전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review


References

  1. Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M, et al. 2023. Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms 11: 614.
    Pubmed PMC
  2. Azman AS, Mawang C, Abubakar S. 2018. Bacterial pigments: the bioactivities and as an alternative for therapeutic applications. Nat. Prod. Commun. 13: 1747-1754.
  3. Tkaczyk A, Mitrowska K, Posyniak A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci. Total Environ. 717: 137222.
    Pubmed
  4. Grewal J, Wolacewicz M, Pyter W, Joshi N, Drewniak, L, Pranaw, K. 2022. Colorful treasure from agro-industrial wastes: a sustainable chassis for microbial pigment production. Front. Microbiol. 13: 832918.
    Pubmed PMC
  5. Liu ZJ, van den Berg C, Weusthuis RA, Dragone G, Mussatto SI. 2021. Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Sep. Purif. Technol. 257: 117946.
  6. Mussagy CU, Khan S, Kot AM. 2021. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit. Rev. Food Sci. Nutr. 62: 6932-6946.
    Pubmed
  7. Wu YH, Cheng H, Xu L, Jin XB, Wang CS, Xu XW. 2017. Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater. PLoS One 12: e0179997.
    Pubmed PMC
  8. Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. 2019. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics 11: 1104-1114.
    Pubmed
  9. Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M, Encinas MV, et al. 2020. Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24: 43-52.
    Pubmed
  10. Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, et al. 2022. Characterisation of waterborne psychrophilic Massilia isolates with violacein production and description of Massilia antarctica sp. nov. Microorganisms 10: 704.
    Pubmed PMC
  11. Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. 2021. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15: 10.
    Pubmed PMC
  12. Ghiffary MR, Prabowo CPS., Sharma K, Yan Y, Lee SY, Kim HU. 2021. High-level production of the natural blue pigment indigoidine from metabolically engineered Corynebacterium glutamicum for sustainable fabric dyes. ACS Sustain. Chem. Eng. 9: 6613-6622.
  13. Day PA, Villalba MS, Herrero OM, Arancibia LA, Alvarez HM. 2017. Formation of indigoidine derived-pigments contributes to the adaptation of Vogesella sp. strain EB to cold aquatic iron-oxidizing environments. Antonie Van Leeuwenhoek 110: 415-428.
    Pubmed
  14. Czajka JJ, Banerjee D, Eng T, Menasalvas JY, Chunsheng M, Nathalie M, et al. 2022. Tuning a high performing multiplexed-CRISPRi Pseudomonas putida strain to further enhance indigoidine production. Metab. Eng. Commun. 15: e00206.
    Pubmed PMC
  15. Breider S, Sehar S, Berger M, Thomas T, Brinkhoff T, Egan S. 2019. Genome sequence of Epibacterium ulvae strain DSM 24752T, an indigoidine-producing, macroalga-associated member of the marine Roseobacter group. Environ. Microbiome 14: 4.
    Pubmed PMC
  16. Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. 2012. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine Roseobacter Phaeobacter sp. strain Y4I. Appl. Environ. Microbiol. 78: 4771-4780.
    Pubmed PMC
  17. Fereja TH, Kitte SA, Zafar MN, Halawa MI, Han S, Zhang W, et al. 2020. Highly sensitive and selective non-enzymatic glucose detection based on indigo carmine/hemin/H2O2 chemiluminescence. Analyst 145: 1041-1046.
    Pubmed
  18. Guo L, Li W, Gu Z, Wang L, Guo L, Ma SB, et al. 2023. Recent advances and progress on melanin: from source to application. Int. J. Mol. Sci. 24: 4360.
    Pubmed PMC
  19. Handl J, Nyvltova P, Capek J, Cesla P, Hovsepyan A, Avetisyan S, et al. 2022. The comparison of biological effects of bacterial and synthetic melanins in neuroblastoma cells. Food Chem. Toxicol. 168: 113355.
    Pubmed
  20. Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, et al. 2019. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci. Rep. 9: 7488.
    Pubmed PMC
  21. Getachew B, Csoka AB, Aschner M, Tizabi Y. 2019. Nicotine protects against manganese and iron-induced toxicity in SH-SY5Y cells:implication for Parkinson’s disease. Neurochem. Int. 124: 19-24.
    Pubmed PMC
  22. Coelho BP, Gaelzer MM, dos Santos Petry F, Hoppe JB, Trindade VMT, Salbego CG, et al. 2019. Dual effect of doxazosin: anticancer activity on SH-SY5Y neuroblastoma cells and neuroprotection on an in vitro model of Alzheimer’s disease. Neuroscience 404: 314325.
    Pubmed
  23. López GD, Alvarez-Rivera G, Carazzone C, Ibáñez E, Leidy C, Cifuentes A. 2023. Bacterial carotenoids: extraction, characterization, and applications. Crit. Rev. Anal. Chem. 53: 1239-1262.
    Pubmed
  24. Singh RV, Sambyal K. 2022. An overview of β-carotene production: current status and future prospects. Food Biosci. 47: 101717.
  25. Tuli HS, Chaudhary P, Beniwal V, Sharma AK. 2015. Microbial pigments as natural color sources: current trends and future perspectives. J. Food Sci. Tech. Mys. 52: 4669-4678.
    Pubmed PMC
  26. Pachaiyappan A, Sadhasivam G, Kumar M, Muthuvel A. 2020. Biomedical potential of astaxanthin from novel endophytic pigment producing bacteria Pontibacter korlensis AG6. Waste Biomass Valorization 12: 2119-2129.
  27. Bampidis V, Azimonti G, Bastos MD, Christensen H, Dusemund B, Kouba M, et al. 2019. Safety and efficacy of lutein and lutein/zeaxanthin extracts from Tagetes erecta for poultry for fattening and laying (except turkeys). Efsa J. 17: 5698.
  28. Liu J, Xiao LK, Xie YJ, Guan FC, Cai JL. 2022. The stability of carotenoids from a marine photosynthetic bacterium Ectothiorhodospira shaposhnikovii P2. J. Food Process Preserv. 46: e16724.
  29. Boger DL, Patel M. 1987. Total synthesis of prodigiosin. Tetrahedron Lett. 28: 2499-2502.
  30. Mnif S, Jardak M, Bouizgarne B, Aifa S. 2022. Prodigiosin from Serratia: synthesis and potential applications. Asian Pac. Trop. Biomed. 12: 233-242.
  31. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, et al. 2018. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75: 1049-1062.
    Pubmed
  32. Feng J, Shi WL, Zhang S, Zhang Y. 2015. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection. Emerg. Microbes Infect. 4: e31.
