전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review


References

  1. Butel JS. 2000. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21: 405-426.
    Pubmed
  2. Jha HC, Banerjee S, Robertson ES. 2016. The role of gammaherpesviruses in cancer pathogenesis. Pathogens 5: 18.
    Pubmed PMC
  3. Wen KW, Wang L, Menke JR, Damania B. 2022. Cancers associated with human gammaherpesviruses. FEBS J. 289: 7631-7669.
    Pubmed PMC
  4. Kim ET, Kim KD. 2022. Topological implications of DNA tumor viral episomes. BMB Rep. 55: 587-594.
    Pubmed PMC
  5. Lo AK, Dawson CW, Young LS, Lo KW. 2017. The role of metabolic reprogramming in gamma-herpesvirus-associated oncogenesis. Int. J. Cancer 141: 1512-1521.
    Pubmed
  6. Speck SH, Ganem D. 2010. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8: 100-115.
    Pubmed PMC
  7. Sorel O, Dewals BG. 2018. The critical role of genome maintenance proteins in immune evasion during gammaherpesvirus latency. Front. Microbiol. 9: 3315.
    Pubmed PMC
  8. Yan L, Majerciak V, Zheng ZM, Lan K. 2019. Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis. Virol. Sin. 34: 135-161.
    Pubmed PMC
  9. Kempkes B, Robertson ES. 2015. Epstein-Barr virus latency: current and future perspectives. Curr. Opin. Virol. 14: 138-144.
    Pubmed PMC
  10. Yang J, Liu Z, Zeng B, Hu G, Gan R. 2020. Epstein-Barr virus-associated gastric cancer: a distinct subtype. Cancer Lett. 495: 191-199.
    Pubmed
  11. Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. 2011. Virus reactivation: a panoramic view in human infections. Future Virol. 6: 451-463.
    Pubmed PMC
  12. Dubich T, Dittrich A, Bousset K, Geffers R, Busche G, Koster M, et al. 2021. 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J. Mol. Med (Berl) 99: 425-438.
    Pubmed PMC
  13. Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y, et al. 2022. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 34: 1280-1297 e1289.
    Pubmed PMC
  14. Damania B, Kenney SC, Raab-Traub N. 2022. Epstein-Barr virus: biology and clinical disease. Cell 185: 3652-3670.
    Pubmed PMC
  15. Luo Y, Liu Y, Wang C, Gan R. 2021. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 21: 93.
    Pubmed PMC
  16. Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. 2019. Kaposi sarcoma. Nat. Rev. Dis. Primers 5: 9.
    Pubmed PMC
  17. Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, et al. 2023. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab. 11: 13.
    Pubmed PMC
  18. Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. 2017. Evidence for altered glutamine metabolism in human immunodeficiency virus type 1 infected primary human CD4+ T cells. AIDS Res. Hum. Retroviruses 33: 12361247.
    Pubmed PMC
  19. Thakker S, Verma SC. 2016. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front. Microbiol. 7: 151.
    Pubmed PMC
  20. Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033.
    Pubmed PMC
  21. Liberti MV, Locasale JW. 2016. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41: 211-218.
    Pubmed PMC
  22. Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. 2021. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73: 103627.
    Pubmed PMC
  23. Chen Z, Han F, Du Y, Shi H, Zhou W. 2023. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8: 70.
    Pubmed PMC
  24. Raimundo N, Baysal BE, Shadel GS. 2011. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 17: 641-649.
    Pubmed PMC
  25. Tarrado-Castellarnau M, de Atauri P, Cascante M. 2016. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget 7: 62726-62753.
    Pubmed PMC
  26. Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. 2016. Metabolic requirements for cancer cell proliferation. Cancer Metab. 4: 16.
    Pubmed PMC
  27. Koundouros N, Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122: 4-22.
    Pubmed PMC
  28. Bosc C, Broin N, Fanjul M, Saland E, Farge T, Courdy C, et al. 2020. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat. Commun. 11: 4056.
    Pubmed PMC
  29. Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, et al. 2018. Autophagy maintains tumour growth through circulating arginine. Nature 563: 569-573.
    Pubmed PMC
  30. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497: 633-637.
    Pubmed PMC
  31. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536: 479-483.
    Pubmed PMC
  32. Duarte Mendes A, Freitas AR, Vicente R, Vitorino M, Vaz Batista M, Silva M, et al. 2023. Adipocyte microenvironment in ovarian cancer: a critical contributor? Int. J. Mol. Sci. 24: 16589.
    Pubmed PMC
  33. Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, et al. 2019. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79: 3251-3267.
    Pubmed PMC
  34. Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ, et al. 2015. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125: 2293-2306.
    Pubmed PMC
  35. Yao K, Liu H, Yin J, Yuan J, Tao H. 2021. Synthetic lethality and synergetic effect: the effective strategies for therapy of IDH-mutated cancers. J. Exp. Clin. Cancer Res. 40: 263.
    Pubmed PMC
  36. Zhang J, Jia L, Lin W, Yip YL, Lo KW, Lau VMY, et al. 2017. Epstein-barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-kappaB signaling pathways. J. Virol. 91: e02168-16.
    Pubmed PMC
  37. Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. 2019. mTORC2-mediated PDHE1alpha nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene 38: 4669-4684.
    Pubmed PMC
  38. Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M, et al. 2014. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 33: 4568-4578.
    Pubmed PMC
  39. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. 2011. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208: 313-326.
    Pubmed PMC
  40. Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, et al. 2015. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 34: 6079-6091.
    Pubmed PMC
  41. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. 2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc. Natl. Acad. Sci. USA 107: 1069610701.
    Pubmed PMC
  42. Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. 2018. Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog. 14: e1007062.
    Pubmed PMC
  43. Ma T, Patel H, Babapoor-Farrokhran S, Franklin R, Semenza GL, Sodhi A, et al. 2015. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma. Angiogenesis 18: 477-488.
    Pubmed PMC
  44. Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao SJ, et al. 2022. A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ. 29: 22332246.
