전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Abdel-Fattah, W. R., M. Fadil, P. Nigam, and I. M. Banat. 2000. Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol. Bioeng. 68: 531-535.
    CrossRef
  2. Alexandre, H., V. Ansanay-Galeote, S. Dequin, and B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498: 98-103.
    CrossRef
  3. Babiker, M. A. A., H. Hoshida, A. Ano, S. Nonklang, and R. Akada. 2010. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? J. Appl. Microbiol. Biotechnol. 85: 861-867.
    Pubmed CrossRef
  4. Bai, F. W., W. A. Anderson, and M. Moo-Young. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89-105.
    Pubmed CrossRef
  5. D’Amore, T., G. Celotto, I. Russell, and G. G. Stewart. 1989. Selection and optimization of yeast suitable for ethanol production at 40oC. Enzyme Microb. Technol. 11: 411-416.
    CrossRef
  6. Edgardo E., P. Carolina, R. Manuel, F. Juanita, and B. Jaime. 2008. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 43: 120-123.
    CrossRef
  7. Hacking, A. J., I. W. F. Taylor, and C. M. Hanas. 1984. Selection of yeast able to produce ethanol from glucose at 40oC. Appl. Microbiol. Biotechnol. 19: 361-363.
    CrossRef
  8. Hari Krishna, S., T. Janardhan Reddy, and G. V. Chowdary. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour. Technol. 77: 193-196.
    CrossRef
  9. Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160: 1084-1093.
    Pubmed CrossRef
  10. Hughes, D. B., N. J. Tudroszen, and C. J. Moye. 1984. The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus. Biotechnol. Lett. 6: 1-6.
    CrossRef
  11. Jimenez, J. and T. Benitez. 1987. Genetic analysis of highly ethanol-tolerant wine yeasts. Curr. Genet. 12: 421-428.
    CrossRef
  12. Kim, M.-S. and K. Kim. 2000. Protoplast fusion of Saccharomyces and Kluyveromyces to develop thermotolerant ethanol-producing yeast strains. Kor. J. Appl. Microbiol. Biotechnol. 28: 80-86.
  13. Miller, G. L. 1959. Determination of reducing sugar by DNS method. Anal. Chem. 31: 426-429.
    CrossRef
  14. Ohta, K., S. C. Wijeyaratne, and S. Hayashida. 1988. Temperaturesensitive mutants of a thermotolerant yeast, Hansenula polymorpha. J. Ferment. Technol. 66: 455-459.
    CrossRef
  15. Shahsavarani, H., M. Sugiyama, Y. Kaneko, B. Chuenchit, and S. Harashima. 2011. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol. Adv. http://dx.doi.org/10.1016/j.biotechadv.2011.09.002.
    Pubmed CrossRef
  16. Shi, D., C. Wang, and K. Wang. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36:139-147.
    Pubmed CrossRef
  17. Sridhar, M., N. K. Sree, and L. V. Rao. 2002. Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS2 strains. Bioresour. Technol. 83: 199-202.
    CrossRef
  18. Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266.
    CrossRef
  19. Vu, V. H. and K. Kim. 2009. Ethanol production from rice winery waste-rice wine cake by simultaneous saccharification and fermentation without cooking. J. Microbiol. Biotechnol. 19:1161-1168.
    Pubmed
  20. Wingren, A., M. Galbe, and G. Zacchi. 2003. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 19: 1109-1117.
    Pubmed CrossRef
  21. Zaldivar, J., J. Nielsen, and O. Olson. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Biochem. Biotechnol. 56: 17-34.
  22. Zheng, D.-Q., X.-C. Wu, X.-L. Tao, P.-M. Wang, P. Li, X.-Q. Chi, et al. 2011. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour. Technol. 102: 3020-3027.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2012; 22(10): 1401-1405

Published online October 28, 2012 https://doi.org/10.4014/jmb.1203.03069

Copyright © The Korean Society for Microbiology and Biotechnology.

Construction of a Thermotolerant Saccharomyces cerevisiae Strain for Bioethanol Production with Reduced Fermentation Time and Saccharifying Enzyme Dose

