전체메뉴

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Bai W, Xue Y, Zhou C, Ma Y. 2012. Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol. Lett. 34: 2093-2099.
    Pubmed CrossRef
  2. Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK. 2014. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus s p. WSUCF1. Bioresour. Technol. 165: 314-318.
    Pubmed CrossRef
  3. Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L. 2012. Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. J. Agric. Food Chem. 60: 12516-12524.
    Pubmed CrossRef
  4. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
    Pubmed CrossRef
  5. Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, et al. 2012. Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS One 7: e40430.
    Pubmed PMC CrossRef
  6. Ding M, Teng Y, Yin Q, Zhao J, Zhao F. 2008. The N terminal cellulose-binding domain of EGXA increases thermal stability of xylanase and changes its specific activities on different substrates. Acta Biochim. Biophys. Sin. 40: 949-954.
    CrossRef
  7. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K. 2003. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 2: 347-357.
    CrossRef
  8. Gallego V, Sánchez-Porro C, García MT, Ventosa A. 2006. Massilia aurea sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 56: 2449-2453.
    Pubmed CrossRef
  9. Gan HY, Gan HM, Tarasco AM, Busairi NI, Barton HA, Hudson AO, Savka MA. 2014. Whole-genome sequences of five oligotrophic bacteria isolated from deep within Lechuguilla Cave, New Mexico. Genome Announc. 2: e01133.
    Pubmed PMC CrossRef
  10. Gessesse A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533-3535.
    Pubmed PMC
  11. Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA. 2013, Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl. Microbiol. Biotechnol. 6: 2423-2431.
    Pubmed CrossRef
  12. Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ. 2009. Gene cloning, expression and characterization of a new coldactive and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115.
    Pubmed CrossRef
  13. Guo B, Li PY, Yue YS, Zhao HL, Dong S, Song XY, et al. 2013. Gene cloning, expression and characterization of a novel xylanase from the marine bacterium, Glaciecola mesophila KMM241. Mar. Drugs 11: 1173-1187.
    Pubmed PMC CrossRef
  14. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. 2011. Metagenomic discovery of biomassdegrading genes and genomes from cow rumen. Science 331:463-467.
    Pubmed CrossRef
  15. Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, Tang SJ. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum N TOU1. Biotechnol. Lett. 33: 1441-1447.
    Pubmed CrossRef
  16. Khandeparker R, Verma P, Deobagkar D. 2011. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. N. Biotechnol. 28: 814-821.
    Pubmed CrossRef
  17. Kim J. 2014. Massilia kyonggiensis sp. nov., isolated from forest soil in Korea. J. Microbiol. 52: 378-383.
    Pubmed CrossRef
  18. Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, et al. 2000. Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci. Biotechnol. Biochem. 64: 1230-1237.
    Pubmed CrossRef
  19. Li DY, Ren BP, He XM, Hu G , Li BG, Li M. 2011. Diet of Rhinopithecus bieti at Xiangguqing in Baimaxueshan National Nature Reserve. Acta Theriol. Sinica 31: 338-346.
  20. Li Z, Zhao H, Yang P, Zhao J, Huang H, Xue X, et al. 2013. Comparative quantitative analysis of gene expression profiles of glycoside hydrolase family 10 xylanases in the sheep rumen during a feeding cycle. Appl. Environ. Microbiol. 79: 1212-1220.
    Pubmed PMC CrossRef
  21. Liu X, Huang Z, Zhang X, Shao Z, Liu Z. 2014. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18: 441-450.
    Pubmed CrossRef
  22. Long YC, Zhong T, Xiao L. 1996. Study on geographical distribution and population of the Yunnan Snub-nosed monkey. Zool. Res. 17: 437-441.
  23. Mandal A, Kar S, Das Mohapatra PK, Maity C, Pati BR, Mondal KC. 2011. Purification and characterization of an endoxylanase from the culture broth of Bacillus cereus BSA1. Prikl. Biokhim. Mikrobiol. 47: 277-282.
    CrossRef
  24. Margesin R, Schinner F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73-83.
    Pubmed CrossRef
  25. Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E. 2010. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl. Microbiol. Biotechnol. 6: 2097-2105.
    Pubmed CrossRef
  26. Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J. Microbiol. Biotechnol. 22: 462-469.
    Pubmed CrossRef
  27. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. 2015. Massilia norwichensis sp. nov., isolated from an air sample. Int. J. Syst. Evol. Microbiol. 65: 56-64.
    Pubmed CrossRef
  28. Paës G, Berrin JG, Beaugrand J. 2012. GH11 xylanases:structure/function/properties relationships and applications. Biotechnol. Adv. 30: 564-592.
    Pubmed CrossRef
  29. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, et al. 2012. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7: e38571.
    Pubmed PMC CrossRef
  30. Setati ME. 2010. Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. Afr. J. Biotechnol. 9: 1555-1560.
  31. Voget S, Steele HL, Streit WR. 2006. Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126: 26-36.
    Pubmed CrossRef
  32. Wang G, Luo H, Wang Y, Huang H, Shi P, Yang P, et al. 2011. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour. Technol. 102: 3330-3336.
    Pubmed CrossRef
  33. Wang L, Hatem A, Catalyurek UV, Morrison M, Yu Z. 2013. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS One 8: e78507.
    Pubmed PMC CrossRef
  34. Xiao Z, Grosse S, Bergeron H, Lau PC. 2014. Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae. Appl. Microbiol. Biotechnol. 98: 8211-8222.
    Pubmed CrossRef
  35. Zhang G, Huang J, Huang G, Ma L, Zhang X. 2007. Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl. Microbiol. Biotechnol. 74: 339-346.
    Pubmed CrossRef
  36. Zhou J, Gao Y, Dong Y, Tang X, Li J, Xu B, et al. 2012. A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria s p. HJ3. J. Ind. Microbiol. Biotechnol. 39: 965-975.
    Pubmed CrossRef
  37. Zhou J, Shen J, Zhang R, Tang X, Li J, Xu B, et al. 2015. Molecular and biochemical characterization of a novel multidomain xylanase from Arthrobacter sp. GN16 isolated from the feces of Grus nigricollis. Appl. Biochem. Biotechnol. 175: 573-588.
    Pubmed CrossRef
  38. Zhou J, Shi P, Zhang R, Huang H, Meng K, Yang P, Yao B. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530.
    Pubmed CrossRef