    Pubmed PMC
  33. Chen JL, Lin YC, Fu HY, Chii-Shenyang. 2019. The blue-green sensory rhodopsin SRM from Haloarcula marismortui attenuates both phototactic responses mediated by sensory rhodopsin I and II in Halobacterium salinarum. Sci. Rep. 9: 5672.
    Pubmed PMC
  34. Bogomolni RA, Spudich JL. 1982. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc. Natl. Acad. Sci. USA 79: 6250-6254.
    Pubmed PMC
  35. Han HW, Ko LN, Yang CS, Hsu SH. 2019. Potential of engineered bacteriorhodopsins as photoactivated biomaterials in modulating neural stem cell behavior. ACS Biomater. Sci. Eng. 5: 3068-3078.
    Pubmed
  36. Luo PW, Han HW, Yang CS, Shrestha LK, Ariga K, Hsu S. 2019. Optogenetic modulation and reprogramming of bacteriorhodopsin transfected human fibroblasts on self-assembled fullerene C60 nanosheets. Adv. Biosyst. 3: 1800254.
    Pubmed
  37. Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, et al. 2018. Pseudomonas aeruginosa algr phosphorylation status differentially regulates pyocyanin and pyoverdine production. mBio 9: 2318-2335.
    Pubmed PMC
  38. Kirienko DR, Kang D, Kirienko NV. 2019. Novel pyoverdine inhibitors mitigate Pseudomonas aeruginosa pathogenesis. Front. Microbiol. 9: 3317.
    Pubmed PMC
  39. Li X, Li Y, Wang R, Wang Q, Lu L. 2019. Toxoflavin Produced by Burkholderia gladioli from Lycoris aurea is a new broad-spectrum fungicide. Appl. Environ. Microbiol. 85: e00106-19.
    Pubmed PMC
  40. Xu X, Tian LQ, Zhang S, Jiang L, Zhang ZD, Huang H. 2019. Complete genome sequence of Janthinobacterium sp. B9-8, a violaceinproducing bacterium isolated from low-temperature sewage. Microbial Pathogenesis 128: 178-183.
    Pubmed
  41. Hakvag S, Fjaervik E, Klinkenberg G, Borgos SEF, Josefsen KD, Ellingsen TE, et al. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trondelag, Norway. Mar. Drugs 7: 576-588.
    Pubmed PMC
  42. Lu Y, Ishimaru CA, Glazebrook J, Samac DA. 2018. Comparative genomic analyses of Clavibacter michiganensis subsp insidiosus and Pathogenicity on Medicago truncatula. Phytopathology 108: 172-185.
    Pubmed
  43. Thaira H, Raval R, Raval K. 2022. Adsorptive bioprocess improves yield of Melanin from Pseudomonas stutzeri. J. Vis. Exp. 179: e63339.
    Pubmed
  44. Pralea I, Moldovan R, Petrache A, Ilies M, Heghes SC, Ielciu I, et al. 2019. From extraction to advanced analytical methods: the challenges of melanin analysis. Int. J. Mol. Sci. 20: 3943.
    Pubmed PMC
  45. Wang L, Li Y, Li Y. Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL24. Int. J. Biol. Macromol. 123: 521-530.
    Pubmed
  46. Shalaby AS, Ragab T, Helal M, Esawy M. 2019. Optimization of Bacillus licheniformis MAL tyrosinase: in vitro anticancer activity for brown and black eumelanin. Heliyon 5: e01657.
    Pubmed PMC
  47. Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, et al. 2019. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci. Rep. 9: 7488.
    Pubmed PMC
  48. Wu CC, Li H, Yin ZW, Zhang XB, Gao MJ. 2022. Isolation, purification, and characterization of novel melanin from the submerged fermentation of Rhizobium radiobacter. Process Biochem. 121: 263-275.
  49. Chhetri G, Kim J, Kim I, Kang M, Lee B, Jang W, et al. 2019. Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field. Int. J. Syst. Evol. Microbiol. 71: 004736.
    Pubmed
  50. Liu HX, Zhang CX, Zhang XX, Tan K, Zhang HK, Cheng DW, et al. 2020. A novel carotenoids-producing marine bacterium from noble scallop Chlamys nobilis and antioxidant activities of its carotenoid compositions. Food Chem. 320: 126629.
    Pubmed
  51. Yukihira N Uragami C, Horiuchi K, Kosumi D, Gardiner AT, Cogdell RJ, et al. 2022. Intramolecular charge-transfer enhances energy transfer efficiency in carotenoid-reconstituted light-harvesting 1 complex of purple photosynthetic bacteria. Comm. Chem. 5: 135.
    Pubmed PMC
  52. Niero H, da Silva MAC, de Felicio R, Trivella DBB, Lima AOD. 2021. Carotenoids produced by the deep-sea bacterium Erythrobacter citreus LAMA 915: detection and proposal of their biosynthetic pathway. Folia Microbiol. 66: 441-456.
    Pubmed
  53. Patthawaro S, Lomthaisong K, Saejung C. 2020. Bioconversion of agro-industrial waste to value-added product Lycopene by photosynthetic Bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste Biomass Valorization 11: 2375-2386.
  54. Uragami C, Sato H, Yukihira N, Fujiwara M, Kosumi D, Gardiner AT. 2020. Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum. J. Photoch. Photobio. A. 400: 112628.
  55. Tarlachkov SV, Shevchuk TV, Montero-Calasanz MDC, Starodumova IP. 2020. Diversity of rhodopsins in cultivated bacteria of the family Geodermatophilaceae associated with non-aquatic environments. Bioinformatics 36: 2646.
    Pubmed
  56. Lu XW, Li WJ, Wang Q, Wang J, Qin S. 2023. Progress on the extraction, separation, biological activity, and delivery of natural plant pigments. Molecules 28: 5364.
    Pubmed PMC
  57. Kalra R, Conlan XA, Goel M. 2020. Fungi as a potential source of pigments: harnessing filamentous fungi. Front. Chem. 8: 369.
    Pubmed PMC
  58. Taddia A, Rito-Palomares M, Mayolo-Deloisa K, Tubio G. 2021. Purification of xylanase from Aspergillus niger NRRL3 extract by an integrated strategy based on aqueous two-phase systems followed by ion exchange chromatography. Sep. Purif. Technol. 255: 117699.
  59. Shen N, Ren JN, Liu YX, Sun WQ, Li YR, Xin HW, et al. 2022. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chem. 403: 134422.
    Pubmed
  60. Hasan M, Azhar M, Nangia H, Bhatt PC, Panda BP. 2016. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells. Prep. Biochem. Biotechnol. 46:116-122.
    Pubmed
  61. Rodrigues RDP, de Castro FC, de Santiago-Aguiar RS, Rocha MVP. 2018. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res. 31: 454-462.
  62. Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis, N. 2023. Natural carotenoids: recent advances on separation from microbial biomass and methods of analysis. Antioxidants 12: 1030.
    Pubmed PMC
  63. Rajput A, Singh DP, Khattar JS, Swatch, GK, Singh Y. 2022. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. J. Basic Microb. 62: 1156-1166.