    Pubmed PMC
  45. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. 2016. An oncogenic virus promotes cell survival and cellular transformation by suppressing glycolysis. PLoS Pathog. 12: e1005648.
    Pubmed PMC
  46. Luo X, Hong L, Cheng C, Li N, Zhao X, Shi F, et al. 2018. DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis. 9: 619.
    Pubmed PMC
  47. Pal AD, Basak NP, Banerjee AS, Banerjee S. 2014. Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis 35: 1592-1601.
    Pubmed
  48. Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, et al. 2019. Epstein-barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 30: 539-555 e511.
    Pubmed PMC
  49. Holmes DL, Vogt DT, Lagunoff M. 2020. A CRISPR-Cas9 screen identifies mitochondrial translation as an essential process in latent KSHV infection of human endothelial cells. Proc. Natl. Acad. Sci. USA 117: 28384-28392.
    Pubmed PMC
  50. Yogev O, Lagos D, Enver T, Boshoff C. 2014. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog. 10: e1004400.
    Pubmed PMC
  51. Vo MT, Smith BJ, Nicholas J, Choi YB. 2019. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat. Commun. 10: 3203.
    Pubmed PMC
  52. Liang JH, Wang C, Yiu SPT, Zhao B, Guo R, Gewurz BE. 2021. Epstein-barr Virus Induced Cytidine Metabolism Roles in Transformed B-Cell Growth and Survival. mBio 12: e0153021.
    Pubmed PMC
  53. Lee SW, Chen TJ, Lin LC, Li CF, Chen LT, Hsing CH, et al. 2013. Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma. Exp. Mol. Pathol. 95: 83-90.
    Pubmed
  54. Lamontagne RJ, Soldan SS, Su C, Wiedmer A, Won KJ, Lu F, et al. 2021. A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathog. 17: e1009208.
    Pubmed PMC
  55. Zhu Y, Li T, Ramos da Silva S, Lee JJ, Lu C, Eoh H, et al. 2017. A critical role of glutamine and asparagine gamma-Nitrogen in nucleotide biosynthesis in cancer cells Hijacked by an oncogenic virus. mBio 8: e01179-17.
    Pubmed PMC
  56. Cinquina CC, Grogan E, Sun R, Lin SF, Beardsley GP, Miller G. 2000. Dihydrofolate reductase from Kaposi's sarcoma-associated herpesvirus. Virology 268: 201-217.
    Pubmed
  57. Wan Q, Tavakoli L, Wang TY, Tucker AJ, Zhou R, Liu Q, et al. 2024. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat. Commun. 15: 1442.
    Pubmed PMC
  58. Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. 2015. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology 4: e1026530.
    Pubmed PMC
  59. Raber P, Ochoa AC, Rodriguez PC. 2012. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41: 614-634.
    Pubmed PMC
  60. Liu WL, Lin YH, Xiao H, Xing S, Chen H, Chi PD, et al. 2014. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-kappaB pathways:impairment in T cell functions. J. Virol. 88: 6660-6671.
    Pubmed PMC
  61. Guo D, Wang Y, Wu X, Gao Y, Wang A, Zhang Z, et al. 2023. Expression of Tryptophan Metabolism Enzymes in Patients with Diffuse Large B-cell Lymphoma and NK/T-cell Lymphoma. Cancer Med. 12: 12139-12148.
    Pubmed PMC
  62. Chen X, Zang Y, Li D, Guo J, Wang Y, Lin Y, et al. 2020. IDO, TDO, and AHR overexpression is associated with poor outcome in diffuse large B-cell lymphoma patients in the rituximab era. Medicine (Baltimore) 99: e19883.
    Pubmed PMC
  63. Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, et al. 2011. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann. Hematol. 90: 409-416.
    Pubmed
  64. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. 2015. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. PLoS Pathog. 11: e1005052.
    Pubmed PMC
  65. Valiya Veettil M, Dutta D, Bottero V, Bandyopadhyay C, Gjyshi O, Sharma-Walia N, et al. 2014. Glutamate secretion and metabotropic glutamate receptor 1 expression during Kaposi's sarcoma-associated herpesvirus infection promotes cell proliferation. PLoS Pathog. 10: e1004389.
    Pubmed PMC
  66. Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, et al. 2010. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog. 6: e1000742.
    Pubmed PMC
  67. Dai L, Cao Y, Chen Y, Parsons C, Qin Z. 2014. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J. Hematol. Oncol. 7: 30.
    Pubmed PMC
  68. Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, et al. 2020. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc. Natl. Acad. Sci. USA 117: 8083-8093.
    Pubmed PMC
  69. Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S. 2004. Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J. Virol. 78: 4197-4206.
    Pubmed PMC
  70. Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS. 2013. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 7: 731-741.
    Pubmed PMC
  71. Lo AK, Lung RW, Dawson CW, Young LS, Ko CW, Yeung WW, et al. 2018. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 246: 180-190.
    Pubmed PMC
  72. Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, et al. 2019. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog. 15: e1008030.
    Pubmed PMC
  73. Feng J, Zhang P, Yao P, Zhang H. 2023. EBNA2 mediates lipid metabolism and tumorigenesis through activation of ATF4 pathway. Am. J. Cancer Res. 13: 1363-1376.
  74. Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. 2021. Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J. Virol. 95: e01857-20.
    Pubmed PMC
  75. Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, et al. 2020. Downregulation of adipose triglyceride lipase by EB viralencoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol. Oncol. 14: 3234-3252.
    Pubmed PMC
  76. Liu SC, Tsang NM, Lee PJ, Sui YH, Huang CH, Liu TT. 2021. Epstein-Barr Virus induces adipocyte dedifferentiation to modulate the tumor microenvironment. Cancer Res. 81: 3283-3294.
    Pubmed
  77. Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND, Noble WS, et al. 2017. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog. 13: e1006256.
    Pubmed PMC
  78. Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, et al. 2018. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog. 14: e1006844.
    Pubmed PMC
  79. Delgado T, Sanchez EL, Camarda R, Lagunoff M. 2012. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog. 8: e1002866.
    Pubmed PMC
  80. Singh RK, Bose D, Robertson ES. 2021. HIF1alpha-regulated expression of the fatty acid binding protein family is important for hypoxic reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J. Virol. 95: e02063-20.
    Pubmed PMC
  81. Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, et al. 2022. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep. 40: 111234.
    Pubmed PMC