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(1): 9-19

Published online January 28, 2016 https://doi.org/10.4014/jmb.1504.04021

Copyright © The Korean Society for Microbiology and Biotechnology.

Molecular and Biochemical Characterization of a Novel Xylanase from Massilia sp. RBM26 Isolated from the Feces of Rhinopithecus bieti

Bo Xu 1, 2, 3, Liming Dai 1, Junjun Li 1, 2, 3, Meng Deng 1, Huabiao Miao 1, Junpei Zhou 1, 2, 3, Yuelin Mu 1, 2, 3, Qian Wu 1, 2, 3, Xianghua Tang 1, 2, 3, Yunjuan Yang 1, 2, 3, Junmei Ding 1, 2, 3, Nanyu Han 1, 2, 3 and Zunxi Huang 1, 2, 3*

1School of Life Science, Yunnan Normal University, Kunming 650500, P.R. China, 2Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, P.R. China, 3Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming 650500, P.R. China

Received: April 8, 2015; Accepted: September 17, 2015

Abstract

Xylanases sourced from different bacteria have significantly different enzymatic properties.
Therefore, studying xylanases from different bacteria is important to their applications in
different fields. A potential xylanase degradation gene in Massilia was recently discovered
through genomic sequencing. However, its xylanase activity remains unexplored. This paper
is the first to report a xylanase (XynRBM26) belonging to the glycosyl hydrolase family (GH10)
from the genus Massilia. The gene encodes a 383-residue polypeptide (XynRBM26) with the
highest identity of 62% with the endoxylanase from uncultured bacterium BLR13. The
XynRBM26 expressed in Escherichia coli BL21 is a monomer with a molecular mass of 45.0 kDa.
According to enzymatic characteristic analysis, pH 5.5 is the most appropriate for XynRBM26,
which could maintain more than 90% activity between pH 5.0 and 8.0. Moreover, XynRBM26
is stable at 37°C and could maintain at least 96% activity after being placed at 37°C for 1 h.
This paper is the first to report that GH10 xylanase in an animal gastrointestinal tract (GIT) has
salt tolerance, which could maintain 86% activity in 5 M NaCl. Under the optimum conditions,
Km, Vmax, and kcat of XynRBM26 to beechwood xylan are 9.49 mg/ml, 65.79 μmol/min/mg, and
47.34 /sec, respectively. Considering that XynRBM26 comes from an animal GIT, this xylanase
has potential application in feedstuff. Moreover, XynRBM26 is applicable to high-salt food and
seafood processing, as well as other high-salt environmental biotechnological fields, because
of its high catalytic activity in high-concentration NaCl.

Keywords: Gastrointestinal tract, Massilia, Rhinopithecus bieti, salt tolerant, Xylanase