Ji Sung Lim 1, You Ri Jang 1, Young Hoon Lim 1 and Keun Kim 1*

Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong-si 445-743, Korea

Received: March 29, 2012; Accepted: June 20, 2012

Abstract

A thermotolerant Saccharomyces cerevisiae mutant strain,
TT6, was constructed after multi-parental hybridization
of five mutant strains obtained by UV or NTG treatment
of the original strain, S. cerevisiae KV1. When incubated
at 40oC in YPD broth, TT6 began to grow exponentially in
10 h, but KV1 did not show any noticeable growth even
after 22 h. The thermotolerant growth of TT6 was confirmed
by serial dilution assay at 42oC; TT6 grew at a cell
concentration (10-5) 10,000 times lower than that of KV1
(10-1). Whereas ethanol production from YP containing
23% (w/v) glucose by KV1 decreased with increasing
temperature from 30oC to 36oC, ethanol production by
TT6 did not decrease at temperatures up to 37oC. When
TT6 was tested for ethanol production at 36oC by
simultaneous saccharification and fermentation (SSF)
from 23% corn, 24 h of fermentation time or 50% of the
glucoamylase dose was saved when compared with KV1
at 30oC. The ethanol yield from corn by SSF with TT6 at
36oC was 91.7% of the theoretical yield, whereas that of
KV1 at 30oC was 90.6%.

Keywords: Thermotolerance, Saccharomyces cerevisiae, bioethanol, growth, fermentation time, glucoamylase

References

  1. Abdel-Fattah, W. R., M. Fadil, P. Nigam, and I. M. Banat. 2000. Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol. Bioeng. 68: 531-535.
    CrossRef
  2. Alexandre, H., V. Ansanay-Galeote, S. Dequin, and B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498: 98-103.
    CrossRef
  3. Babiker, M. A. A., H. Hoshida, A. Ano, S. Nonklang, and R. Akada. 2010. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? J. Appl. Microbiol. Biotechnol. 85: 861-867.
    Pubmed CrossRef
  4. Bai, F. W., W. A. Anderson, and M. Moo-Young. 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26: 89-105.
    Pubmed CrossRef
  5. D’Amore, T., G. Celotto, I. Russell, and G. G. Stewart. 1989. Selection and optimization of yeast suitable for ethanol production at 40oC. Enzyme Microb. Technol. 11: 411-416.
    CrossRef
  6. Edgardo E., P. Carolina, R. Manuel, F. Juanita, and B. Jaime. 2008. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol. 43: 120-123.
    CrossRef
  7. Hacking, A. J., I. W. F. Taylor, and C. M. Hanas. 1984. Selection of yeast able to produce ethanol from glucose at 40oC. Appl. Microbiol. Biotechnol. 19: 361-363.
    CrossRef
  8. Hari Krishna, S., T. Janardhan Reddy, and G. V. Chowdary. 2001. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour. Technol. 77: 193-196.
    CrossRef
  9. Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160: 1084-1093.
    Pubmed CrossRef
  10. Hughes, D. B., N. J. Tudroszen, and C. J. Moye. 1984. The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus. Biotechnol. Lett. 6: 1-6.
    CrossRef
  11. Jimenez, J. and T. Benitez. 1987. Genetic analysis of highly ethanol-tolerant wine yeasts. Curr. Genet. 12: 421-428.
    CrossRef
  12. Kim, M.-S. and K. Kim. 2000. Protoplast fusion of Saccharomyces and Kluyveromyces to develop thermotolerant ethanol-producing yeast strains. Kor. J. Appl. Microbiol. Biotechnol. 28: 80-86.
  13. Miller, G. L. 1959. Determination of reducing sugar by DNS method. Anal. Chem. 31: 426-429.
    CrossRef
  14. Ohta, K., S. C. Wijeyaratne, and S. Hayashida. 1988. Temperaturesensitive mutants of a thermotolerant yeast, Hansenula polymorpha. J. Ferment. Technol. 66: 455-459.
    CrossRef
  15. Shahsavarani, H., M. Sugiyama, Y. Kaneko, B. Chuenchit, and S. Harashima. 2011. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol. Adv. http://dx.doi.org/10.1016/j.biotechadv.2011.09.002.
    Pubmed CrossRef
  16. Shi, D., C. Wang, and K. Wang. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36:139-147.
    Pubmed CrossRef
  17. Sridhar, M., N. K. Sree, and L. V. Rao. 2002. Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS2 strains. Bioresour. Technol. 83: 199-202.
    CrossRef
  18. Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266.
    CrossRef
  19. Vu, V. H. and K. Kim. 2009. Ethanol production from rice winery waste-rice wine cake by simultaneous saccharification and fermentation without cooking. J. Microbiol. Biotechnol. 19:1161-1168.
    Pubmed
  20. Wingren, A., M. Galbe, and G. Zacchi. 2003. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Prog. 19: 1109-1117.
    Pubmed CrossRef
  21. Zaldivar, J., J. Nielsen, and O. Olson. 2001. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Biochem. Biotechnol. 56: 17-34.
  22. Zheng, D.-Q., X.-C. Wu, X.-L. Tao, P.-M. Wang, P. Li, X.-Q. Chi, et al. 2011. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour. Technol. 102: 3020-3027.
    Pubmed CrossRef