전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Salim SaY, Söderholm JD. 2011. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17: 362-381.
    Pubmed
  2. Slifer ZM, Blikslager AT. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int. J. Mol. Sci. 21: 972.
    Pubmed PMC
  3. Lei S, Cheng T, Guo Y, Li C, Zhang W, Zhi F. 2014. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in caco2 cells. Eur. J. Cell Biol. 93: 299-307.
    Pubmed
  4. Zhu W, Liu X, Luo L, Huang X, Wang X. 2023. Interaction between mitochondrial homeostasis and barrier function in lipopolysaccharide‐induced endothelial cell injury. Int. J. Exp. Pathol. 104: 272-282.
    Pubmed PMC
  5. Rath E, Moschetta A, Haller D. 2018. Mitochondrial function—gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15: 497-516.
    Pubmed
  6. Cunningham KE, Vincent G, Sodhi CP, Novak EA, Ranganathan S, Egan CE, et al. 2016. Peroxisome proliferator-activated receptorγ coactivator 1-α (PGC1α) protects against experimental murine colitis. J. Biol. Chem. 291: 10184-10200.
    Pubmed PMC
  7. Wei H, Liu L, Chen Q. 2015. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim. Biophys. Acta Mol. Cell Res. 1853: 2784-2790.
    Pubmed
  8. Palikaras K, Tavernarakis N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56: 182-188.
    Pubmed
  9. Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients 12: 2189.
    Pubmed PMC
  10. Mayorgas A, Dotti I, Salas A. 2021. Microbial metabolites, postbiotics, and intestinal epithelial function. Mol. Nutr. Food Res. 65: 2000188.
    Pubmed
  11. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordonez-Moran P, et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539: 560-564.
    Pubmed
  12. Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. 2022. Organoids. Nat. Rev. Methods Primers. 2: 94.
    Pubmed PMC
  13. Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, et al. 2020. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J. Virol. 94: e01006-01020.
    Pubmed PMC
  14. Heo S, Kim JH, Kwak MS, Jeong DW, Sung MH. 2021. Complete genome sequence of Lactiplantibacillus plantarum KM2 from lowtemperature aging beef. Korean J. Microbiol. 57: 303-306.
  15. Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods 10: 563.
    Pubmed PMC
  16. Wen X, Tang L, Zhong R, Liu L, Chen L, Zhang H. 2023. Role of mitophagy in regulating intestinal oxidative damage. Antioxidants 12: 480.
    Pubmed PMC
  17. Campbell HK, Maiers JL, DeMali KA. 2017. Interplay between tight junctions & adherens junctions. Exp. Cell Res. 358: 39-44.
    Pubmed PMC
  18. dos Santos Freitas A, Barroso FAL, Campos GM, Américo MF, dos Santos Viegas RC, Gomes GC, et al. 2024. Exploring the antiinflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J. Biol. Macromol. 277: 134216.
    Pubmed
  19. Compare D, Rocco A, Coccoli P, Angrisani D, Sgamato C, Iovine B, et al. 2017. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 17: 53.
    Pubmed PMC
  20. Zhang X, Li Y, Zhang C, Chi H, Liu C, Li A, et al. 2022. Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco2 cells. Food Funct. 13: 11008-11020.
    Pubmed
  21. Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. 2019. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 10: 477.
    Pubmed PMC
  22. Popov LD. 2020. Mitochondrial biogenesis: an update. J. Cell. Mol. Med. 24: 4892-4899.
    Pubmed PMC
  23. Jin SM, Youle RJ. 2012. PINK1-and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125: 795-799.
    Pubmed PMC
  24. Bingol B, Sheng M. 2016. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biol. Med. 100: 210-222.
    Pubmed
  25. Ploumi C, Daskalaki I, Tavernarakis N. 2017. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284: 183-195.
    Pubmed

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2024; 34(11): 2184-2191

Published online November 28, 2024 https://doi.org/10.4014/jmb.2405.05034

Copyright © The Korean Society for Microbiology and Biotechnology.

Establishment of an Apical-Out Organoid Model for Directly Assessing the Function of Postbiotics

Yeonoh Cho1, Moon-Hee Sung2, Hee-Taik Kang3*, and Jong Hun Lee1*

1Department of Food Science and Biotechnology, College of Bio-Nano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
2KookminBio Corporation, Seoul 02826, Republic of Korea
3Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

Correspondence to:Hee-Taik Kang,       familydoctor@yuhs.ac
Jong Hun Lee,       foodguy@gachon.ac.kr

Received: May 28, 2024; Revised: August 22, 2024; Accepted: August 29, 2024

Abstract

In vitro organoids that mimic the physiological properties of in vivo organs based on three-dimensional cell cultures overcome the limitations of two-dimensional culture systems. However, because the lumen of a typical intestinal organoid is internal, we used an apical-out intestinal organoid model in which the lumen that absorbs nutrients is outside to directly assess the function of postbiotics. A composite culture supernatant of Lactiplantibacillus plantarum KM2 and Bacillus velezensis KMU01 was used as a postbiotic treatment. Expression of COX-2 decreased in apical-out organoids co-treated with a lipopolysaccharide (LPS) and postbiotics. Expression of tight-junction markers such as ZO-1, claudin, and Occludin increased, and expression of mitochondrial homeostasis factors such as PINK1, parkin, and PGC1a also increased. As a result, small and large intestine organoids treated with postbiotics protected tight junctions from LPS-induced damage and maintained mitochondrial homeostasis through mitophagy and mitochondrial biogenesis. This suggests that an apical-out intestinal organoid model can confirm the function of food ingredients.

