전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Boué, M. S., H. C. Carter-Wientjes, Y. B. Shih, and E. T. Cleveland. 2003. Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991: 61-68.
    CrossRef
  2. Canivenc-Lavier, M. C., M. Bentejac, M. L. Miller, J. Leclerc, M. H. Siess, N. Latruffe, and M. Suschetet. 1996. Differential effects of nonhydroxylated flavonoids as inducers of cytochrome P450 1A and 2B isozymes in rat liver. Toxicol. Appl. Pharmacol. 136: 348-353.
    Pubmed CrossRef
  3. Chen, L. J., D. E. Games, J. Jones, and H. Kidwell. 2003. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. Relat. Technol. 26: 1623-1636.
    CrossRef
  4. Ciolino, H. P., T. T. Wang, and G. C. Yeh. 1998. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res. 58: 2754-2760.
    Pubmed
  5. Das, S. and P. N. R. John. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508.
    Pubmed CrossRef
  6. Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.
    Pubmed
  7. Green, A. J., A. W. Munro, M. R. Cheesman, G. A. Reid, C. von Wachenfeldt, and S. K. Chapman. 2003. Expression, purification and characterization of a Bacillus subtilis ferredoxin:A potential electron transfer donor to cytochrome P450. Biol. J. Inorg. Biochem. 3: 92-99.
    CrossRef
  8. Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
    Pubmed
  9. Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems - biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344.
    Pubmed CrossRef
  10. Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139: 1-21.
    CrossRef
  11. Hosny, M., K. Dhar, and J. P. Rosazza. 2001. Hydroxylations and methylations of quercetin, fisetin and catechin by Streptomyces griseus. J. Nat. Prod. 64: 462-465.
    Pubmed CrossRef
  12. Hosny, M. and J. P. N. Rosazza. 1999. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62: 1609-1612.
    CrossRef
  13. Hur, H. and F. Rafii. 2000. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 192: 21-25.
    Pubmed CrossRef
  14. Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478.
    Pubmed CrossRef
  15. Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of flavone and isoflavone. J. Xenobiot. 20: 363373.
    Pubmed CrossRef
  16. Kanth, B. K., K. Liou, and J. K. Sohng. 2010. Homology modeling; binding site identification and docking in flavone hydroxylase CYP105P2 in Streptomyces peucetius ATCC 27952. Comp. Biol. Chem. 34: 226-231.
    Pubmed CrossRef
  17. Kasai, N., S. Ikushiro, S. Hirosue, A. Arisawa, H. Ichinose, Y. Uchida, et al. 2010. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J. Biochem. 147: 117-125.
    Pubmed CrossRef
  18. Ma, Y. L., Q. M. Li, H. Van den Heuvel, and M. Claeys. 1997. Characterization of flavone and flavonol aglycones by collisionreduced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11: 1357-1364.
    CrossRef
  19. Modi, S., M. J. Sutcliffe, W. U. Primrose, L. Y. Lian, and G. C. Roberts. 1996. The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat. Struct. Biol. 3: 414-417.
    Pubmed CrossRef
  20. Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Fevereisen, D. J. Waxman, et al. 1996. P450 superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42.
    Pubmed CrossRef
  21. Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
    Pubmed
  22. Park, Y., L. Sunhee, W. Yoonkyung, and L. Yoongho. 2009. Relationships between structure and anti-oxidative effects of hydroxyflavones. Bull. Korean Chem. Soc. 30: 1397-1400.
    CrossRef
  23. Peterson, J. A., M. C. Lorence, and B. Amarneh. 1990. Putidaredoxin reductase and putidaredoxin: Cloning, sequence determination, and heterologous expression of the proteins. J. Biol. Chem. 265: 6066-6073.
    Pubmed
  24. Roh, C., K. Y. Choi, B. P. Pandey, and B. G. Kim. 2009. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. J. Mol. Catal. B Enzym. 59: 248-253.
    CrossRef
  25. Rujisenaars, H. J., E. M. Sperling, P. H. Wiegerinck, F. T. Brands, J. Wery, and J. A. de Bont. 2007. Testosterone 15Bhydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131: 205-208.
    Pubmed CrossRef
  26. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  27. Sariaslani, F. S., L. R. McGee, M. K. Trower, and F. G. Kitson. 1990. Lack of region- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P450soy. Biochem. Biophys. Res. Commun. 170: 456-461.
    CrossRef
  28. Seitz, C., S. Ameres, and G. Forkmann. 2007. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett. 581: 3429-3434.
    Pubmed CrossRef
  29. Shinodo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A. Saito, et al. 2001. Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem. 65: 24722481.
    Pubmed CrossRef
  30. Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562.
    Pubmed CrossRef
  31. Sthapit, B., T.-J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201206.
    Pubmed CrossRef
  32. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Pubmed PMC CrossRef
  33. Ueno, M., M. Yamashita, M. Hashimoto, M. Hino, and A. Fujie. 2005. Oxidative activities of heterologously expressed CYP107B1 and CYP105D1 in whole-cell biotransformation using Streptomyces lividans TK24. J. Biosci. Bioeng. 100: 567572.
    Pubmed CrossRef
  34. Uno, T., O. Sota, M. Satoko, I. Atsushi, U. Yuichi, N. Masahiko, et al. 2008. Bioconversion of small molecules by cytochrome P450 species expressed in Escherichia coli. Biotechnol. Appl. Biochem. 50: 165-171.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(8): 1059-1065

