전체메뉴

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O. 1981. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 130: 179-183.
    CrossRef
  2. Ameyama M, Shinagawa E, Matsushita K, Adachi O. 1985. Solubilization, purification and properties of membranebound glycerol dehydrogenase from Gluconobacter industrius. Agric. Biol. Chem. 49: 1001-1010.
  3. Bicker M, Endres S, Ott L, Vogel H. 2005. Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J. Mol. Catal. A Chem. 239: 151-157.
    CrossRef
  4. Black CS, Nair GR. 2013. Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells. Int. J. Chem. Eng. Appl. 4: 310-314.
    CrossRef
  5. Brenner DJ, Krieg NR, Staley JT, Garrity GM. 2005. Genus VIII. Gluconacetobacter, pp. 72-73. In Brenner DJ, Krieg NR, Staley JT (eds.), Bergey’s Manual of Sytematic Bacteriology, 2nd Ed. Springer Science+Business Media, New York.
  6. Chen J, Chen JH, Zhou CL. 2008. HPLC method for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. J. Chromatogr. Sci. 46: 912-916.
    Pubmed CrossRef
  7. Enders D, Voith M, Lenzen A. 2005. The dihydroxyacetone unit - a versatile C(3) building block in organic synthesis. Angew. Chem. Int. Ed. Engl. 44: 1304-1325.
    Pubmed CrossRef
  8. Gätgens C, Degner U, Bringer-Meyer S, Herrmann U. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559.
    Pubmed CrossRef
  9. Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, et al. 2011. Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol. Lett. 33: 2379-2383.
    Pubmed CrossRef
  10. Hekmat D, Bauer R, Fricke J. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116.
    Pubmed CrossRef
  11. Hekmat D, Bauer R, Neff V. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42: 71-76.
    CrossRef
  12. Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T. 2003. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochim. Biophys. Acta 1647: 278-288.
    CrossRef
  13. Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC. 2012. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation. Prep. Biochem. Biotechnol. 42: 15-28.
    Pubmed CrossRef
  14. Hu ZC, Zheng YG. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241.
    CrossRef
  15. Hu ZC, Zheng YG. 2011. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Appl. Biochem. Biotechnol. 165: 11521160.
    Pubmed CrossRef
  16. Lapenaite I, Kurtinaitiene B, Razumiene J, Laurinavicius V, Marcinkeviciene L, Bachmatova I, et al. 2005. Properties and analytical application of PQQ-dependent glycerol dehydrogenase from Gluconobacter sp. 33. Anal. Chim. Acta 549: 140-150.
    CrossRef
  17. Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, et al. 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett. 92: 221504.
    CrossRef
  18. Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, et al. 2013. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem. 48: 1603-1609.
    CrossRef
  19. Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, Wang G. 2013. Efficient production of dihydroxyacetone from biodieselderived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour. Technol. 142: 384-389.
    Pubmed CrossRef
  20. Ma L, Lu W, Xia Z, Wen J. 2010. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biochem. Eng. J. 49: 61-67.
    CrossRef
  21. Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T. 2002. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci. Biotechnol. Biochem. 66: 262-270.
    Pubmed CrossRef
  22. Nabe K, Izuo N, Yamada S, Chibata I. 1979. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl. Environ. Microbiol. 38: 1056-1060.
    Pubmed PMC
  23. Nie GJ, Yang XR, Liu H, Wang Li, Gong GH, Jin W, Zheng ZM. 2013. N+ ion beam implantation of tannase-producing and Aspergillus niger and optimization of its process parameters under submerged fermentation. Ann. Microbiol. 63: 279-287.
    CrossRef
  24. Raška J, Skopal F, Komers K, Machek J. 2007. Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun. 72: 1269-1283.
    CrossRef
  25. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738.
    Pubmed PMC CrossRef
  26. Ruch FE, Lin EC. 1975. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 124: 348-352.
    Pubmed PMC
  27. Silva GPD, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39.
    Pubmed CrossRef
  28. Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS. 2005. Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADHIIG from Pseudomonas putida HK5. J. Mol. Biol. 352: 91-104.
    Pubmed CrossRef
  29. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, et al. 2009. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol. 108: 851-858.
    Pubmed CrossRef
  30. Wang Q, Feng LR, Wei L, Li HG, Wang L, Zhou Y. 2014. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl. Biochem. Biotechnol. 174: 452-460.
    Pubmed CrossRef
  31. Xu S, Wang X, Du G, Zhou J, Chen J. 2014. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb. Cell Fact. 13: 146.
    Pubmed PMC CrossRef
  32. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2014. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.
    Pubmed PMC CrossRef
  33. Yang J, Zhang Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43: 174-181.
    Pubmed PMC CrossRef
  34. Yang W, Zhou Y, Zhao ZK. 2013. Production of dihydroxyacetone from glycerol by engineered Escherichia coli cells co-expressing gldA and nox genes. Afr. J. Biotechnol. 12: 4387-4392.
    CrossRef
  35. Zong H, Zhan Y, Li X, Peng L, Feng F, Li D. 2012. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr. J. Microbiol. Res. 6: 3154-3158.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(11): 1908-1917