    Pubmed
  64. Rajendran P, Somasundaram P, Dufossé L. 2023. Microbial pigments: eco-friendly extraction techniques and some industrial applications. J. Mol. Struct. 1290: 135958.
  65. Venil CK, Dufoss L, Devi PR. 2020. Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Front. Sustain. Food Syst. 4: 100.
  66. Lichstein HC, Van De Sand VF. 1945. Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J. Infect. Dis. 76: 47-51.
  67. Im H, Choi SY, Son S, Mitchell RJ. 2017. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci. Rep. 7: 14415.
    Pubmed PMC
  68. Alshatwi AA, Subash-Babu P, Antonisamy P. 2016. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp. Toxicol. Pathol. 68: 89-97.
    Pubmed
  69. Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S. 2020. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J. Microbiol. Biotechnol. 36: 120.
    Pubmed
  70. Pachaiyappan A, Sadhasivam G, Kumar M, Muthuvel A. 2021. Biomedical potential of astaxanthin from novel endophytic pigment producing bacteria Pontibacter korlensis AG6. Waste Biomass Valorization 12: 2119-2129.
  71. Abdelfattah MS, Elmallah MIY, Ebrahim HY, Almeer RS, Eltanany RMA, Abdel Moneim AE. 2019. Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS One 14: e0216737.
    Pubmed PMC
  72. Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L. 2020. Applications of prodigiosin extracted from marine red pigmented bacteria Zooshikella sp. and actinomycete Streptomyces sp. Microorganisms 8: 556.
    Pubmed PMC
  73. Hegazy GE, Abu-Serie MM, Abo-Elela GM, Ghozlan H, Sabry SA, Soliman NA, et al. 2020. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Sci. Rep. 10: 5986.
    Pubmed PMC
  74. Venil CK, Aruldass CA, Abd Halim MH, Khasim AR, Zakaria ZA, Ahmad WA. 2015. Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. Int. Biodeterior. Biodegrad. 102: 324-329.
  75. Mahadik SA, Yadav HM, Mahadik SS. 2022. Surface properties of chlorophyll-a sensitized TiO2 nanorods for dye-sensitized solar cells applications. Colloid Interfac. Sci. 46: 100558.
  76. Salzillo T, D’Agostino S, Rivalta A, Giunchi A, Brillante A, Della Valle RG, et al. 2018. Structural, spectroscopic and computational characterization of the concomitant polymorphs of the natural semiconductor indigo. J. Phys. Chem. C. 122: 18422-18431.
  77. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, Oslan SN, Arumugam K, Bin Ariff A, Sulaiman AZ, et al. 2021. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 11: 256.
    Pubmed PMC
  78. Dutta S, Kumar SPJ, Banerjee R. 2023. A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Res. 74: 103168.
  79. Mnif S, Jardak M, Bouizgarne B, Aifa S. 2022. Prodigiosin from Serratia: synthesis and potential applications. Asian Pac. J. Trop. Bio. 12: 233-242.
  80. Zhu LY, Chu YW, Zhang BW, Yuan XM, Wang K, Liu ZY, et al. 2022. Creation of an industrial Bacillus thuringiensis strain with high melanin production and UV tolerance by gene editing. Front. Microbiol. 13: 913715.
    Pubmed PMC
  81. Patil CD, Patil SV, Salunke BK, Salunkhe RB. 2011. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol. Res. 109: 1179-1187.
    Pubmed
  82. Liang TW, Chen SY, Chen CH, Yen YH, Wang SL. 2013. Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants. J. Food Sci. 78: M1743-1751.
  83. Oh JJ, Kim JY, Kim YJ, Kim S, Kim GH. 2021. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Iso4 272: 129884.
    Pubmed
  84. Thaira H, Raval R, Raval K. 2022. Adsorptive bioprocess improves yield of melanin from Pseudomonas stutzeri. Jove-J. Vis. Exp. 179: e63339.
    Pubmed
  85. Sharma G, Rahul, Guleria R, Mathur V. 2020. Differences in plant metabolites and microbes associated with Azadirachta indica with variation in air pollution. Environ. Pollut. 257: 113595.
    Pubmed
  86. Sajja W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, et al. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24: 447-473.
    Pubmed PMC
  87. Flynn S, Reen FJ, O'Gara F. 2019. Exposure to bile leads to the emergence of adaptive signaling variants in the opportunistic pathogen Pseudomonas aeruginosa. Front. Microbiol. 10: 2013.
    Pubmed PMC
  88. Orlandi VT, Bolognese F, Chiodaroli L, Tolker-Nielsen T, Barbieri P. 2015. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. Microbiology 161: 2298-2309.
    Pubmed
  89. Pandey N, Rahul J, Anita P, Sushma T. 2018. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9: 81-92.
  90. El Baky HHA, El Baroty GS, Mostafa EM. 2020. Optimization growth of Spirulina (Arthrospira) platensis in photobioreactor under varied nitrogen concentration for maximized biomass, carotenoids and lipid contents. Recent Pat. Food Nutr. Agric. 11: 40-48.
    Pubmed
  91. Erdogan A, Demirel Z, Eroglu AE, Dalay MC. 2016. Carotenoid profile in Prochlorococcus sp. and enrichment of lutein using different nitrogen sources. J. Appl. Phycol. 28: 3251-3257.
  92. Cottas AG, Cunha WR, Ribeiro EJ, de Souza Ferreira J. 2020. Influence of medium composition on the production of phycocyanin from Anabaena variabilis. Ind. Biotechnol. 16: 45-49.
  93. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S. 1997. Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239: 85-90.
    Pubmed
  94. Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, et al. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24: 447-473.
    Pubmed PMC
  95. Xu S, Li G, Zhou J, Chen G, Shao J. 2022. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes. Front. Bioeng. Biotechnol. 10: 899182.
    Pubmed PMC
  96. Maj A, Dziewit L, Drewniak L, Garstka M, Krucon T, Piatkowska K, et al. 2020. In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes. Microb. Cell Fact. 19: 141.
    Pubmed PMC
  97. Furubayashi M, Kubo A, Takemura M, Otani Y, Maoka T, Terada Y, et al. 2021. Capsanthin production in Escherichia coli by overexpression of Capsanthin/Capsorubin synthase from Capsicum annuum. J. Agric. Food Chem. 69: 5076-5085.
    Pubmed
  98. Zhao X, Gao H, Wang Y, Wang Z, Zhou J. 2022. Efficient synthesis of phycocyanobilin by combinatorial metabolic engineering in Escherichia coli. ACS Synth. Biol. 11: 2089-2097.
    Pubmed

