Articles Service
Research article
Establishment of an Apical-Out Organoid Model for Directly Assessing the Function of Postbiotics
1Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
2KookminBio Corporation, Seoul 02826, Republic of Korea
3Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
J. Microbiol. Biotechnol. 2024; 34(11): 2184-2191
Published November 28, 2024 https://doi.org/10.4014/jmb.2405.05034
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
References
- Salim SaY, Söderholm JD. 2011. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17: 362-381.
- Slifer ZM, Blikslager AT. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int. J. Mol. Sci. 21: 972.
- Lei S, Cheng T, Guo Y, Li C, Zhang W, Zhi F. 2014. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in caco2 cells. Eur. J. Cell Biol. 93: 299-307.
- Zhu W, Liu X, Luo L, Huang X, Wang X. 2023. Interaction between mitochondrial homeostasis and barrier function in lipopolysaccharide‐induced endothelial cell injury. Int. J. Exp. Pathol. 104: 272-282.
- Rath E, Moschetta A, Haller D. 2018. Mitochondrial function—gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15: 497-516.
- Cunningham KE, Vincent G, Sodhi CP, Novak EA, Ranganathan S, Egan CE, et al. 2016. Peroxisome proliferator-activated receptorγ coactivator 1-α (PGC1α) protects against experimental murine colitis. J. Biol. Chem. 291: 10184-10200.
- Wei H, Liu L, Chen Q. 2015. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim. Biophys. Acta Mol. Cell Res. 1853: 2784-2790.
- Palikaras K, Tavernarakis N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56: 182-188.
- Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients 12: 2189.
- Mayorgas A, Dotti I, Salas A. 2021. Microbial metabolites, postbiotics, and intestinal epithelial function. Mol. Nutr. Food Res. 65: 2000188.
- Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordonez-Moran P, et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539: 560-564.
- Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. 2022. Organoids. Nat. Rev. Methods Primers. 2: 94.
- Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, et al. 2020. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J. Virol. 94: e01006-01020.
- Heo S, Kim JH, Kwak MS, Jeong DW, Sung MH. 2021. Complete genome sequence of Lactiplantibacillus plantarum KM2 from lowtemperature aging beef. Korean J. Microbiol. 57: 303-306.
- Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods 10: 563.
- Wen X, Tang L, Zhong R, Liu L, Chen L, Zhang H. 2023. Role of mitophagy in regulating intestinal oxidative damage. Antioxidants 12: 480.
- Campbell HK, Maiers JL, DeMali KA. 2017. Interplay between tight junctions & adherens junctions. Exp. Cell Res. 358: 39-44.
- dos Santos Freitas A, Barroso FAL, Campos GM, Américo MF, dos Santos Viegas RC, Gomes GC, et al. 2024. Exploring the antiinflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J. Biol. Macromol. 277: 134216.
- Compare D, Rocco A, Coccoli P, Angrisani D, Sgamato C, Iovine B, et al. 2017. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 17: 53.
- Zhang X, Li Y, Zhang C, Chi H, Liu C, Li A, et al. 2022. Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco2 cells. Food Funct. 13: 11008-11020.
- Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. 2019. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 10: 477.
- Popov LD. 2020. Mitochondrial biogenesis: an update. J. Cell. Mol. Med. 24: 4892-4899.
- Jin SM, Youle RJ. 2012. PINK1-and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125: 795-799.
- Bingol B, Sheng M. 2016. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biol. Med. 100: 210-222.
- Ploumi C, Daskalaki I, Tavernarakis N. 2017. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284: 183-195.
Related articles in JMB
Article
Research article
J. Microbiol. Biotechnol. 2024; 34(11): 2184-2191
Published online November 28, 2024 https://doi.org/10.4014/jmb.2405.05034
Copyright © The Korean Society for Microbiology and Biotechnology.