Published online November 28, 2016 https://doi.org/10.4014/jmb.1604.04019

Copyright © The Korean Society for Microbiology and Biotechnology.

Enhancement of 1,3-Dihydroxyacetone Production from Gluconobacter oxydans by Combined Mutagenesis

Xi Lin 1, Sha Liu 1, Guangrong Xie 1, Jing Chen 1, Penghua Li 1 and Jianhua Chen 1*

School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China

Received: April 7, 2016; Accepted: July 20, 2016

Abstract

Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation,
atmospheric and room temperature plasma, and ion beam implantation, to increase the yield
of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method,
mutant Gluconobacter oxydans I-2-239 with a DHA productivity of 103.5 g/l in flask-shake
fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which
was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h.
Compared with the wild strain, a dramatic increase in enzyme activity was observed for the
mutant strain, although the increase in biomass was limited. DNA and amino acid sequence
alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the
sldAB of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site
residues and PQQ binding site residues suggested that these mutations were mainly related to
PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol
dehydrogenase. RT-qPCR assay indicated that the transcription levels of sldA and sldB in the
mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain,
suggesting another possible reason for the increased DHA productivity of the mutant strain.

Keywords: 1,3-Dihydroxyacetone, Glycerol, Bioconversion, Fermentation, Enzyme activity, Combined mutagenesis

