전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911917.
    Pubmed CrossRef
  2. Chai X, Zhao X, Baoying W. 2012. Biofixation of carbon dioxide by Chlorococcum sp. in a photobioreactor with polytetrafluoroethene membrane sparger. Afr. J. Biotechnol. 11: 7445-7453.
  3. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. 2010. Microalgae cultivation in wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101:3097-3105.
    Pubmed CrossRef
  4. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99: 3389-3396.
    Pubmed CrossRef
  5. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100:833-838.
    Pubmed CrossRef
  6. Colman B, Rotatore C. 1995. Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ. 18: 919-924.
    CrossRef
  7. Costa JAV, deMorais MG. 2011. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 102: 2-9.
    Pubmed CrossRef
  8. Damiani MC, Popovich CA, Constenla D, Leonardi PI. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 101: 3801-3807.
    Pubmed CrossRef
  9. Den W, Wang CC, Yang S. 2010. Preliminary investigation of an integrated photobioreactor system for microalgal CO2 fixation. Chem. Eng. Trans. 21: 193-198.
  10. Emma Huertas I, Colman B, Espie GS, Lubian LM. 2000. Active transport of CO2 by three species of marine microalgae. J. Phycol. 36: 314-320.
    CrossRef
  11. EN 14214. 2003. Automotive fuels-fatty acid methyl esters (FAME) for diesel engines - requirements and test methods.
  12. Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269274.
    Pubmed CrossRef
  13. Grobbelaar JU. 2004. Algal nutrition: mineral nutrition, pp. 97-115. In Richmond A (ed.). Handbook of Microalgal Culture:Biotechnology and Applied Phycology. Blackwell Publishing Ltd, Oxford.
  14. Harrington KJ. 1986. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9: 1-17.
    CrossRef
  15. Ho S, Chen W, Chang J. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101: 8725-8730.
    Pubmed CrossRef
  16. Jacob-Lopes E, Lacerda LMCF, Franco TT. 2008. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nageli in a bubble column photobioreactor. Biochem. Eng. J. 40: 27-34.
    CrossRef
  17. Kajiwara S, Yamada H, Ohkuni N, Ohtaguchi K. 1997. Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Convers. Manage. 38: 529-532.
    CrossRef
  18. Knothe G. 2008. ‘‘Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358-1364.
    CrossRef
  19. Korre A, Nie ZG, Durucan S. 2010. Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. Int. J. Greenhouse Gas Contr. 4: 289-300.
    CrossRef
  20. Krohn BJ, McNeff CV, Yan B, Nowlan D. 2011. Production of algae based biodiesel using the continuous catalytic Mcgyan process. Bioresour. Technol. 102: 94-100
    Pubmed CrossRef
  21. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: 75-77.
    Pubmed CrossRef
  22. Li Y, Horsman M, Wang B, Wu N, Lan CQ. 2008. Effect of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636.
    Pubmed CrossRef
  23. Li ZS, Yuan HL, Yang JS, Li BZ. 2011. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresour. Technol. 102: 9128-9134.
    Pubmed CrossRef
  24. Miao XL, Li RX, Yao HY. 2009. Effective acid-catalyzed transesterification for biodiesel production. Energy Convers. Manage. 50: 2680-2684.
    CrossRef
  25. Nakamura T, Senior C, Olaizola M, Masutani S. 2001. Capture and sequestration of stationary combustion systems by photosynthetic microalgae. Proceedings of the First National Conference on Carbon Sequestration. Department of Energy National Energy Technology Laboratory, USA.
  26. Nayak M, Jena J, Bhakta S, Rath SS, Sarika C, Rao BVSK, et al. 2011. Screening of fresh water microalgae from eastern region of India for sustainable biodiesel production. Int. J. Green Energy 8: 669-683.
    CrossRef
  27. Putt R, Singh M, Chinnasamy S, Das KC. 2011. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour. Technol. 102: 32403245.
    Pubmed CrossRef
  28. Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL. 2011. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew. Sustain. Energy Rev. 15: 4002-4012.
    CrossRef
  29. Richmond A, Becker EW. 1986. Technological aspects of mass cultivation - A general outline, pp. 245-263. In Richmond A (ed.). CRC Handbook of Microalgal Mass Culture. CRC Press, Inc. Boca Raton, Florida.
  30. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112.
    Pubmed CrossRef
  31. Sayre R. 2010. Microalgae: the potential for carbon capture. Bioscience 60: 722-727.
    CrossRef
  32. Smith RG, Bidwell RGS. 1989. Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Plant Physiol. 89: 93-99.
    Pubmed CrossRef
  33. Stein JR. 1973. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, UK.
  34. Takagi M, Karseno YT. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223226.
    Pubmed CrossRef
  35. Wang B, Li Y, Wu N, Lan C. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718.
    Pubmed CrossRef
  36. Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T. 2011. Effect of cultivation mode on microalgal growth and CO2 fixation. Chem. Eng. Res. Des. 89: 1758-1762.
    CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2013; 23(9): 1260-1268