References

  1. Bai W, Xue Y, Zhou C, Ma Y. 2012. Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol. Lett. 34: 2093-2099.
    Pubmed CrossRef
  2. Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK. 2014. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus s p. WSUCF1. Bioresour. Technol. 165: 314-318.
    Pubmed CrossRef
  3. Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L. 2012. Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. J. Agric. Food Chem. 60: 12516-12524.
    Pubmed CrossRef
  4. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
    Pubmed CrossRef
  5. Dai X, Zhu Y, Luo Y, Song L, Liu D, Liu L, et al. 2012. Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS One 7: e40430.
    Pubmed KoreaMed CrossRef
  6. Ding M, Teng Y, Yin Q, Zhao J, Zhao F. 2008. The N terminal cellulose-binding domain of EGXA increases thermal stability of xylanase and changes its specific activities on different substrates. Acta Biochim. Biophys. Sin. 40: 949-954.
    CrossRef
  7. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K. 2003. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 2: 347-357.
    CrossRef
  8. Gallego V, Sánchez-Porro C, García MT, Ventosa A. 2006. Massilia aurea sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 56: 2449-2453.
    Pubmed CrossRef
  9. Gan HY, Gan HM, Tarasco AM, Busairi NI, Barton HA, Hudson AO, Savka MA. 2014. Whole-genome sequences of five oligotrophic bacteria isolated from deep within Lechuguilla Cave, New Mexico. Genome Announc. 2: e01133.
    Pubmed KoreaMed CrossRef
  10. Gessesse A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533-3535.
    Pubmed KoreaMed
  11. Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA. 2013, Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl. Microbiol. Biotechnol. 6: 2423-2431.
    Pubmed CrossRef
  12. Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ. 2009. Gene cloning, expression and characterization of a new coldactive and salt-tolerant endo-beta-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115.
    Pubmed CrossRef
  13. Guo B, Li PY, Yue YS, Zhao HL, Dong S, Song XY, et al. 2013. Gene cloning, expression and characterization of a novel xylanase from the marine bacterium, Glaciecola mesophila KMM241. Mar. Drugs 11: 1173-1187.
    Pubmed KoreaMed CrossRef
  14. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, et al. 2011. Metagenomic discovery of biomassdegrading genes and genomes from cow rumen. Science 331:463-467.
    Pubmed CrossRef
  15. Hung KS, Liu SM, Fang TY, Tzou WS, Lin FP, Sun KH, Tang SJ. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum N TOU1. Biotechnol. Lett. 33: 1441-1447.
    Pubmed CrossRef
  16. Khandeparker R, Verma P, Deobagkar D. 2011. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing. N. Biotechnol. 28: 814-821.
    Pubmed CrossRef
  17. Kim J. 2014. Massilia kyonggiensis sp. nov., isolated from forest soil in Korea. J. Microbiol. 52: 378-383.
    Pubmed CrossRef
  18. Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, et al. 2000. Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci. Biotechnol. Biochem. 64: 1230-1237.
    Pubmed CrossRef
  19. Li DY, Ren BP, He XM, Hu G , Li BG, Li M. 2011. Diet of Rhinopithecus bieti at Xiangguqing in Baimaxueshan National Nature Reserve. Acta Theriol. Sinica 31: 338-346.