Published online August 28, 2012 https://doi.org/10.4014/jmb.1201.01037

Copyright © The Korean Society for Microbiology and Biotechnology.

Biotransformation of Flavone by CYP105P2 from Streptomyces peucetius

Narayan Prasad Niraula 1, Saurabh Bhattarai 1, Na-Rae Lee 1, Jae Kyung Sohng 1 and Tae-Jin Oh 1*

Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University, Asansi 336-708, Korea

Received: January 26, 2012; Accepted: April 9, 2012

Abstract

Biocatalytic transfer of oxygen in isolated cytochrome
P450 or whole microbial cells is an elegant and efficient
way to achieve selective hydroxylation. Cytochrome P450
CYP105P2 was isolated from Streptomyces peucetius
that showed a high degree of amino acid identity with
hydroxylases. Previously performed homology modeling,
and subsequent docking of the model with flavone,
displayed a reasonable docked structure. Therefore, in
this study, in a pursuit to hydroxylate the flavone ring,
CYP105P2 was co-expressed in a two-vector system with
putidaredoxin reductase (camA) and putidaredoxin (camB)
from Pseudomonas putida for efficient electron transport.
HPLC analysis of the isolated product, together with LCMS
analysis, showed a monohydroxylated flavone, which
was further established by subsequent ESI/MS-MS. A
successful 10.35% yield was achieved with the whole-cell
bioconversion reaction in Escherichia coli. We verified
that CYP105P2 is a potential bacterial hydroxylase.

Keywords: Cytochrome P450, flavone, redox partner, Streptomyces peucetius, whole-cell biotransformation

