전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101: 4851-4861.
    Pubmed CrossRef
  2. Asha BM, Revathi M, Yadav A, Sakthivel N. 2012. Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J. Microbiol. Biotechnol. 22: 1501-1509.
    Pubmed CrossRef
  3. Biely P, Vrsanská M, Krátký Z. 1980. Xylan-degrading enzymes of the yeast Cryptococcus albidus: identification and cellular localization. Eur. J. Biochem. 108: 313-321.
    Pubmed CrossRef
  4. Biely P, Kremnický L. 1998. Yeasts degrading cellulose, hemicelluloses and pectin. Food Technol. Biotechnol. 36: 305312.
  5. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7: 248254.
  6. Cai BY, Ge JP, Ling HZ, KK Cheng, Ping WX. 2012. Statistical optimization of dilute sulphuric acid pre-treatment of corncob for xylose recovery and ethanol production. Biomass Bioenerg. 36: 250-257.
    CrossRef
  7. Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766.
    Pubmed CrossRef
  8. Dias DR, Schwan RF. 2010. Isolamento e identificação de leveduras, pp. 227-277. In Moreira FMS, Huising EJ, Bignell DE (eds.). Manual de biologia dos solos tropicais: amostragem e caracterização da biodiversidade. UFLA, Lavras, BR.
  9. Duarte WF, Pereira GVM, Gervásio IM, Schwan RF. 2009. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 36: 557–569.
    Pubmed CrossRef
  10. Ferreira DF. 2008. Sisvar: um programa para análises e ensino de estatística. Rev. Sympos. 6: 36-41.
  11. Iefuji H, Chino M, Kato M, Iimura Y. 1996. Acid xylanase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60: 13311338.
    CrossRef
  12. Iefuji H, Chino M, Kato M, Iimura Y. 1996. Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification characterization, cloning and sequencing. Biochem. J. 318: 989-996.
    Pubmed
  13. Job J, Sukumaran RK, Jayachandran K. 2010. Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box–Behnken experimental designs. World J. Microbiol. Biotechnol. 26: 1385-1391.
    CrossRef
  14. Jørgensen H, Kristensen JB, Felby C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod. Bioref. 1: 119-134.
    CrossRef
  15. Kanti A, Sudiana IM. 2002. Cellulolytic yeast isolated from soil from Gunung Halimun National Park (West Java, Indonésia). Berita Biol. 6: 85-90.
  16. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. 2008. A rapid and easy method for the detection of microbial cellulose on agar plates using gram’s iodine. Curr. Microbiol. 57: 503-507.
    Pubmed CrossRef
  17. Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47: 273-279.
    CrossRef
  18. Leite RSR, Bocchini DA, Martins ES, Silva D, Gomes E, Silva R. 2007. Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pullulans on solid state fermentation. Appl. Biochem. Biotechnol. 136-140: 281-288.
  19. Lima AS, Nóbrega RSA, Barberi A, Silva K, Ferreira DF, Moreira FMS. 2009. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpurreum). Plant Soil 319: 127-145.
    CrossRef
  20. Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.
    Pubmed CrossRef
  21. Liu D, Zhang R, Yang X, Hongsheng W, Xu D, Zhu T, et al. 2011. Thermostable cellulose production of Aspergillus fumigates Z5 under solid-state fermentation and its application in the degradation of agricultural wastes. Int. Biodeterior. Biodegrad. 65: 717-725.
    CrossRef
  22. Martín C, Galbe M, Nilvebrant NO, Jönsson LJ. 2002. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pre-treated by steam explosion using different impregnating agents. Appl. Biochem. Biotechnol. 98100: 699-616.
    CrossRef
  23. Moreira FMS, Nóbrega RSA, Jesus EC, Ferreira DF, Pérez DV. 2009. Differentiation in the fertility of inceptisols as related to land use in the upper Solimões river region, western Amazon. Sci. Total Environ. 408: 349-355.
    Pubmed CrossRef