Published online September 28, 2013 https://doi.org/10.4014/jmb.1302.02044

Copyright © The Korean Society for Microbiology and Biotechnology.

Maximizing Biomass Productivity and CO2 Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

Manoranjan Nayak 1, 2*, Swagat S. Rath 1, Manikkannan Thirunavoukkarasu 1, Prasanna K. Panda 1, Barada K. Mishra 1 and Rama C. Mohanty 2

1CSIR - Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India, 2Utkal University, Vani Vihar, Bhubaneswar 751 004, India

Received: February 20, 2013; Accepted: May 25, 2013

Abstract

A series of experiments were carried out with three native strains of microalgae to measure
growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better
biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon
dioxide (CO2) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different
NaOH concentrations in modified BBM. The algal strain showed the maximum specific
growth rate (0.474 d-1), biomass productivity (110.9 mg l-1 d-1), and CO2 consumption rate
(208.4 mg l-1 d-1) with an NaOH concentration of 0.005 M on the 8th day of cultivation. These
values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions
(having no NaOH and CO2). The CO2 fixing efficiency of the microalga with other alternative
carbon sources like Na2CO3 and NaHCO3 was also investigated and compared. The optimized
experimental parameters at shake-flask scale were implemented for scaling up the process in a
self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to
31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal
lipids were mainly composed of C16/C18 fatty acids, and are desirable for biodiesel production.
The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for
biodiesel production and CO2 biofixation using stripping solution of NaOH in a cyclic process.