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2024; 34(11): 2153-2165

Published online November 28, 2024 https://doi.org/10.4014/jmb.2404.04018

Copyright © The Korean Society for Microbiology and Biotechnology.

Bacterial Pigments as a Promising Alternative to Synthetic Colorants: From Fundamentals to Applications

Xin Huang1, Longzhan Gan1*, Zhicheng He1, Guangyang Jiang2*, and Tengxia He1

1Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, P.R. China
2Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, P.R. China

Correspondence to:Longzhan Gan,            lzgan@gzu.edu.cn
Guangyang Jiang,        gyjiang@scu.edu.cn

Received: April 11, 2024; Revised: July 31, 2024; Accepted: August 28, 2024

Abstract

Pigments find widespread application in the fields of food, medicine, textiles, and cosmetics. At present, synthetic colorants dominate the global pigment market. However, the environmental and health hazards associated with synthetic colorants have spurred extensive research on eco-friendly and safe alternatives. Natural pigments are particularly intriguing for meeting consumer demands and sustainable development, as they not only exhibit various vibrant color shades without discernible toxic side effects but also offer additional healthful features such as antibacterial, antioxidant, anticancer, and antiviral properties compared with their synthetic counterparts. Among natural sources, bacterial strains share distinct advantages for large-scale pigment production because of their intrinsic robustness of cellular metabolic systems. This review comprehensively outlines the bacterial sources, extraction and purification methods, structural characteristics, biological activities, and potential applications of typical pigments, including but not limited to violacein, indigoidine, melanin, carotenoids, prodigiosin, and rhodopsin. Additionally, it underscores the primary obstacles to the development and production of bacterial pigments for commercial applications, discussing feasible strategies for overcoming production bottlenecks. This work also provides valuable insights for the scientific and rational advancement of bacterial pigment development.

