898.
    Pubmed KoreaMed CrossRef
  18. Su'udi M, Park JM, Park SR, Hwang DJ, Bae SC, Kim S, Ahn IP. 2013. Quantification o f Alternaria brassicicola infection in the Arabidopsis thaliana and Brassica rapa subsp. pekinensis. Microbiology 159: 1946-1955.
    Pubmed CrossRef
  19. Sweigard JA, Chumley F, Carroll A, Farrall L, Valent B. 1997. A series of vectors for fungal transformation. Fungal Genet. Newsl. 44: 52-53.
  20. Xu HJ , Wang YJ , Zhao PB, Zhang YB, Xu RY, Li DC. 2011. A cAMP-dependent protein kinase gene, aapk1, is required for mycelia growth, toxicity and pathogenicity of Alternaria alternata on tobacco. J. Phytopathol. 159: 208-216.
    CrossRef
  21. Xu JR. 2000. Map kinases in fungal pathogens. Fungal Genet. Biol. 31: 137-152.
    Pubmed CrossRef
  22. Xu JR, Hamer JE. 2010. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706.
    CrossRef
  23. Yago JI, Lin CH, Chung KR. 2011. The SLT2 mitogenactivated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata. Mol. Plant Pathol. 12: 653-665.
    Pubmed CrossRef
  24. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981.
    Pubmed CrossRef
  25. Zhao X, Mehrabi R, Xu JR. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6: 1701-1714.
    Pubmed KoreaMed CrossRef