  20. Li Z, Zhao H, Yang P, Zhao J, Huang H, Xue X, et al. 2013. Comparative quantitative analysis of gene expression profiles of glycoside hydrolase family 10 xylanases in the sheep rumen during a feeding cycle. Appl. Environ. Microbiol. 79: 1212-1220.
    Pubmed KoreaMed CrossRef
  21. Liu X, Huang Z, Zhang X, Shao Z, Liu Z. 2014. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18: 441-450.
    Pubmed CrossRef
  22. Long YC, Zhong T, Xiao L. 1996. Study on geographical distribution and population of the Yunnan Snub-nosed monkey. Zool. Res. 17: 437-441.
  23. Mandal A, Kar S, Das Mohapatra PK, Maity C, Pati BR, Mondal KC. 2011. Purification and characterization of an endoxylanase from the culture broth of Bacillus cereus BSA1. Prikl. Biokhim. Mikrobiol. 47: 277-282.
    CrossRef
  24. Margesin R, Schinner F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73-83.
    Pubmed CrossRef
  25. Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E. 2010. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl. Microbiol. Biotechnol. 6: 2097-2105.
    Pubmed CrossRef
  26. Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J. Microbiol. Biotechnol. 22: 462-469.
    Pubmed CrossRef
  27. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. 2015. Massilia norwichensis sp. nov., isolated from an air sample. Int. J. Syst. Evol. Microbiol. 65: 56-64.
    Pubmed CrossRef
  28. Paës G, Berrin JG, Beaugrand J. 2012. GH11 xylanases:structure/function/properties relationships and applications. Biotechnol. Adv. 30: 564-592.
    Pubmed CrossRef
  29. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, et al. 2012. Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS One 7: e38571.
    Pubmed KoreaMed CrossRef
  30. Setati ME. 2010. Diversity and industrial potential of hydrolase-producing halophilic/halotolerant eubacteria. Afr. J. Biotechnol. 9: 1555-1560.
  31. Voget S, Steele HL, Streit WR. 2006. Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126: 26-36.
    Pubmed CrossRef
  32. Wang G, Luo H, Wang Y, Huang H, Shi P, Yang P, et al. 2011. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour. Technol. 102: 3330-3336.
    Pubmed CrossRef
  33. Wang L, Hatem A, Catalyurek UV, Morrison M, Yu Z. 2013. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS One 8: e78507.
    Pubmed KoreaMed CrossRef
  34. Xiao Z, Grosse S, Bergeron H, Lau PC. 2014. Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae. Appl. Microbiol. Biotechnol. 98: 8211-8222.
    Pubmed CrossRef
  35. Zhang G, Huang J, Huang G, Ma L, Zhang X. 2007. Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl. Microbiol. Biotechnol. 74: 339-346.
    Pubmed CrossRef
  36. Zhou J, Gao Y, Dong Y, Tang X, Li J, Xu B, et al. 2012. A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria s p. HJ3. J. Ind. Microbiol. Biotechnol. 39: 965-975.
    Pubmed CrossRef
  37. Zhou J, Shen J, Zhang R, Tang X, Li J, Xu B, et al. 2015. Molecular and biochemical characterization of a novel multidomain xylanase from Arthrobacter sp. GN16 isolated from the feces of Grus nigricollis. Appl. Biochem. Biotechnol. 175: 573-588.
    Pubmed CrossRef
  38. Zhou J, Shi P, Zhang R, Huang H, Meng K, Yang P, Yao B. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: a new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530.
    Pubmed CrossRef