전체메뉴

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Beldman G, Searle-van Leeuwen MJF, De Ruiter GA, Siliha HA, Voragen AGJ. 1993. Degradation of arabinans by arabinanases from Aspergillus aculeatus and Aspergillus niger. Carbohydr. Polym. 20: 159-168.
    CrossRef
  2. Bezalel L, Shoham Y, Rosenberg E. 1993. Characterization and delignification activity of a thermostable α-L-arabinofuranosidase from Bacillus stearothermophilus. Appl. Microbiol. Biotechnol. 40: 57-62.
    CrossRef
  3. Canakci S, Kacagan M, Inan K, Belduz AO, Saha BC. 2008. Cloning, purification, and characterization of a thermostable α-L-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl. Microbiol. Biotechnol. 81: 61-68.
    Pubmed CrossRef
  4. Greve LC, Labavitch JM, Hungate RE. 1984. α-LArabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol. 47: 1135-1140.
    Pubmed PMC
  5. Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 α-L-arabinofuranosidase. EMBO J. 22: 4922-4932.
    Pubmed PMC CrossRef
  6. Hong MR, Park CS, Oh DK. 2009. Characterization of a thermostable endo-1,5-α-L-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol. Lett. 31: 1439-1443.
    Pubmed CrossRef
  7. Inacio JM, de Sa-Nogueira I. 2008. Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J. Bacteriol. 190: 4272-4280.
    Pubmed PMC CrossRef
  8. Kroon PA, Williamson G. 1996. Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol. Appl. Biochem. 23: 263-267.
    Pubmed
  9. Leal TF, de Sa-Nogueira I. 2004. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241: 41-48.
    Pubmed CrossRef
  10. Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102: 4277-4280.
    Pubmed CrossRef
  11. McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ. 1997. Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exomode of action. Biochem. J. 323: 547-555.
    Pubmed CrossRef
  12. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    Pubmed CrossRef
  13. Miyazaki K. 2005. Hyperthermophilic α-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9: 399-406.
  14. Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, et al. 2002. Cellvibrio japonicus α-Larabinanase 43A has a novel five-blade β-propeller fold. Nat. Struct. Biol. 9: 665-668.
  15. Park JM, Han NS, Kim TJ. 2007. Rapid detection and isolation of known and putative α-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
  16. Park JM, Jang MU, Kang JH, Kim MJ, Lee SW, Song YB, et al. 2012. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J. Microbiol. 50: 1041-1046.
  17. Proctor MR, Taylor EJ, Nurizzo D, Turkenburg JP, Lloyd RM, Vardakou M, et al. 2005. Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc. Natl. Acad. Sci. USA 102: 2697-2702.
  18. Saha BC. 2000. α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423.
  19. Sakamoto T, Kawasaki H. 2003. Purification and properties of two type-B α-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochim. Biophys. Acta 1621: 204-210.
  20. Sakamoto T, Sakai T. 1995. Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 39: 821-823.
  21. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374.
  22. Sorensen HR, Pedersen S, Jorgensen CT, Meyer AS. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-β-xylanase and α-L-arabinofuranosidase activities. Biotechnol. Prog. 23: 100-107.
  23. Yamaguchi A, Tada T, Wada K, Nakaniwa T, Kitatani T, Sogabe Y, et al. 2005. Structural basis for thermostability of endo-1,5-α-L-arabinanase from Bacillus thermodenitrificans TS-3. J. Biochem. 137: 587-592.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2015; 25(2): 227-233

Published online February 28, 2015 https://doi.org/10.4014/jmb.1411.11055

Copyright © The Korean Society for Microbiology and Biotechnology.

Synergistic Action Modes of Arabinan Degradation by Exo- and Endo-Arabinosyl Hydrolases

Jung-Mi Park 1, Myoung-Uoon Jang 1, Gyo Won Oh 1, Eun-Hee Lee 1, Jung-Hyun Kang 1, Yeong-Bok Song 2, Nam Soo Han 1 and Tae-Jip Kim 1*

1Department of Food Science and Biotechnology, and Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju 362-763, Republic of Korea, 2Sejeon Food Research Institute, Sejeon Co., Seongnam 462-807, Republic of Korea

