전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 702-723.
    CrossRef
  2. Anwar, A. and M. Saleemuddin. 2000. Alkaline protease from Spilosoma obliqua: Potential applications in bio-formulations. Biotechnol. Appl. Biochem. 31: 85-89.
    Pubmed CrossRef
  3. Bergmeyer, H. U. and E. Bernt. 1974. Methods of Enzymatic Analysis, pp. 1205-1212. 2nd Ed. Academic Press, New York.
  4. Bhunia, B., K. K. Behera, A. Baquee, and H. P. Sharma. 2010. Optimization of alkaline protease activity from Bacillus subtilis 2724 by response surface methodology (RSM). Int. J. Biol. Sci. Eng. 1: 158-169.
  5. Bhunia, B. and A. Dey. 2012. Statistical approach for optimization of physiochemical requirements on alkaline protease production from Bacillus licheniformis NCIM 2042. Enzyme Res. 2012:905804.
    Pubmed PMC CrossRef
  6. Bhunia, B., D. Dutta, and S. Chaudhuri. 2010. Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Not. Sci. Biol. 2: 56-59.
  7. Bhunia, B., D. Dutta, and S. Chaudhuri. 2011. Extracellular alkaline protease from Bacillus licheniformis NCIM-2042:Improving enzyme activity assay and characterization. Eng. Life Sci. 11: 207-215.
    CrossRef
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  9. Divyashree, M. S., N. K. Rastogi, and T. R. Shamala. 2009. A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. N Biotechnol. 26: 92-98.
    Pubmed CrossRef
  10. Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46(Suppl 2): S33-S50.
    Pubmed
  11. Gaden, E. L. 2000. Fermentation process kinetics. Biotechnol. Bioeng. 67: 629-635.
    CrossRef
  12. Griffin, H. L., R. V. Greene, and M. A. Cotta. 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr. Microbiol. 24: 111-117.
    CrossRef
  13. Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.
    Pubmed CrossRef
  14. Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34.
    CrossRef
  15. Jamuna, R., N. Saswathi, R. Sheela, and S. V. Ramakrishna. 1993. Synthesis of cyclodextrin glucosyl transferase by Bacillus cereus for the production of cyclodextrins. Appl. Biochem. Biotechnol. 43: 163-176.
    Pubmed CrossRef
  16. Kono, T. and T. Asai. 1969. Kinetics of fermentation processes. Biotechnol. Bioeng. 11: 293-321.
    Pubmed CrossRef
  17. Kumar, N., P. S. Monga, A. K. Biswas, and D. Das. 2000. Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08. Int. J. Hydrogen Energy 25: 945-952.
    CrossRef
  18. Liu, J. Z., L. P. Weng, Q. L. Zhang, H. Xu, and L. N. Ji. 2003. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem. Eng. J. 14: 137-141
    CrossRef
  19. Luedeking, R. and E. L. Piret. 2000. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol. Bioeng. 67: 636-644.
    CrossRef
  20. Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371-394.
    CrossRef
  21. Nakamura, N. and K. Horikoshi. 1976. Characterization and some cultural conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp. Agric. Biol. Chem. 40: 753-757.
    CrossRef
  22. Park, T. H., H. D. Shin, and Y. H. Lee. 1999. Characterization of the β-cyclodextrin glucanotransferase gene of Bacillus firmus var. alkalophilus and its expression in E. coli J. Microbiol. Biotechnol. 9: 811-819.
  23. Prakasham, R. S., Ch. Subba Rao, R. Sreenivas Rao, and P. N. Sarma. 2007. Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102: 204-211.
    Pubmed CrossRef
  24. Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husk - an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454.
  25. Rajendran, A. and V. Thangavelu. 2008. Evaluation of various unstructured kinetic models for the production of protease by Bacillus sphaericus MTCC511. Eng. Life Sci. 8: 179-185.
    CrossRef
  26. Rao, S. Ch., T. Sathish, M. Mahalaxmi, G. S. Laxmi, R. S. Rao, and R. S. Prakasham. 2008. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. J. Appl. Microbiol. 104: 889-898.
    Pubmed CrossRef
  27. Rao, C. S., T. Sathish, P. Brahamaiah, T. P. Kumarb, and R. S. Prakashama. 2009. Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. J. Chem. Technol. Biotechnol. 84: 302-307.
    CrossRef
  28. Rao, R. S., R. S. Prakasham, K. K. Prasad, S. Rajesham, P. N. Sarma, and L. V. Rao. 2004. Xylitol production by Candida sp.:Parameter optimization using Taguchi approach. Process Biochem. 39: 951-956.
    CrossRef
  29. Shah, K., K. Mody, J. Keshri, and B. Jha. 2010. Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. J. Molec. Catal. B Enz. 67: 85-91.
    CrossRef
  30. Shuler, M. L. and F. Kargi. 2008. Bioprocess Engineering: Basic Concepts. Practice Hall of India Private Limited, New Delhi.
  31. Srinivasulu, B., R. S. Prakasham, J. Annapurna, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598.
    CrossRef
  32. Subba Rao, C., S. S. Madhavendra, R. Sreenivas Rao, P. J. Hobbs, and R. S. Prakasham. 2008. Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria. Appl. Biochem. Biotechnol. 150: 65-83.
    Pubmed CrossRef
  33. Underkoefler, L. A. and R. J. Hickey. 1954. Industrial Fermentations, Vol. 1. Chemical Publishing Co., New York.
  34. Vazquez, J. A. and M. A. Murado. 2008. Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J. Chem. Technol. Biotechnol. 83: 91-96.