References

  1. Boué, M. S., H. C. Carter-Wientjes, Y. B. Shih, and E. T. Cleveland. 2003. Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991: 61-68.
    CrossRef
  2. Canivenc-Lavier, M. C., M. Bentejac, M. L. Miller, J. Leclerc, M. H. Siess, N. Latruffe, and M. Suschetet. 1996. Differential effects of nonhydroxylated flavonoids as inducers of cytochrome P450 1A and 2B isozymes in rat liver. Toxicol. Appl. Pharmacol. 136: 348-353.
    Pubmed CrossRef
  3. Chen, L. J., D. E. Games, J. Jones, and H. Kidwell. 2003. Separation and identification of flavonoids in an extract from the seeds of Oroxylum indicum by CCC. J. Liq. Chromatogr. Relat. Technol. 26: 1623-1636.
    CrossRef
  4. Ciolino, H. P., T. T. Wang, and G. C. Yeh. 1998. Diosmin and diosmetin are agonists of the aryl hydrocarbon receptor that differentially affect cytochrome P450 1A1 activity. Cancer Res. 58: 2754-2760.
    Pubmed
  5. Das, S. and P. N. R. John. 2006. Microbial and enzymatic transformations of flavonoids. J. Nat. Prod. 69: 499-508.
    Pubmed CrossRef
  6. Gotoh, O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.
    Pubmed
  7. Green, A. J., A. W. Munro, M. R. Cheesman, G. A. Reid, C. von Wachenfeldt, and S. K. Chapman. 2003. Expression, purification and characterization of a Bacillus subtilis ferredoxin:A potential electron transfer donor to cytochrome P450. Biol. J. Inorg. Biochem. 3: 92-99.
    CrossRef
  8. Gunsalus, I. C. and S. G. Sligar. 1978. Oxygen reduction by the P450 monoxygenase systems. Adv. Enzymol. Relat. Areas Mol. Biol. 47: 1-44.
    Pubmed
  9. Hannemann, F., A. Bichet, K. M. Ewen, and R. Bernhardt. 2007. Cytochrome P450 systems - biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344.
    Pubmed CrossRef
  10. Hodek, P., P. Trefil, and M. Stiborova. 2002. Flavonoids potent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact. 139: 1-21.
    CrossRef
  11. Hosny, M., K. Dhar, and J. P. Rosazza. 2001. Hydroxylations and methylations of quercetin, fisetin and catechin by Streptomyces griseus. J. Nat. Prod. 64: 462-465.
    Pubmed CrossRef
  12. Hosny, M. and J. P. N. Rosazza. 1999. Novel isoflavone, cinnamic acid, and triterpenoid glycosides in soybean molasses. J. Nat. Prod. 62: 1609-1612.
    CrossRef
  13. Hur, H. and F. Rafii. 2000. Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. FEMS Microbiol. Lett. 192: 21-25.
    Pubmed CrossRef
  14. Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478.
    Pubmed CrossRef
  15. Ibrahim, A. R. and Y. Abul-Hajj. 1990. Microbiological transformation of flavone and isoflavone. J. Xenobiot. 20: 363373.
    Pubmed CrossRef
  16. Kanth, B. K., K. Liou, and J. K. Sohng. 2010. Homology modeling; binding site identification and docking in flavone hydroxylase CYP105P2 in Streptomyces peucetius ATCC 27952. Comp. Biol. Chem. 34: 226-231.
    Pubmed CrossRef
  17. Kasai, N., S. Ikushiro, S. Hirosue, A. Arisawa, H. Ichinose, Y. Uchida, et al. 2010. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J. Biochem. 147: 117-125.
    Pubmed CrossRef
  18. Ma, Y. L., Q. M. Li, H. Van den Heuvel, and M. Claeys. 1997. Characterization of flavone and flavonol aglycones by collisionreduced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11: 1357-1364.
    CrossRef
  19. Modi, S., M. J. Sutcliffe, W. U. Primrose, L. Y. Lian, and G. C. Roberts. 1996. The catalytic mechanism of cytochrome P450 BM3 involves a 6 Å movement of the bound substrate on reduction. Nat. Struct. Biol. 3: 414-417.
    Pubmed CrossRef
  20. Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Fevereisen, D. J. Waxman, et al. 1996. P450 superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42.
    Pubmed CrossRef
  21. Omura, T. and R. Sato. 1964. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.
    Pubmed
  22. Park, Y., L. Sunhee, W. Yoonkyung, and L. Yoongho. 2009. Relationships between structure and anti-oxidative effects of hydroxyflavones. Bull. Korean Chem. Soc. 30: 1397-1400.
    CrossRef
  23. Peterson, J. A., M. C. Lorence, and B. Amarneh. 1990. Putidaredoxin reductase and putidaredoxin: Cloning, sequence determination, and heterologous expression of the proteins. J. Biol. Chem. 265: 6066-6073.
    Pubmed
  24. Roh, C., K. Y. Choi, B. P. Pandey, and B. G. Kim. 2009. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. J. Mol. Catal. B Enzym. 59: 248-253.
    CrossRef
  25. Rujisenaars, H. J., E. M. Sperling, P. H. Wiegerinck, F. T. Brands, J. Wery, and J. A. de Bont. 2007. Testosterone 15Bhydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131: 205-208.
    Pubmed CrossRef
  26. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  27. Sariaslani, F. S., L. R. McGee, M. K. Trower, and F. G. Kitson. 1990. Lack of region- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P450soy. Biochem. Biophys. Res. Commun. 170: 456-461.
    CrossRef
  28. Seitz, C., S. Ameres, and G. Forkmann. 2007. Identification of the molecular basis for the functional difference between flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase. FEBS Lett. 581: 3429-3434.
    Pubmed CrossRef
  29. Shinodo, K., Y. Ohnishi, H. K. Chun, H. Takahashi, M. Hayashi, A. Saito, et al. 2001. Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci. Biotechnol. Biochem. 65: 24722481.
    Pubmed CrossRef
  30. Shrestha, P., T.-J. Oh, K. Liou, and J. K. Sohng. 2008. Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl. Microbiol. Biotechnol. 79: 555-562.
    Pubmed CrossRef
  31. Sthapit, B., T.-J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201206.
    Pubmed CrossRef
  32. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Pubmed KoreaMed CrossRef
  33. Ueno, M., M. Yamashita, M. Hashimoto, M. Hino, and A. Fujie. 2005. Oxidative activities of heterologously expressed CYP107B1 and CYP105D1 in whole-cell biotransformation using Streptomyces lividans TK24. J. Biosci. Bioeng. 100: 567572.
    Pubmed CrossRef
  34. Uno, T., O. Sota, M. Satoko, I. Atsushi, U. Yuichi, N. Masahiko, et al. 2008. Bioconversion of small molecules by cytochrome P450 species expressed in Escherichia coli. Biotechnol. Appl. Biochem. 50: 165-171.