Keywords: Bacterial pigments, pigment classification, biosynthesis, chemical structure, biological activity

References

  1. Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M, et al. 2023. Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms 11: 614.
    Pubmed KoreaMed
  2. Azman AS, Mawang C, Abubakar S. 2018. Bacterial pigments: the bioactivities and as an alternative for therapeutic applications. Nat. Prod. Commun. 13: 1747-1754.
  3. Tkaczyk A, Mitrowska K, Posyniak A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci. Total Environ. 717: 137222.
    Pubmed
  4. Grewal J, Wolacewicz M, Pyter W, Joshi N, Drewniak, L, Pranaw, K. 2022. Colorful treasure from agro-industrial wastes: a sustainable chassis for microbial pigment production. Front. Microbiol. 13: 832918.
    Pubmed KoreaMed
  5. Liu ZJ, van den Berg C, Weusthuis RA, Dragone G, Mussatto SI. 2021. Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Sep. Purif. Technol. 257: 117946.
  6. Mussagy CU, Khan S, Kot AM. 2021. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Crit. Rev. Food Sci. Nutr. 62: 6932-6946.
    Pubmed
  7. Wu YH, Cheng H, Xu L, Jin XB, Wang CS, Xu XW. 2017. Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater. PLoS One 12: e0179997.
    Pubmed KoreaMed
  8. Gómez-Gómez B, Arregui L, Serrano S, Santos A, Pérez-Corona T, Madrid Y. 2019. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics 11: 1104-1114.
    Pubmed
  9. Atalah J, Blamey L, Munoz-Ibacache S, Gutierrez F, Urzua M, Encinas MV, et al. 2020. Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles 24: 43-52.
    Pubmed
  10. Sedláček I, Holochová P, Busse HJ, Koublová V, Králová S, Švec P, et al. 2022. Characterisation of waterborne psychrophilic Massilia isolates with violacein production and description of Massilia antarctica sp. nov. Microorganisms 10: 704.
    Pubmed KoreaMed
  11. Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. 2021. Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J. Biol. Eng. 15: 10.
    Pubmed KoreaMed
  12. Ghiffary MR, Prabowo CPS., Sharma K, Yan Y, Lee SY, Kim HU. 2021. High-level production of the natural blue pigment indigoidine from metabolically engineered Corynebacterium glutamicum for sustainable fabric dyes. ACS Sustain. Chem. Eng. 9: 6613-6622.
  13. Day PA, Villalba MS, Herrero OM, Arancibia LA, Alvarez HM. 2017. Formation of indigoidine derived-pigments contributes to the adaptation of Vogesella sp. strain EB to cold aquatic iron-oxidizing environments. Antonie Van Leeuwenhoek 110: 415-428.
    Pubmed
  14. Czajka JJ, Banerjee D, Eng T, Menasalvas JY, Chunsheng M, Nathalie M, et al. 2022. Tuning a high performing multiplexed-CRISPRi Pseudomonas putida strain to further enhance indigoidine production. Metab. Eng. Commun. 15: e00206.
    Pubmed KoreaMed
  15. Breider S, Sehar S, Berger M, Thomas T, Brinkhoff T, Egan S. 2019. Genome sequence of Epibacterium ulvae strain DSM 24752T, an indigoidine-producing, macroalga-associated member of the marine Roseobacter group. Environ. Microbiome 14: 4.
    Pubmed KoreaMed
  16. Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, et al. 2012. Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine Roseobacter Phaeobacter sp. strain Y4I. Appl. Environ. Microbiol. 78: 4771-4780.
    Pubmed KoreaMed
  17. Fereja TH, Kitte SA, Zafar MN, Halawa MI, Han S, Zhang W, et al. 2020. Highly sensitive and selective non-enzymatic glucose detection based on indigo carmine/hemin/H2O2 chemiluminescence. Analyst 145: 1041-1046.
    Pubmed
  18. Guo L, Li W, Gu Z, Wang L, Guo L, Ma SB, et al. 2023. Recent advances and progress on melanin: from source to application. Int. J. Mol. Sci. 24: 4360.
    Pubmed KoreaMed
  19. Handl J, Nyvltova P, Capek J, Cesla P, Hovsepyan A, Avetisyan S, et al. 2022. The comparison of biological effects of bacterial and synthetic melanins in neuroblastoma cells. Food Chem. Toxicol. 168: 113355.
    Pubmed
  20. Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, et al. 2019. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci. Rep. 9: 7488.
    Pubmed KoreaMed
  21. Getachew B, Csoka AB, Aschner M, Tizabi Y. 2019. Nicotine protects against manganese and iron-induced toxicity in SH-SY5Y cells:implication for Parkinson’s disease. Neurochem. Int. 124: 19-24.
    Pubmed KoreaMed
  22. Coelho BP, Gaelzer MM, dos Santos Petry F, Hoppe JB, Trindade VMT, Salbego CG, et al. 2019. Dual effect of doxazosin: anticancer activity on SH-SY5Y neuroblastoma cells and neuroprotection on an in vitro model of Alzheimer’s disease. Neuroscience 404: 314325.
    Pubmed
  23. López GD, Alvarez-Rivera G, Carazzone C, Ibáñez E, Leidy C, Cifuentes A. 2023. Bacterial carotenoids: extraction, characterization, and applications. Crit. Rev. Anal. Chem. 53: 1239-1262.
    Pubmed