  24. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. 2005. Features of promising technologies for treatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.
    Pubmed CrossRef
  25. Oliveira MES, Pantoja L, Duarte WF, Collela CF, Valarelli LT, Schwan RF, et al. 2011. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Res. Int. 44: 2391-2400.
    CrossRef
  26. Olsson L, Hahn-Hägerdal BH. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312-331.
    CrossRef
  27. Palmqvist E, Hahn-Hägerdal BH. 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74: 17-24.
    CrossRef
  28. Pandey A, Soccol CR, Nigam P, Soccol VT. 2000. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74: 69-80.
    CrossRef
  29. Parachin NS, Siqueira S, de Faria FP, Torres FAG, Moraes LMP. 2009. Xylanase from Cryptococcus flavus isolate I-11:enzymatic profile, isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae. J. Mol. Catal. B Enzym. 59: 52-57.
    CrossRef
  30. Pothiraj C, Balaji P, Eyini M. 2006. Enhanced production of cellulases by various fungal cultures in solid-state fermentation of cassava waste. Afr. J. Biotechnol. 5: 1882-1885.
  31. Ramos CL, Almeida EG, Pereira GVM, Cardoso PG, Dias ES, Schwan RF. 2010. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140: 225-231.
    Pubmed CrossRef
  32. Saha BC, Iten LB, Cotta MA, Wu YV. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40: 3693-3700.
    CrossRef
  33. Santos VTO, Esteves PJ, Milagres AMF, Carvalho W. 2011. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pre-treated with dilute sulphuric acid. J. Ind. Microbiol. Biotechnol. 38:1089-1098.
    Pubmed CrossRef
  34. Sláviková E, Vadkertiová R. 2000. The occurrence of yeast in the forest soil. J. Basic Microbiol. 40: 207-212.
    CrossRef
  35. Sláviková E, Vadkertiová R. 2003. The diversity of yeast in the agricultural soil. J. Basic Microbiol. 43: 430-436.
    Pubmed CrossRef
  36. Sláviková E, Kosiková B, Mikulásová M. 2002. Biotransformation of waste lignin products by the soil-inhabiting yeast Trichosporon pullulans. Can. J. Microbiol. 48: 200-203.
    Pubmed CrossRef
  37. Sukumaran RK, Singhania RR, Mathew GM, Pandey A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energ. 34: 421-424.
    CrossRef
  38. Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.
    CrossRef
  39. Talebnia F, Karakashev D, Angelidak I. 2010. Production of bioethanol from wheat straw: an overview on pre-treatment, hydrolysis and fermentation. Bioresour. Technol. 101: 47444753.
    Pubmed CrossRef
  40. Thongekkaew J, Ikeda H, Masaki K, Lefuji H. 2008. An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Express. Purif. 60: 140-146.
    Pubmed CrossRef
  41. Tian S, Zhou G, Yan F, Yu Y, Yang X. 2009. Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification. Biotechnol. Adv. 27: 656-670.
    Pubmed CrossRef
  42. Van Soest PJ. 1967. Development of a comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 26: 119-128.
  43. Van Staden J, den Haan H, van Zyl WH, Botha A, ViljoenBloom M. 2007. Phytase activity in Cryptococcus laurentii ABO510. FEMS Yeast Res. 7: 442-448.
    Pubmed CrossRef
  44. Vital MJS, Abranches J, Hagler AN, Mendonca-Hagler LC. 2002. Mycocinogenic yeasts isolated from Amazon soils of the Maracá Ecological Station, Roraima-Brazil. Braz. J. Microbiol. 3: 230-235.
    CrossRef
  45. Wanderley KJ, Torres FAG, Moraes LMP, Ulhoa CJ. 2004. Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett. 231: 165-169.
    CrossRef
  46. Zhang L, Liu Y, Niu X, Liu Y, Liao W. 2012. Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy 37:16-24.
    CrossRef
  47. Zhang YHP, Himmel ME, Mielenz JR. 2006. Outlook for cellulose improvement: screening and selection strategies. Biotechnol. Adv. 24: 452-481.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2013; 23(10): 1403-1412