Keywords: Apical-out organoid, postbiotics, tight junction, mitochondria homeostasis

References

  1. Salim SaY, Söderholm JD. 2011. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17: 362-381.
    Pubmed
  2. Slifer ZM, Blikslager AT. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. Int. J. Mol. Sci. 21: 972.
    Pubmed KoreaMed
  3. Lei S, Cheng T, Guo Y, Li C, Zhang W, Zhi F. 2014. Somatostatin ameliorates lipopolysaccharide-induced tight junction damage via the ERK-MAPK pathway in caco2 cells. Eur. J. Cell Biol. 93: 299-307.
    Pubmed
  4. Zhu W, Liu X, Luo L, Huang X, Wang X. 2023. Interaction between mitochondrial homeostasis and barrier function in lipopolysaccharide‐induced endothelial cell injury. Int. J. Exp. Pathol. 104: 272-282.
    Pubmed KoreaMed
  5. Rath E, Moschetta A, Haller D. 2018. Mitochondrial function—gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15: 497-516.
    Pubmed
  6. Cunningham KE, Vincent G, Sodhi CP, Novak EA, Ranganathan S, Egan CE, et al. 2016. Peroxisome proliferator-activated receptorγ coactivator 1-α (PGC1α) protects against experimental murine colitis. J. Biol. Chem. 291: 10184-10200.
    Pubmed KoreaMed
  7. Wei H, Liu L, Chen Q. 2015. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim. Biophys. Acta Mol. Cell Res. 1853: 2784-2790.
    Pubmed
  8. Palikaras K, Tavernarakis N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56: 182-188.
    Pubmed
  9. Żółkiewicz J, Marzec A, Ruszczyński M, Feleszko W. 2020. Postbiotics—a step beyond pre-and probiotics. Nutrients 12: 2189.
    Pubmed KoreaMed
  10. Mayorgas A, Dotti I, Salas A. 2021. Microbial metabolites, postbiotics, and intestinal epithelial function. Mol. Nutr. Food Res. 65: 2000188.
    Pubmed
  11. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordonez-Moran P, et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539: 560-564.
    Pubmed
  12. Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, Lin L, et al. 2022. Organoids. Nat. Rev. Methods Primers. 2: 94.
    Pubmed KoreaMed
  13. Li Y, Yang N, Chen J, Huang X, Zhang N, Yang S, et al. 2020. Next-generation porcine intestinal organoids: an apical-out organoid model for swine enteric virus infection and immune response investigations. J. Virol. 94: e01006-01020.
    Pubmed KoreaMed
  14. Heo S, Kim JH, Kwak MS, Jeong DW, Sung MH. 2021. Complete genome sequence of Lactiplantibacillus plantarum KM2 from lowtemperature aging beef. Korean J. Microbiol. 57: 303-306.
  15. Heo S, Kim JH, Kwak MS, Sung MH, Jeong DW. 2021. Functional annotation genome unravels potential probiotic Bacillus velezensis strain KMU01 from traditional Korean fermented kimchi. Foods 10: 563.
    Pubmed KoreaMed
  16. Wen X, Tang L, Zhong R, Liu L, Chen L, Zhang H. 2023. Role of mitophagy in regulating intestinal oxidative damage. Antioxidants 12: 480.
    Pubmed KoreaMed
  17. Campbell HK, Maiers JL, DeMali KA. 2017. Interplay between tight junctions & adherens junctions. Exp. Cell Res. 358: 39-44.
    Pubmed KoreaMed
  18. dos Santos Freitas A, Barroso FAL, Campos GM, Américo MF, dos Santos Viegas RC, Gomes GC, et al. 2024. Exploring the antiinflammatory effects of postbiotic proteins from Lactobacillus delbrueckii CIDCA 133 on inflammatory bowel disease model. Int J. Biol. Macromol. 277: 134216.
    Pubmed
  19. Compare D, Rocco A, Coccoli P, Angrisani D, Sgamato C, Iovine B, et al. 2017. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 17: 53.
    Pubmed KoreaMed
  20. Zhang X, Li Y, Zhang C, Chi H, Liu C, Li A, et al. 2022. Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco2 cells. Food Funct. 13: 11008-11020.
    Pubmed
  21. Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. 2019. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 10: 477.
    Pubmed KoreaMed
  22. Popov LD. 2020. Mitochondrial biogenesis: an update. J. Cell. Mol. Med. 24: 4892-4899.
    Pubmed KoreaMed
  23. Jin SM, Youle RJ. 2012. PINK1-and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125: 795-799.
    Pubmed KoreaMed
  24. Bingol B, Sheng M. 2016. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biol. Med. 100: 210-222.
    Pubmed
  25. Ploumi C, Daskalaki I, Tavernarakis N. 2017. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 284: 183-195.
    Pubmed