  24. Singh RV, Sambyal K. 2022. An overview of β-carotene production: current status and future prospects. Food Biosci. 47: 101717.
  25. Tuli HS, Chaudhary P, Beniwal V, Sharma AK. 2015. Microbial pigments as natural color sources: current trends and future perspectives. J. Food Sci. Tech. Mys. 52: 4669-4678.
    Pubmed KoreaMed
  26. Pachaiyappan A, Sadhasivam G, Kumar M, Muthuvel A. 2020. Biomedical potential of astaxanthin from novel endophytic pigment producing bacteria Pontibacter korlensis AG6. Waste Biomass Valorization 12: 2119-2129.
  27. Bampidis V, Azimonti G, Bastos MD, Christensen H, Dusemund B, Kouba M, et al. 2019. Safety and efficacy of lutein and lutein/zeaxanthin extracts from Tagetes erecta for poultry for fattening and laying (except turkeys). Efsa J. 17: 5698.
  28. Liu J, Xiao LK, Xie YJ, Guan FC, Cai JL. 2022. The stability of carotenoids from a marine photosynthetic bacterium Ectothiorhodospira shaposhnikovii P2. J. Food Process Preserv. 46: e16724.
  29. Boger DL, Patel M. 1987. Total synthesis of prodigiosin. Tetrahedron Lett. 28: 2499-2502.
  30. Mnif S, Jardak M, Bouizgarne B, Aifa S. 2022. Prodigiosin from Serratia: synthesis and potential applications. Asian Pac. Trop. Biomed. 12: 233-242.
  31. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, et al. 2018. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75: 1049-1062.
    Pubmed
  32. Feng J, Shi WL, Zhang S, Zhang Y. 2015. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection. Emerg. Microbes Infect. 4: e31.
    Pubmed KoreaMed
  33. Chen JL, Lin YC, Fu HY, Chii-Shenyang. 2019. The blue-green sensory rhodopsin SRM from Haloarcula marismortui attenuates both phototactic responses mediated by sensory rhodopsin I and II in Halobacterium salinarum. Sci. Rep. 9: 5672.
    Pubmed KoreaMed
  34. Bogomolni RA, Spudich JL. 1982. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc. Natl. Acad. Sci. USA 79: 6250-6254.
    Pubmed KoreaMed
  35. Han HW, Ko LN, Yang CS, Hsu SH. 2019. Potential of engineered bacteriorhodopsins as photoactivated biomaterials in modulating neural stem cell behavior. ACS Biomater. Sci. Eng. 5: 3068-3078.
    Pubmed
  36. Luo PW, Han HW, Yang CS, Shrestha LK, Ariga K, Hsu S. 2019. Optogenetic modulation and reprogramming of bacteriorhodopsin transfected human fibroblasts on self-assembled fullerene C60 nanosheets. Adv. Biosyst. 3: 1800254.
    Pubmed
  37. Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, et al. 2018. Pseudomonas aeruginosa algr phosphorylation status differentially regulates pyocyanin and pyoverdine production. mBio 9: 2318-2335.
    Pubmed KoreaMed
  38. Kirienko DR, Kang D, Kirienko NV. 2019. Novel pyoverdine inhibitors mitigate Pseudomonas aeruginosa pathogenesis. Front. Microbiol. 9: 3317.
    Pubmed KoreaMed
  39. Li X, Li Y, Wang R, Wang Q, Lu L. 2019. Toxoflavin Produced by Burkholderia gladioli from Lycoris aurea is a new broad-spectrum fungicide. Appl. Environ. Microbiol. 85: e00106-19.
    Pubmed KoreaMed
  40. Xu X, Tian LQ, Zhang S, Jiang L, Zhang ZD, Huang H. 2019. Complete genome sequence of Janthinobacterium sp. B9-8, a violaceinproducing bacterium isolated from low-temperature sewage. Microbial Pathogenesis 128: 178-183.
    Pubmed
  41. Hakvag S, Fjaervik E, Klinkenberg G, Borgos SEF, Josefsen KD, Ellingsen TE, et al. 2009. Violacein-producing Collimonas sp. from the sea surface microlayer of coastal waters in Trondelag, Norway. Mar. Drugs 7: 576-588.
    Pubmed KoreaMed
  42. Lu Y, Ishimaru CA, Glazebrook J, Samac DA. 2018. Comparative genomic analyses of Clavibacter michiganensis subsp insidiosus and Pathogenicity on Medicago truncatula. Phytopathology 108: 172-185.
    Pubmed
  43. Thaira H, Raval R, Raval K. 2022. Adsorptive bioprocess improves yield of Melanin from Pseudomonas stutzeri. J. Vis. Exp. 179: e63339.
    Pubmed
  44. Pralea I, Moldovan R, Petrache A, Ilies M, Heghes SC, Ielciu I, et al. 2019. From extraction to advanced analytical methods: the challenges of melanin analysis. Int. J. Mol. Sci. 20: 3943.
    Pubmed KoreaMed
  45. Wang L, Li Y, Li Y. Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL24. Int. J. Biol. Macromol. 123: 521-530.
    Pubmed
  46. Shalaby AS, Ragab T, Helal M, Esawy M. 2019. Optimization of Bacillus licheniformis MAL tyrosinase: in vitro anticancer activity for brown and black eumelanin. Heliyon 5: e01657.
    Pubmed KoreaMed
  47. Núñez-Montero K, Lamilla C, Abanto M, Maruyama F, Jorquera MA, Santos A, et al. 2019. Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery. Sci. Rep. 9: 7488.
    Pubmed KoreaMed
  48. Wu CC, Li H, Yin ZW, Zhang XB, Gao MJ. 2022. Isolation, purification, and characterization of novel melanin from the submerged fermentation of Rhizobium radiobacter. Process Biochem. 121: 263-275.
  49. Chhetri G, Kim J, Kim I, Kang M, Lee B, Jang W, et al. 2019. Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field. Int. J. Syst. Evol. Microbiol. 71: 004736.