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(12): 1758-1766

Published online December 28, 2012 https://doi.org/10.4014/jmb.1206.06015

Copyright © The Korean Society for Microbiology and Biotechnology.

Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042

Biswanath Bhunia 1, Bikram Basak 1, Pinaki Bhattacharya 2 and Apurba Dey 1*

1Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, India, 1Department of Chemical Engineering, Heritage Institute of Technology, Kolkata-700107, India

Received: June 7, 2012; Accepted: August 14, 2012

Abstract

An extensive investigation was carried out to describe the
kinetics of cell growth, substrate consumption, and
product formation in the batch fermentation using starch
as substrate. Evaluation of intrinsic kinetic parameters
was carried out using a best-fit unstructured model. A
nonlinear regression technique was applied for computational
purpose. The Andrew’s model showed a comparatively
better R2 value among all tested models. The values of
specific growth rate (μmax), saturation constant (KS),
inhibition constant (KI), and YX/S were found to be 0.109 h-1,
11.1 g/l, 0.012 g/l, and 1.003, respectively. The Leudeking-
Piret model was used to study the product formation
kinetics and the process was found to be growth-associated.
The growth-associated constant (α) for protease production
was sensitive to substrate concentration. Its value was
fairly constant up to a substrate concentration of 30.8 g/l,
and then decreased.