Published online October 28, 2013 https://doi.org/10.4014/jmb.1302.02062

Copyright © The Korean Society for Microbiology and Biotechnology.

Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes

Angelica Cristina de Souza 1, Fernanda Paula Carvalho 1, Cristina Ferreira Silva e Batista 1, Rosane Freitas Schwan 1 and Disney Ribeiro Dias 2*

1Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000, Lavras, MG, Brazil., 2Department of Food Science, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000, Lavras, MG, Brazil.

Received: February 26, 2013; Accepted: July 9, 2013

Abstract

Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important
technologies for sustainable development. To use this biomass, it is necessary to circumvent
the physical and chemical barriers presented by the cohesive combination of the main biomass
components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable
sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated
from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on
sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the
Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively,
were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β-
glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura
sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the
obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast
enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32%
of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction,
suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this
study highlight the importance of isolating microbial strains that produce enzymes of
biotechnological interest, given their extensive application in biofuel production.

Keywords: Cryptococcus laurentii, yeasts, second-generation ethanol, bioethanol, Cerrado, Amazon Region

References

  1. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101: 4851-4861.
    Pubmed CrossRef
  2. Asha BM, Revathi M, Yadav A, Sakthivel N. 2012. Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J. Microbiol. Biotechnol. 22: 1501-1509.
    Pubmed CrossRef
  3. Biely P, Vrsanská M, Krátký Z. 1980. Xylan-degrading enzymes of the yeast Cryptococcus albidus: identification and cellular localization. Eur. J. Biochem. 108: 313-321.
    Pubmed CrossRef
  4. Biely P, Kremnický L. 1998. Yeasts degrading cellulose, hemicelluloses and pectin. Food Technol. Biotechnol. 36: 305312.
  5. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7: 248254.
  6. Cai BY, Ge JP, Ling HZ, KK Cheng, Ping WX. 2012. Statistical optimization of dilute sulphuric acid pre-treatment of corncob for xylose recovery and ethanol production. Biomass Bioenerg. 36: 250-257.
    CrossRef
  7. Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766.
    Pubmed CrossRef
  8. Dias DR, Schwan RF. 2010. Isolamento e identificação de leveduras, pp. 227-277. In Moreira FMS, Huising EJ, Bignell DE (eds.). Manual de biologia dos solos tropicais: amostragem e caracterização da biodiversidade. UFLA, Lavras, BR.
  9. Duarte WF, Pereira GVM, Gervásio IM, Schwan RF. 2009. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 36: 557–569.
    Pubmed CrossRef
  10. Ferreira DF. 2008. Sisvar: um programa para análises e ensino de estatística. Rev. Sympos. 6: 36-41.
  11. Iefuji H, Chino M, Kato M, Iimura Y. 1996. Acid xylanase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60: 13311338.
    CrossRef
  12. Iefuji H, Chino M, Kato M, Iimura Y. 1996. Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification characterization, cloning and sequencing. Biochem. J. 318: 989-996.
    Pubmed
  13. Job J, Sukumaran RK, Jayachandran K. 2010. Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box–Behnken experimental designs. World J. Microbiol. Biotechnol. 26: 1385-1391.
    CrossRef
  14. Jørgensen H, Kristensen JB, Felby C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod. Bioref. 1: 119-134.
    CrossRef
  15. Kanti A, Sudiana IM. 2002. Cellulolytic yeast isolated from soil from Gunung Halimun National Park (West Java, Indonésia). Berita Biol. 6: 85-90.
  16. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. 2008. A rapid and easy method for the detection of microbial cellulose on agar plates using gram’s iodine. Curr. Microbiol. 57: 503-507.
    Pubmed CrossRef
  17. Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47: 273-279.
    CrossRef
  18. Leite RSR, Bocchini DA, Martins ES, Silva D, Gomes E, Silva R. 2007. Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pullulans on solid state fermentation. Appl. Biochem. Biotechnol. 136-140: 281-288.
  19. Lima AS, Nóbrega RSA, Barberi A, Silva K, Ferreira DF, Moreira FMS. 2009. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpurreum). Plant Soil 319: 127-145.
