Articles Service
Research article
Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates
Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
J. Microbiol. Biotechnol. 2016; 26(7): 1259-1266
Published July 28, 2016 https://doi.org/10.4014/jmb.1602.02019
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
References
- AOAC (Association of Official Analytical Chemists). 1995. In Cunniff P (ed.). Official Methods of Analysis of the Association of Official Analytical Chemists, 16th Ed. Association of Official Analytical Chemists, Arlington, VA.
- Andrietta MGS, Andrietta SR, Steckelberg C, Stupiello ENA. 2007. Bioethanol - 30 years of Proálcool. Int. Sugar J. 109:195-200.
- Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphogluconutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-6472.
- Cho HY, Ra CH, Kim SK. 2014. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeast. J. Microbiol. Biotechnol. 24: 264-269.
- Cho YK, Kim HJ, Kim SK. 2013. Bioethanol production from brown seaweed, Undaria pinnatifida, using N aCl acclimated yeast. Bioprocess Biosyst. Eng. 36: 713-719.
- Freer SN, Detroy RW. 1983. Characterization of cellobiose fermentations to ethanol by yeasts. Biotechnol. Bioeng. 25: 541-557.
- Ge L , Wang P, Mou H . 2011. S tudy o n saccharification techniques of seaweed waste for transformation of ethanol. Renew. Energy 36: 84-89.
- Goh CS, Lee K T. 2 010. A v isionary and c onceptual macroalgae-based renewable and sustainable development. Renew. Sustain. Energy Rev. 14: 842-848.
- Hargreaves PI, Barcelos CA, da Costa AC, Pereira N Jr. 2013. Production of ethanol 3G from Kappaphycus alvarezii:evaluation of different process strategies. Bioresour. Technol. 134: 257-263.
- Hsu CL, Chang KS, Lai MZ, Chang TC, Chang YH, Jang HD. 2011. Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulose-producing Streptomyces for bioethanol production. Biomass Bioenergy 32: 1878-1884.
- Jol CN, Neiss TG, Penninkhof B, Rudolph B, De Ruiter GA. 1999. A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal. Biochem. 268: 213-222.
- Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH. 2015. Conversion of red-alage Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst. Eng. 38: 207-217.
- Kubicek CP. 1982. β-Glucanase excretion by Trichoderma pseudokoningii: correlation with cell wall bound β-1,3-glucanase activities. Arch. Microbiol. 132: 349-354.
- Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.
- Mandels M, Andreotti R, Roche C. 1976. Measurement of saccharifying cellulose. Biotechnol. Bioeng. Symp. 6: 21-23.
- McHugh DC. 2003. A guide to seaweed industry. FAO Fisheries Technical Paper No. 441. FAO, Rome, Italy.
- Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. 2011. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezzi (cottonii). J. Appl. Phycol. 24: 857-862.
- Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, et al. 2008. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl. Environ. Microbiol. 74: 7514-7521
- Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon J J, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.
- Puspawati S, Wagiman, Ainuri M, Nugraha DA, Haslianti. 2015. The production of bioethanol fermentation substrate from Eucheuma cottonii seaweed through hydrolysis by cellulose enzyme. Agric. Agric. Sci. Procedia 3: 200-205.
- Ra CH, Jeong GT, Shin MK, Kim SK. 2013. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour. Technol. 140: 421-425.
- Ra CH, Choi JG, Kang CH, Sunwoo IY, Jeong KT, Kim SK. 2015. Thermal acid hydrolysis pretreatment, enzymatic saccharification and ethanol fermentation from red seaweed, Gracilaria verrucosa. Microbiol. Biotechnol. Lett. 43: 9-15.
- Redding AP, Wang Z, Keshwani DR, Cheng J. 2010. High temperature diluted acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour. Technol. 102: 1415-1424.
- Shuler ML, Kargi K. 2001. Bioprocess Engineering: Basic Concepts, pp. 160, 215. 2nd Ed. Prentice Hall PTR, Upper Saddle River, NJ.
- Spindler DD, Wyman CE, Mohagheghi A, Grohmann K. 1988. Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Biochem. Biotechnol. 17: 279-293.
- Wu CH, Chien WC, Chou HK, Yang J, Lin VHT. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253.
- Yanagisawa M, Kawai S, Murata K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4: 224-235.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2016; 26(7): 1259-1266
Published online July 28, 2016 https://doi.org/10.4014/jmb.1602.02019
Copyright © The Korean Society for Microbiology and Biotechnology.
Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates
Trung Hau Nguyen 1, Chae Hun Ra 1, In Yung Sunwoo 1, Gwi-Taek Jeong 1 and Sung-Koo Kim 1*
Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
Abstract
Bioethanol was produced from Kappaphycus alvarezii seaweed biomass using separate
hydrolysis and fermentation (SHF). Pretreatment was evaluated for 60 min at 121ºC using 12%
(w/v) biomass slurry with 364 mM H2SO4. Enzymatic saccharification was then carried out at
45ºC for 48 h using Celluclast 1.5 L. Ethanol fermentation with 12% (w/v) K. alvarezii
hydrolyzate was performed using the yeasts Saccharomyces cerevisiae KCTC1126, Kluyveromyces
marxianus KCTC7150, and Candida lusitaniae ATCC42720 with or without prior adaptation to
high concentrations of galactose. When non-adapted S. cerevisiae, K. marxianus, and C. lusitaniae
were used, 11.5 g/l, 6.7 g/l, and 6.0 g/l of ethanol were produced, respectively. When adapted
S. cerevisiae, K. marxianus, and C. lusitaniae were used, 15.8 g/l, 11.6 g/l, and 13.4 g/l of ethanol
were obtained, respectively. The highest ethanol concentration was 15.8 g/l, with YEtOH = 0.43
and YT% = 84.3%, which was obtained using adapted S. cerevisiae.
Keywords: Kappaphycus alvarezii, thermal acid hydrolysis pretreatment, enzymatic saccharification, fermentation, adaptation
References
- AOAC (Association of Official Analytical Chemists). 1995. In Cunniff P (ed.). Official Methods of Analysis of the Association of Official Analytical Chemists, 16th Ed. Association of Official Analytical Chemists, Arlington, VA.
- Andrietta MGS, Andrietta SR, Steckelberg C, Stupiello ENA. 2007. Bioethanol - 30 years of Proálcool. Int. Sugar J. 109:195-200.
- Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphogluconutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71: 6465-6472.
- Cho HY, Ra CH, Kim SK. 2014. Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeast. J. Microbiol. Biotechnol. 24: 264-269.
- Cho YK, Kim HJ, Kim SK. 2013. Bioethanol production from brown seaweed, Undaria pinnatifida, using N aCl acclimated yeast. Bioprocess Biosyst. Eng. 36: 713-719.
- Freer SN, Detroy RW. 1983. Characterization of cellobiose fermentations to ethanol by yeasts. Biotechnol. Bioeng. 25: 541-557.
- Ge L , Wang P, Mou H . 2011. S tudy o n saccharification techniques of seaweed waste for transformation of ethanol. Renew. Energy 36: 84-89.
- Goh CS, Lee K T. 2 010. A v isionary and c onceptual macroalgae-based renewable and sustainable development. Renew. Sustain. Energy Rev. 14: 842-848.
- Hargreaves PI, Barcelos CA, da Costa AC, Pereira N Jr. 2013. Production of ethanol 3G from Kappaphycus alvarezii:evaluation of different process strategies. Bioresour. Technol. 134: 257-263.
- Hsu CL, Chang KS, Lai MZ, Chang TC, Chang YH, Jang HD. 2011. Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulose-producing Streptomyces for bioethanol production. Biomass Bioenergy 32: 1878-1884.
- Jol CN, Neiss TG, Penninkhof B, Rudolph B, De Ruiter GA. 1999. A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal. Biochem. 268: 213-222.
- Jeong GT, Ra CH, Hong YK, Kim JK, Kong IS, Kim SK, Park DH. 2015. Conversion of red-alage Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess Biosyst. Eng. 38: 207-217.
- Kubicek CP. 1982. β-Glucanase excretion by Trichoderma pseudokoningii: correlation with cell wall bound β-1,3-glucanase activities. Arch. Microbiol. 132: 349-354.
- Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.
- Mandels M, Andreotti R, Roche C. 1976. Measurement of saccharifying cellulose. Biotechnol. Bioeng. Symp. 6: 21-23.
- McHugh DC. 2003. A guide to seaweed industry. FAO Fisheries Technical Paper No. 441. FAO, Rome, Italy.
- Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. 2011. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezzi (cottonii). J. Appl. Phycol. 24: 857-862.
- Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, et al. 2008. High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl. Environ. Microbiol. 74: 7514-7521
- Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon J J, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.
- Puspawati S, Wagiman, Ainuri M, Nugraha DA, Haslianti. 2015. The production of bioethanol fermentation substrate from Eucheuma cottonii seaweed through hydrolysis by cellulose enzyme. Agric. Agric. Sci. Procedia 3: 200-205.
- Ra CH, Jeong GT, Shin MK, Kim SK. 2013. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour. Technol. 140: 421-425.
- Ra CH, Choi JG, Kang CH, Sunwoo IY, Jeong KT, Kim SK. 2015. Thermal acid hydrolysis pretreatment, enzymatic saccharification and ethanol fermentation from red seaweed, Gracilaria verrucosa. Microbiol. Biotechnol. Lett. 43: 9-15.
- Redding AP, Wang Z, Keshwani DR, Cheng J. 2010. High temperature diluted acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour. Technol. 102: 1415-1424.
- Shuler ML, Kargi K. 2001. Bioprocess Engineering: Basic Concepts, pp. 160, 215. 2nd Ed. Prentice Hall PTR, Upper Saddle River, NJ.
- Spindler DD, Wyman CE, Mohagheghi A, Grohmann K. 1988. Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Biochem. Biotechnol. 17: 279-293.
- Wu CH, Chien WC, Chou HK, Yang J, Lin VHT. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253.
- Yanagisawa M, Kawai S, Murata K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds. Bioengineered 4: 224-235.