Keywords: Cell growth, Fermentation, Kinetics, Modeling, Simulation

References

  1. Andrews, J. F. 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 702-723.
    CrossRef
  2. Anwar, A. and M. Saleemuddin. 2000. Alkaline protease from Spilosoma obliqua: Potential applications in bio-formulations. Biotechnol. Appl. Biochem. 31: 85-89.
    Pubmed CrossRef
  3. Bergmeyer, H. U. and E. Bernt. 1974. Methods of Enzymatic Analysis, pp. 1205-1212. 2nd Ed. Academic Press, New York.
  4. Bhunia, B., K. K. Behera, A. Baquee, and H. P. Sharma. 2010. Optimization of alkaline protease activity from Bacillus subtilis 2724 by response surface methodology (RSM). Int. J. Biol. Sci. Eng. 1: 158-169.
  5. Bhunia, B. and A. Dey. 2012. Statistical approach for optimization of physiochemical requirements on alkaline protease production from Bacillus licheniformis NCIM 2042. Enzyme Res. 2012:905804.
    Pubmed KoreaMed CrossRef
  6. Bhunia, B., D. Dutta, and S. Chaudhuri. 2010. Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Not. Sci. Biol. 2: 56-59.
  7. Bhunia, B., D. Dutta, and S. Chaudhuri. 2011. Extracellular alkaline protease from Bacillus licheniformis NCIM-2042:Improving enzyme activity assay and characterization. Eng. Life Sci. 11: 207-215.
    CrossRef
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  9. Divyashree, M. S., N. K. Rastogi, and T. R. Shamala. 2009. A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. N Biotechnol. 26: 92-98.
    Pubmed CrossRef
  10. Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46(Suppl 2): S33-S50.
    Pubmed
  11. Gaden, E. L. 2000. Fermentation process kinetics. Biotechnol. Bioeng. 67: 629-635.
    CrossRef
  12. Griffin, H. L., R. V. Greene, and M. A. Cotta. 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr. Microbiol. 24: 111-117.
    CrossRef
  13. Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.
    Pubmed CrossRef
  14. Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34.
    CrossRef
  15. Jamuna, R., N. Saswathi, R. Sheela, and S. V. Ramakrishna. 1993. Synthesis of cyclodextrin glucosyl transferase by Bacillus cereus for the production of cyclodextrins. Appl. Biochem. Biotechnol. 43: 163-176.
    Pubmed CrossRef
  16. Kono, T. and T. Asai. 1969. Kinetics of fermentation processes. Biotechnol. Bioeng. 11: 293-321.
    Pubmed CrossRef
  17. Kumar, N., P. S. Monga, A. K. Biswas, and D. Das. 2000. Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08. Int. J. Hydrogen Energy 25: 945-952.
    CrossRef
  18. Liu, J. Z., L. P. Weng, Q. L. Zhang, H. Xu, and L. N. Ji. 2003. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem. Eng. J. 14: 137-141
    CrossRef
  19. Luedeking, R. and E. L. Piret. 2000. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnol. Bioeng. 67: 636-644.
    CrossRef
  20. Monod, J. 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371-394.
    CrossRef
  21. Nakamura, N. and K. Horikoshi. 1976. Characterization and some cultural conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp. Agric. Biol. Chem. 40: 753-757.
    CrossRef
  22. Park, T. H., H. D. Shin, and Y. H. Lee. 1999. Characterization of the β-cyclodextrin glucanotransferase gene of Bacillus firmus var. alkalophilus and its expression in E. coli J. Microbiol. Biotechnol. 9: 811-819.
  23. Prakasham, R. S., Ch. Subba Rao, R. Sreenivas Rao, and P. N. Sarma. 2007. Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102: 204-211.
    Pubmed CrossRef
  24. Prakasham, R. S., Ch. Subba Rao, and P. N. Sarma. 2006. Green gram husk - an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour. Technol. 97: 1449-1454.
  25. Rajendran, A. and V. Thangavelu. 2008. Evaluation of various unstructured kinetic models for the production of protease by Bacillus sphaericus MTCC511. Eng. Life Sci. 8: 179-185.
    CrossRef
  26. Rao, S. Ch., T. Sathish, M. Mahalaxmi, G. S. Laxmi, R. S. Rao, and R. S. Prakasham. 2008. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. J. Appl. Microbiol. 104: 889-898.
    Pubmed CrossRef
  27. Rao, C. S., T. Sathish, P. Brahamaiah, T. P. Kumarb, and R. S. Prakashama. 2009. Development of a mathematical model for Bacillus circulans growth and alkaline protease production kinetics. J. Chem. Technol. Biotechnol. 84: 302-307.
    CrossRef
  28. Rao, R. S., R. S. Prakasham, K. K. Prasad, S. Rajesham, P. N. Sarma, and L. V. Rao. 2004. Xylitol production by Candida sp.:Parameter optimization using Taguchi approach. Process Biochem. 39: 951-956.
    CrossRef
  29. Shah, K., K. Mody, J. Keshri, and B. Jha. 2010. Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. J. Molec. Catal. B Enz. 67: 85-91.
    CrossRef
  30. Shuler, M. L. and F. Kargi. 2008. Bioprocess Engineering: Basic Concepts. Practice Hall of India Private Limited, New Delhi.
  31. Srinivasulu, B., R. S. Prakasham, J. Annapurna, S. Srinivas, P. Ellaiah, and S. V. Ramakrishna. 2002. Neomycin production with free and immobilized cells of Streptomyces marinensis in an airlift reactor. Process Biochem. 38: 593-598.
    CrossRef
  32. Subba Rao, C., S. S. Madhavendra, R. Sreenivas Rao, P. J. Hobbs, and R. S. Prakasham. 2008. Studies on improving the immobilized bead reusability and alkaline protease production by isolated immobilized Bacillus circulans (MTCC 6811) using overall evaluation criteria. Appl. Biochem. Biotechnol. 150: 65-83.
    Pubmed CrossRef
  33. Underkoefler, L. A. and R. J. Hickey. 1954. Industrial Fermentations, Vol. 1. Chemical Publishing Co., New York.
  34. Vazquez, J. A. and M. A. Murado. 2008. Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J. Chem. Technol. Biotechnol. 83: 91-96.