Keywords: Microalgae, biomass, total lipid, fatty acid, photobioreactor

References

  1. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911917.
    Pubmed CrossRef
  2. Chai X, Zhao X, Baoying W. 2012. Biofixation of carbon dioxide by Chlorococcum sp. in a photobioreactor with polytetrafluoroethene membrane sparger. Afr. J. Biotechnol. 11: 7445-7453.
  3. Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. 2010. Microalgae cultivation in wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101:3097-3105.
    Pubmed CrossRef
  4. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS. 2008. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 99: 3389-3396.
    Pubmed CrossRef
  5. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100:833-838.
    Pubmed CrossRef
  6. Colman B, Rotatore C. 1995. Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ. 18: 919-924.
    CrossRef
  7. Costa JAV, deMorais MG. 2011. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 102: 2-9.
    Pubmed CrossRef
  8. Damiani MC, Popovich CA, Constenla D, Leonardi PI. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 101: 3801-3807.
    Pubmed CrossRef
  9. Den W, Wang CC, Yang S. 2010. Preliminary investigation of an integrated photobioreactor system for microalgal CO2 fixation. Chem. Eng. Trans. 21: 193-198.
  10. Emma Huertas I, Colman B, Espie GS, Lubian LM. 2000. Active transport of CO2 by three species of marine microalgae. J. Phycol. 36: 314-320.
    CrossRef
  11. EN 14214. 2003. Automotive fuels-fatty acid methyl esters (FAME) for diesel engines - requirements and test methods.
  12. Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269274.
    Pubmed CrossRef
  13. Grobbelaar JU. 2004. Algal nutrition: mineral nutrition, pp. 97-115. In Richmond A (ed.). Handbook of Microalgal Culture:Biotechnology and Applied Phycology. Blackwell Publishing Ltd, Oxford.
  14. Harrington KJ. 1986. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass 9: 1-17.
    CrossRef
  15. Ho S, Chen W, Chang J. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101: 8725-8730.
    Pubmed CrossRef
  16. Jacob-Lopes E, Lacerda LMCF, Franco TT. 2008. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nageli in a bubble column photobioreactor. Biochem. Eng. J. 40: 27-34.
    CrossRef
  17. Kajiwara S, Yamada H, Ohkuni N, Ohtaguchi K. 1997. Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Convers. Manage. 38: 529-532.
    CrossRef
  18. Knothe G. 2008. ‘‘Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358-1364.
    CrossRef
  19. Korre A, Nie ZG, Durucan S. 2010. Life cycle modelling of fossil fuel power generation with post-combustion CO2 capture. Int. J. Greenhouse Gas Contr. 4: 289-300.
    CrossRef
  20. Krohn BJ, McNeff CV, Yan B, Nowlan D. 2011. Production of algae based biodiesel using the continuous catalytic Mcgyan process. Bioresour. Technol. 102: 94-100
    Pubmed CrossRef
  21. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: 75-77.
    Pubmed CrossRef
  22. Li Y, Horsman M, Wang B, Wu N, Lan CQ. 2008. Effect of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636.
    Pubmed CrossRef
  23. Li ZS, Yuan HL, Yang JS, Li BZ. 2011. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresour. Technol. 102: 9128-9134.
    Pubmed CrossRef
  24. Miao XL, Li RX, Yao HY. 2009. Effective acid-catalyzed transesterification for biodiesel production. Energy Convers. Manage. 50: 2680-2684.
    CrossRef
  25. Nakamura T, Senior C, Olaizola M, Masutani S. 2001. Capture and sequestration of stationary combustion systems by photosynthetic microalgae. Proceedings of the First National Conference on Carbon Sequestration. Department of Energy National Energy Technology Laboratory, USA.
  26. Nayak M, Jena J, Bhakta S, Rath SS, Sarika C, Rao BVSK, et al. 2011. Screening of fresh water microalgae from eastern region of India for sustainable biodiesel production. Int. J. Green Energy 8: 669-683.
    CrossRef
  27. Putt R, Singh M, Chinnasamy S, Das KC. 2011. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour. Technol. 102: 32403245.
    Pubmed CrossRef
  28. Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL. 2011. A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew. Sustain. Energy Rev. 15: 4002-4012.
    CrossRef
  29. Richmond A, Becker EW. 1986. Technological aspects of mass cultivation - A general outline, pp. 245-263. In Richmond A (ed.). CRC Handbook of Microalgal Mass Culture. CRC Press, Inc. Boca Raton, Florida.
  30. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112.
    Pubmed CrossRef
  31. Sayre R. 2010. Microalgae: the potential for carbon capture. Bioscience 60: 722-727.
    CrossRef
  32. Smith RG, Bidwell RGS. 1989. Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Plant Physiol. 89: 93-99.
    Pubmed CrossRef
  33. Stein JR. 1973. Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge, UK.
  34. Takagi M, Karseno YT. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223226.
    Pubmed CrossRef
  35. Wang B, Li Y, Wu N, Lan C. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718.
    Pubmed CrossRef
  36. Zhao B, Zhang Y, Xiong K, Zhang Z, Hao X, Liu T. 2011. Effect of cultivation mode on microalgal growth and CO2 fixation. Chem. Eng. Res. Des. 89: 1758-1762.
    CrossRef