    Pubmed
  50. Liu HX, Zhang CX, Zhang XX, Tan K, Zhang HK, Cheng DW, et al. 2020. A novel carotenoids-producing marine bacterium from noble scallop Chlamys nobilis and antioxidant activities of its carotenoid compositions. Food Chem. 320: 126629.
    Pubmed
  51. Yukihira N Uragami C, Horiuchi K, Kosumi D, Gardiner AT, Cogdell RJ, et al. 2022. Intramolecular charge-transfer enhances energy transfer efficiency in carotenoid-reconstituted light-harvesting 1 complex of purple photosynthetic bacteria. Comm. Chem. 5: 135.
    Pubmed KoreaMed
  52. Niero H, da Silva MAC, de Felicio R, Trivella DBB, Lima AOD. 2021. Carotenoids produced by the deep-sea bacterium Erythrobacter citreus LAMA 915: detection and proposal of their biosynthetic pathway. Folia Microbiol. 66: 441-456.
    Pubmed
  53. Patthawaro S, Lomthaisong K, Saejung C. 2020. Bioconversion of agro-industrial waste to value-added product Lycopene by photosynthetic Bacterium Rhodopseudomonas faecalis and its carotenoid composition. Waste Biomass Valorization 11: 2375-2386.
  54. Uragami C, Sato H, Yukihira N, Fujiwara M, Kosumi D, Gardiner AT. 2020. Photoprotective mechanisms in the core LH1 antenna pigment-protein complex from the purple photosynthetic bacterium, Rhodospirillum rubrum. J. Photoch. Photobio. A. 400: 112628.
  55. Tarlachkov SV, Shevchuk TV, Montero-Calasanz MDC, Starodumova IP. 2020. Diversity of rhodopsins in cultivated bacteria of the family Geodermatophilaceae associated with non-aquatic environments. Bioinformatics 36: 2646.
    Pubmed
  56. Lu XW, Li WJ, Wang Q, Wang J, Qin S. 2023. Progress on the extraction, separation, biological activity, and delivery of natural plant pigments. Molecules 28: 5364.
    Pubmed KoreaMed
  57. Kalra R, Conlan XA, Goel M. 2020. Fungi as a potential source of pigments: harnessing filamentous fungi. Front. Chem. 8: 369.
    Pubmed KoreaMed
  58. Taddia A, Rito-Palomares M, Mayolo-Deloisa K, Tubio G. 2021. Purification of xylanase from Aspergillus niger NRRL3 extract by an integrated strategy based on aqueous two-phase systems followed by ion exchange chromatography. Sep. Purif. Technol. 255: 117699.
  59. Shen N, Ren JN, Liu YX, Sun WQ, Li YR, Xin HW, et al. 2022. Natural edible pigments: a comprehensive review of resource, chemical classification, biosynthesis pathway, separated methods and application. Food Chem. 403: 134422.
    Pubmed
  60. Hasan M, Azhar M, Nangia H, Bhatt PC, Panda BP. 2016. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells. Prep. Biochem. Biotechnol. 46:116-122.
    Pubmed
  61. Rodrigues RDP, de Castro FC, de Santiago-Aguiar RS, Rocha MVP. 2018. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res. 31: 454-462.
  62. Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis, N. 2023. Natural carotenoids: recent advances on separation from microbial biomass and methods of analysis. Antioxidants 12: 1030.
    Pubmed KoreaMed
  63. Rajput A, Singh DP, Khattar JS, Swatch, GK, Singh Y. 2022. Evaluation of growth and carotenoid production by a green microalga Scenedesmus quadricauda PUMCC 4.1.40. under optimized culture conditions. J. Basic Microb. 62: 1156-1166.
    Pubmed
  64. Rajendran P, Somasundaram P, Dufossé L. 2023. Microbial pigments: eco-friendly extraction techniques and some industrial applications. J. Mol. Struct. 1290: 135958.
  65. Venil CK, Dufoss L, Devi PR. 2020. Bacterial pigments: sustainable compounds with market potential for pharma and food industry. Front. Sustain. Food Syst. 4: 100.
  66. Lichstein HC, Van De Sand VF. 1945. Violacein, an antibiotic pigment produced by Chromobacterium violaceum. J. Infect. Dis. 76: 47-51.
  67. Im H, Choi SY, Son S, Mitchell RJ. 2017. Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci. Rep. 7: 14415.
    Pubmed KoreaMed
  68. Alshatwi AA, Subash-Babu P, Antonisamy P. 2016. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Exp. Toxicol. Pathol. 68: 89-97.
    Pubmed
  69. Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S. 2020. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J. Microbiol. Biotechnol. 36: 120.
    Pubmed
  70. Pachaiyappan A, Sadhasivam G, Kumar M, Muthuvel A. 2021. Biomedical potential of astaxanthin from novel endophytic pigment producing bacteria Pontibacter korlensis AG6. Waste Biomass Valorization 12: 2119-2129.
  71. Abdelfattah MS, Elmallah MIY, Ebrahim HY, Almeer RS, Eltanany RMA, Abdel Moneim AE. 2019. Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS One 14: e0216737.
    Pubmed KoreaMed
  72. Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L. 2020. Applications of prodigiosin extracted from marine red pigmented bacteria Zooshikella sp. and actinomycete Streptomyces sp. Microorganisms 8: 556.
    Pubmed KoreaMed