References

  1. Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O. 1981. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 130: 179-183.
    CrossRef
  2. Ameyama M, Shinagawa E, Matsushita K, Adachi O. 1985. Solubilization, purification and properties of membranebound glycerol dehydrogenase from Gluconobacter industrius. Agric. Biol. Chem. 49: 1001-1010.
  3. Bicker M, Endres S, Ott L, Vogel H. 2005. Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J. Mol. Catal. A Chem. 239: 151-157.
    CrossRef
  4. Black CS, Nair GR. 2013. Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells. Int. J. Chem. Eng. Appl. 4: 310-314.
    CrossRef
  5. Brenner DJ, Krieg NR, Staley JT, Garrity GM. 2005. Genus VIII. Gluconacetobacter, pp. 72-73. In Brenner DJ, Krieg NR, Staley JT (eds.), Bergey’s Manual of Sytematic Bacteriology, 2nd Ed. Springer Science+Business Media, New York.
  6. Chen J, Chen JH, Zhou CL. 2008. HPLC method for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. J. Chromatogr. Sci. 46: 912-916.
    Pubmed CrossRef
  7. Enders D, Voith M, Lenzen A. 2005. The dihydroxyacetone unit - a versatile C(3) building block in organic synthesis. Angew. Chem. Int. Ed. Engl. 44: 1304-1325.
    Pubmed CrossRef
  8. Gätgens C, Degner U, Bringer-Meyer S, Herrmann U. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559.
    Pubmed CrossRef
  9. Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, et al. 2011. Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol. Lett. 33: 2379-2383.
    Pubmed CrossRef
  10. Hekmat D, Bauer R, Fricke J. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116.
    Pubmed CrossRef
  11. Hekmat D, Bauer R, Neff V. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42: 71-76.
    CrossRef
  12. Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T. 2003. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochim. Biophys. Acta 1647: 278-288.
    CrossRef
  13. Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC. 2012. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation. Prep. Biochem. Biotechnol. 42: 15-28.
    Pubmed CrossRef
  14. Hu ZC, Zheng YG. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241.
    CrossRef
  15. Hu ZC, Zheng YG. 2011. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Appl. Biochem. Biotechnol. 165: 11521160.
    Pubmed CrossRef
  16. Lapenaite I, Kurtinaitiene B, Razumiene J, Laurinavicius V, Marcinkeviciene L, Bachmatova I, et al. 2005. Properties and analytical application of PQQ-dependent glycerol dehydrogenase from Gluconobacter sp. 33. Anal. Chim. Acta 549: 140-150.
    CrossRef
  17. Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, et al. 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett. 92: 221504.
    CrossRef
  18. Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, et al. 2013. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem. 48: 1603-1609.
    CrossRef
  19. Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, Wang G. 2013. Efficient production of dihydroxyacetone from biodieselderived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour. Technol. 142: 384-389.
    Pubmed CrossRef
  20. Ma L, Lu W, Xia Z, Wen J. 2010. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biochem. Eng. J. 49: 61-67.
    CrossRef
  21. Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T. 2002. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci. Biotechnol. Biochem. 66: 262-270.
    Pubmed CrossRef
  22. Nabe K, Izuo N, Yamada S, Chibata I. 1979. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl. Environ. Microbiol. 38: 1056-1060.
    Pubmed KoreaMed
  23. Nie GJ, Yang XR, Liu H, Wang Li, Gong GH, Jin W, Zheng ZM. 2013. N+ ion beam implantation of tannase-producing and Aspergillus niger and optimization of its process parameters under submerged fermentation. Ann. Microbiol. 63: 279-287.
    CrossRef
  24. Raška J, Skopal F, Komers K, Machek J. 2007. Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun. 72: 1269-1283.
    CrossRef
  25. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738.
    Pubmed KoreaMed CrossRef
  26. Ruch FE, Lin EC. 1975. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 124: 348-352.
    Pubmed KoreaMed
  27. Silva GPD, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39.
    Pubmed CrossRef
  28. Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS. 2005. Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADHIIG from Pseudomonas putida HK5. J. Mol. Biol. 352: 91-104.
    Pubmed CrossRef
  29. Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, et al. 2009. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol. 108: 851-858.
    Pubmed CrossRef
  30. Wang Q, Feng LR, Wei L, Li HG, Wang L, Zhou Y. 2014. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl. Biochem. Biotechnol. 174: 452-460.
    Pubmed CrossRef
  31. Xu S, Wang X, Du G, Zhou J, Chen J. 2014. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb. Cell Fact. 13: 146.
    Pubmed KoreaMed CrossRef
  32. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2014. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.
    Pubmed KoreaMed CrossRef
  33. Yang J, Zhang Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43: 174-181.
    Pubmed KoreaMed CrossRef
  34. Yang W, Zhou Y, Zhao ZK. 2013. Production of dihydroxyacetone from glycerol by engineered Escherichia coli cells co-expressing gldA and nox genes. Afr. J. Biotechnol. 12: 4387-4392.
    CrossRef
  35. Zong H, Zhan Y, Li X, Peng L, Feng F, Li D. 2012. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr. J. Microbiol. Res. 6: 3154-3158.