Establishment of an Apical-Out Organoid Model for Directly Assessing the Function of Postbiotics
Yeonoh Cho1, Moon-Hee Sung2, Hee-Taik Kang3*, and Jong Hun Lee1*
1Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
2KookminBio Corporation, Seoul 02826, Republic of Korea
3Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
Correspondence to:Hee-Taik Kang, familydoctor@yuhs.ac
Jong Hun Lee, foodguy@gachon.ac.kr
Abstract
In vitro organoids that mimic the physiological properties of in vivo organs based on three-dimensional cell cultures overcome the limitations of two-dimensional culture systems. However, because the lumen of a typical intestinal organoid is internal, we used an apical-out intestinal organoid model in which the lumen that absorbs nutrients is outside to directly assess the function of postbiotics. A composite culture supernatant of Lactiplantibacillus plantarum KM2 and Bacillus velezensis KMU01 was used as a postbiotic treatment. Expression of COX-2 decreased in apical-out organoids co-treated with a lipopolysaccharide (LPS) and postbiotics. Expression of tight-junction markers such as ZO-1, claudin, and Occludin increased, and expression of mitochondrial homeostasis factors such as PINK1, parkin, and PGC1a also increased. As a result, small and large intestine organoids treated with postbiotics protected tight junctions from LPS-induced damage and maintained mitochondrial homeostasis through mitophagy and mitochondrial biogenesis. This suggests that an apical-out intestinal organoid model can confirm the function of food ingredients.
Keywords: Apical-out organoid, postbiotics, tight junction, mitochondria homeostasis
References
- Salim SaY, Söderholm JD. 2011. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17: 362-381.
- Slifer ZM, Blikslager AT. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int. J. Mol. Sci. 21: 972.
- Lei S, Cheng T, Guo Y, Li C, Zhang W, Zhi F. 2014. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in caco2 cells. Eur. J. Cell Biol. 93: 299-307.
- Zhu W, Liu X, Luo L, Huang X, Wang X. 2023. Interaction between mitochondrial homeostasis and barrier function in lipopolysaccharide‐induced endothelial cell injury. Int. J. Exp. Pathol. 104: 272-282.
- Rath E, Moschetta A, Haller D. 2018. Mitochondrial function—gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15: 497-516.
- Cunningham KE, Vincent G, Sodhi CP, Novak EA, Ranganathan S, Egan CE, et al. 2016. Peroxisome proliferator-activated receptorγ coactivator 1-α (PGC1α) protects against experimental murine colitis. J. Biol. Chem. 291: 10184-10200.
- Wei H, Liu L, Chen Q. 2015. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim. Biophys. Acta Mol. Cell Res. 1853: 2784-2790.
- Palikaras K, Tavernarakis N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56: 182-188.
- Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients 12: 2189.
- Mayorgas A, Dotti I, Salas A. 2021. Microbial metabolites, postbiotics, and intestinal epithelial function. Mol. Nutr. Food Res. 65: 2000188.
- Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordonez-Moran P, et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539: 560-564.
- Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. 2022. Organoids. Nat. Rev. Methods Primers. 2: 94.
- Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, et al. 2020. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J. Virol. 94: e01006-01020.
- Heo S, Kim JH, Kwak MS, Jeong DW, Sung MH. 2021. Complete genome sequence of Lactiplantibacillus plantarum KM2 from lowtemperature aging beef. Korean J. Microbiol. 57: 303-306.
- Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods 10: 563.
- Wen X, Tang L, Zhong R, Liu L, Chen L, Zhang H. 2023. Role of mitophagy in regulating intestinal oxidative damage. Antioxidants 12: 480.
- Campbell HK, Maiers JL, DeMali KA. 2017. Interplay between tight junctions & adherens junctions. Exp. Cell Res. 358: 39-44.
- dos Santos Freitas A, Barroso FAL, Campos GM, Américo MF, dos Santos Viegas RC, Gomes GC, et al. 2024. Exploring the antiinflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J. Biol. Macromol. 277: 134216.
- Compare D, Rocco A, Coccoli P, Angrisani D, Sgamato C, Iovine B, et al. 2017. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 17: 53.
- Zhang X, Li Y, Zhang C, Chi H, Liu C, Li A, et al. 2022. Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco2 cells. Food Funct. 13: 11008-11020.
- Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. 2019. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 10: 477.
- Popov LD. 2020. Mitochondrial biogenesis: an update. J. Cell. Mol. Med. 24: 4892-4899.
- Jin SM, Youle RJ. 2012. PINK1-and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125: 795-799.
- Bingol B, Sheng M. 2016. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biol. Med. 100: 210-222.
- Ploumi C, Daskalaki I, Tavernarakis N. 2017. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284: 183-195.