Received: November 20, 2014; Accepted: November 27, 2014

Abstract

Two recombinant arabinosyl hydrolases, α-L-arabinofuranosidase from Geobacillus sp. KCTC
3012 (GAFase) and endo-(1,5)-α-L-arabinanase from Bacillus licheniformis DSM13 (BlABNase),
were overexpressed in Escherichia coli, and their synergistic modes of action against sugar beet
(branched) arabinan were investigated. Whereas GAFase hydrolyzed 35.9% of L-arabinose
residues from sugar beet (branched) arabinan, endo-action of BlABNase released only 0.5% of
L-arabinose owing to its extremely low accessibility towards branched arabinan. Interestingly,
the simultaneous treatment of GAFase and BlABNase could liberate approximately 91.2% of
L-arabinose from arabinan, which was significantly higher than any single exo-enzyme
treatment (35.9%) or even stepwise exo- after endo-enzyme treatment (75.5%). Based on their
unique modes of action, both exo- and endo-arabinosyl hydrolases can work in concert to
catalyze the hydrolysis of arabinan to L-arabinose. At the early stage in arabinan degradation,
exo-acting GAFase could remove the terminal arabinose branches to generate debranched
arabinan, which could be successively hydrolyzed into arabinooligosaccharides via the endoaction
of BlABNase. At the final stage, the simultaneous actions of exo- and endo-hydrolases
could synergistically accelerate the L-arabinose production with high conversion yield.

Keywords: Synergistic effect, α-L-arabinofuranosidase, endo-(1,5)-α-L-arabinanase, degradation, L-arabinose

References

  1. Beldman G, Searle-van Leeuwen MJF, De Ruiter GA, Siliha HA, Voragen AGJ. 1993. Degradation of arabinans by arabinanases from Aspergillus aculeatus and Aspergillus niger. Carbohydr. Polym. 20: 159-168.
    CrossRef
  2. Bezalel L, Shoham Y, Rosenberg E. 1993. Characterization and delignification activity of a thermostable α-L-arabinofuranosidase from Bacillus stearothermophilus. Appl. Microbiol. Biotechnol. 40: 57-62.
    CrossRef
  3. Canakci S, Kacagan M, Inan K, Belduz AO, Saha BC. 2008. Cloning, purification, and characterization of a thermostable α-L-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari. Appl. Microbiol. Biotechnol. 81: 61-68.
    Pubmed CrossRef
  4. Greve LC, Labavitch JM, Hungate RE. 1984. α-LArabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol. 47: 1135-1140.
    Pubmed KoreaMed
  5. Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 α-L-arabinofuranosidase. EMBO J. 22: 4922-4932.
    Pubmed KoreaMed CrossRef
  6. Hong MR, Park CS, Oh DK. 2009. Characterization of a thermostable endo-1,5-α-L-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol. Lett. 31: 1439-1443.
    Pubmed CrossRef
  7. Inacio JM, de Sa-Nogueira I. 2008. Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. J. Bacteriol. 190: 4272-4280.
    Pubmed KoreaMed CrossRef
  8. Kroon PA, Williamson G. 1996. Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol. Appl. Biochem. 23: 263-267.
    Pubmed
  9. Leal TF, de Sa-Nogueira I. 2004. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241: 41-48.
    Pubmed CrossRef
  10. Lim YR, Yeom SJ, Kim YS, Oh DK. 2011. Synergistic production of L-arabinose from arabinan by the combined use of thermostable endo- and exo-arabinanases from Caldicellulosiruptor saccharolyticus. Bioresour. Technol. 102: 4277-4280.
    Pubmed CrossRef
  11. McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ. 1997. Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exomode of action. Biochem. J. 323: 547-555.
    Pubmed CrossRef
  12. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    Pubmed CrossRef
  13. Miyazaki K. 2005. Hyperthermophilic α-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9: 399-406.
  14. Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, et al. 2002. Cellvibrio japonicus α-Larabinanase 43A has a novel five-blade β-propeller fold. Nat. Struct. Biol. 9: 665-668.
  15. Park JM, Han NS, Kim TJ. 2007. Rapid detection and isolation of known and putative α-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489.
  16. Park JM, Jang MU, Kang JH, Kim MJ, Lee SW, Song YB, et al. 2012. Detailed modes of action and biochemical characterization of endo-arabinanase from Bacillus licheniformis DSM13. J. Microbiol. 50: 1041-1046.
  17. Proctor MR, Taylor EJ, Nurizzo D, Turkenburg JP, Lloyd RM, Vardakou M, et al. 2005. Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc. Natl. Acad. Sci. USA 102: 2697-2702.
  18. Saha BC. 2000. α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423.
  19. Sakamoto T, Kawasaki H. 2003. Purification and properties of two type-B α-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochim. Biophys. Acta 1621: 204-210.
  20. Sakamoto T, Sakai T. 1995. Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 39: 821-823.
  21. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S. 1996. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374.
  22. Sorensen HR, Pedersen S, Jorgensen CT, Meyer AS. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing β-xylosidase and novel endo-1,4-β-xylanase and α-L-arabinofuranosidase activities. Biotechnol. Prog. 23: 100-107.
  23. Yamaguchi A, Tada T, Wada K, Nakaniwa T, Kitatani T, Sogabe Y, et al. 2005. Structural basis for thermostability of endo-1,5-α-L-arabinanase from Bacillus thermodenitrificans TS-3. J. Biochem. 137: 587-592.