    CrossRef
  20. Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.
    Pubmed CrossRef
  21. Liu D, Zhang R, Yang X, Hongsheng W, Xu D, Zhu T, et al. 2011. Thermostable cellulose production of Aspergillus fumigates Z5 under solid-state fermentation and its application in the degradation of agricultural wastes. Int. Biodeterior. Biodegrad. 65: 717-725.
    CrossRef
  22. Martín C, Galbe M, Nilvebrant NO, Jönsson LJ. 2002. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pre-treated by steam explosion using different impregnating agents. Appl. Biochem. Biotechnol. 98100: 699-616.
    CrossRef
  23. Moreira FMS, Nóbrega RSA, Jesus EC, Ferreira DF, Pérez DV. 2009. Differentiation in the fertility of inceptisols as related to land use in the upper Solimões river region, western Amazon. Sci. Total Environ. 408: 349-355.
    Pubmed CrossRef
  24. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. 2005. Features of promising technologies for treatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.
    Pubmed CrossRef
  25. Oliveira MES, Pantoja L, Duarte WF, Collela CF, Valarelli LT, Schwan RF, et al. 2011. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Res. Int. 44: 2391-2400.
    CrossRef
  26. Olsson L, Hahn-Hägerdal BH. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312-331.
    CrossRef
  27. Palmqvist E, Hahn-Hägerdal BH. 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74: 17-24.
    CrossRef
  28. Pandey A, Soccol CR, Nigam P, Soccol VT. 2000. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74: 69-80.
    CrossRef
  29. Parachin NS, Siqueira S, de Faria FP, Torres FAG, Moraes LMP. 2009. Xylanase from Cryptococcus flavus isolate I-11:enzymatic profile, isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae. J. Mol. Catal. B Enzym. 59: 52-57.
    CrossRef
  30. Pothiraj C, Balaji P, Eyini M. 2006. Enhanced production of cellulases by various fungal cultures in solid-state fermentation of cassava waste. Afr. J. Biotechnol. 5: 1882-1885.
  31. Ramos CL, Almeida EG, Pereira GVM, Cardoso PG, Dias ES, Schwan RF. 2010. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140: 225-231.
    Pubmed CrossRef
  32. Saha BC, Iten LB, Cotta MA, Wu YV. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40: 3693-3700.
    CrossRef
  33. Santos VTO, Esteves PJ, Milagres AMF, Carvalho W. 2011. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pre-treated with dilute sulphuric acid. J. Ind. Microbiol. Biotechnol. 38:1089-1098.
    Pubmed CrossRef
  34. Sláviková E, Vadkertiová R. 2000. The occurrence of yeast in the forest soil. J. Basic Microbiol. 40: 207-212.
    CrossRef
  35. Sláviková E, Vadkertiová R. 2003. The diversity of yeast in the agricultural soil. J. Basic Microbiol. 43: 430-436.
    Pubmed CrossRef
  36. Sláviková E, Kosiková B, Mikulásová M. 2002. Biotransformation of waste lignin products by the soil-inhabiting yeast Trichosporon pullulans. Can. J. Microbiol. 48: 200-203.
    Pubmed CrossRef
  37. Sukumaran RK, Singhania RR, Mathew GM, Pandey A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energ. 34: 421-424.
    CrossRef
  38. Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.
    CrossRef
  39. Talebnia F, Karakashev D, Angelidak I. 2010. Production of bioethanol from wheat straw: an overview on pre-treatment, hydrolysis and fermentation. Bioresour. Technol. 101: 47444753.
    Pubmed CrossRef
  40. Thongekkaew J, Ikeda H, Masaki K, Lefuji H. 2008. An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Express. Purif. 60: 140-146.
    Pubmed CrossRef
  41. Tian S, Zhou G, Yan F, Yu Y, Yang X. 2009. Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification. Biotechnol. Adv. 27: 656-670.
    Pubmed CrossRef
  42. Van Soest PJ. 1967. Development of a comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 26: 119-128.
  43. Van Staden J, den Haan H, van Zyl WH, Botha A, ViljoenBloom M. 2007. Phytase activity in Cryptococcus laurentii ABO510. FEMS Yeast Res. 7: 442-448.
    Pubmed CrossRef
  44. Vital MJS, Abranches J, Hagler AN, Mendonca-Hagler LC. 2002. Mycocinogenic yeasts isolated from Amazon soils of the Maracá Ecological Station, Roraima-Brazil. Braz. J. Microbiol. 3: 230-235.
    CrossRef
  45. Wanderley KJ, Torres FAG, Moraes LMP, Ulhoa CJ. 2004. Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett. 231: 165-169.
    CrossRef
  46. Zhang L, Liu Y, Niu X, Liu Y, Liao W. 2012. Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy 37:16-24.
    CrossRef
  47. Zhang YHP, Himmel ME, Mielenz JR. 2006. Outlook for cellulose improvement: screening and selection strategies. Biotechnol. Adv. 24: 452-481.
    Pubmed CrossRef