  73. Hegazy GE, Abu-Serie MM, Abo-Elela GM, Ghozlan H, Sabry SA, Soliman NA, et al. 2020. In vitro dual (anticancer and antiviral) activity of the carotenoids produced by haloalkaliphilic archaeon Natrialba sp. M6. Sci. Rep. 10: 5986.
    Pubmed KoreaMed
  74. Venil CK, Aruldass CA, Abd Halim MH, Khasim AR, Zakaria ZA, Ahmad WA. 2015. Spray drying of violet pigment from Chromobacterium violaceum UTM 5 and its application in food model systems. Int. Biodeterior. Biodegrad. 102: 324-329.
  75. Mahadik SA, Yadav HM, Mahadik SS. 2022. Surface properties of chlorophyll-a sensitized TiO2 nanorods for dye-sensitized solar cells applications. Colloid Interfac. Sci. 46: 100558.
  76. Salzillo T, D’Agostino S, Rivalta A, Giunchi A, Brillante A, Della Valle RG, et al. 2018. Structural, spectroscopic and computational characterization of the concomitant polymorphs of the natural semiconductor indigo. J. Phys. Chem. C. 122: 18422-18431.
  77. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, Oslan SN, Arumugam K, Bin Ariff A, Sulaiman AZ, et al. 2021. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules 11: 256.
    Pubmed KoreaMed
  78. Dutta S, Kumar SPJ, Banerjee R. 2023. A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Res. 74: 103168.
  79. Mnif S, Jardak M, Bouizgarne B, Aifa S. 2022. Prodigiosin from Serratia: synthesis and potential applications. Asian Pac. J. Trop. Bio. 12: 233-242.
  80. Zhu LY, Chu YW, Zhang BW, Yuan XM, Wang K, Liu ZY, et al. 2022. Creation of an industrial Bacillus thuringiensis strain with high melanin production and UV tolerance by gene editing. Front. Microbiol. 13: 913715.
    Pubmed KoreaMed
  81. Patil CD, Patil SV, Salunke BK, Salunkhe RB. 2011. Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol. Res. 109: 1179-1187.
    Pubmed
  82. Liang TW, Chen SY, Chen CH, Yen YH, Wang SL. 2013. Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants. J. Food Sci. 78: M1743-1751.
  83. Oh JJ, Kim JY, Kim YJ, Kim S, Kim GH. 2021. Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Iso4 272: 129884.
    Pubmed
  84. Thaira H, Raval R, Raval K. 2022. Adsorptive bioprocess improves yield of melanin from Pseudomonas stutzeri. Jove-J. Vis. Exp. 179: e63339.
    Pubmed
  85. Sharma G, Rahul, Guleria R, Mathur V. 2020. Differences in plant metabolites and microbes associated with Azadirachta indica with variation in air pollution. Environ. Pollut. 257: 113595.
    Pubmed
  86. Sajja W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, et al. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24: 447-473.
    Pubmed KoreaMed
  87. Flynn S, Reen FJ, O'Gara F. 2019. Exposure to bile leads to the emergence of adaptive signaling variants in the opportunistic pathogen Pseudomonas aeruginosa. Front. Microbiol. 10: 2013.
    Pubmed KoreaMed
  88. Orlandi VT, Bolognese F, Chiodaroli L, Tolker-Nielsen T, Barbieri P. 2015. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. Microbiology 161: 2298-2309.
    Pubmed
  89. Pandey N, Rahul J, Anita P, Sushma T. 2018. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9: 81-92.
  90. El Baky HHA, El Baroty GS, Mostafa EM. 2020. Optimization growth of Spirulina (Arthrospira) platensis in photobioreactor under varied nitrogen concentration for maximized biomass, carotenoids and lipid contents. Recent Pat. Food Nutr. Agric. 11: 40-48.
    Pubmed
  91. Erdogan A, Demirel Z, Eroglu AE, Dalay MC. 2016. Carotenoid profile in Prochlorococcus sp. and enrichment of lutein using different nitrogen sources. J. Appl. Phycol. 28: 3251-3257.
  92. Cottas AG, Cunha WR, Ribeiro EJ, de Souza Ferreira J. 2020. Influence of medium composition on the production of phycocyanin from Anabaena variabilis. Ind. Biotechnol. 16: 45-49.
  93. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S. 1997. Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239: 85-90.
    Pubmed
  94. Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, et al. 2020. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24: 447-473.
    Pubmed KoreaMed
  95. Xu S, Li G, Zhou J, Chen G, Shao J. 2022. Efficient production of anthocyanins in Saccharomyces cerevisiae by introducing anthocyanin transporter and knocking out endogenous degrading enzymes. Front. Bioeng. Biotechnol. 10: 899182.
    Pubmed KoreaMed
  96. Maj A, Dziewit L, Drewniak L, Garstka M, Krucon T, Piatkowska K, et al. 2020. In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes. Microb. Cell Fact. 19: 141.
    Pubmed KoreaMed
  97. Furubayashi M, Kubo A, Takemura M, Otani Y, Maoka T, Terada Y, et al. 2021. Capsanthin production in Escherichia coli by overexpression of Capsanthin/Capsorubin synthase from Capsicum annuum. J. Agric. Food Chem. 69: 5076-5085.
    Pubmed
  98. Zhao X, Gao H, Wang Y, Wang Z, Zhou J. 2022. Efficient synthesis of phycocyanobilin by combinatorial metabolic engineering in Escherichia coli. ACS Synth. Biol. 11: 2089-2097.
    Pubmed