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2024; 34(11): 2143-2152

Published online November 28, 2024 https://doi.org/10.4014/jmb.2407.07039

Copyright © The Korean Society for Microbiology and Biotechnology.

Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus

Un Yung Choi1,2* and Seung Hyun Lee1,2

1Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
2KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea

Correspondence to:Un Yung Choi,       uychoi@kku.ac.kr

Received: July 22, 2024; Revised: August 14, 2024; Accepted: August 19, 2024

Abstract

Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.

Keywords: Metabolic reprogramming, EBV, KSHV, oncogenic virus, metabolic therapeutics

References

  1. Butel JS. 2000. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21: 405-426.
    Pubmed
  2. Jha HC, Banerjee S, Robertson ES. 2016. The role of gammaherpesviruses in cancer pathogenesis. Pathogens 5: 18.
    Pubmed KoreaMed
  3. Wen KW, Wang L, Menke JR, Damania B. 2022. Cancers associated with human gammaherpesviruses. FEBS J. 289: 7631-7669.
    Pubmed KoreaMed
  4. Kim ET, Kim KD. 2022. Topological implications of DNA tumor viral episomes. BMB Rep. 55: 587-594.
    Pubmed KoreaMed
  5. Lo AK, Dawson CW, Young LS, Lo KW. 2017. The role of metabolic reprogramming in gamma-herpesvirus-associated oncogenesis. Int. J. Cancer 141: 1512-1521.
    Pubmed
  6. Speck SH, Ganem D. 2010. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8: 100-115.
    Pubmed KoreaMed
  7. Sorel O, Dewals BG. 2018. The critical role of genome maintenance proteins in immune evasion during gammaherpesvirus latency. Front. Microbiol. 9: 3315.
    Pubmed KoreaMed
  8. Yan L, Majerciak V, Zheng ZM, Lan K. 2019. Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis. Virol. Sin. 34: 135-161.
    Pubmed KoreaMed
  9. Kempkes B, Robertson ES. 2015. Epstein-Barr virus latency: current and future perspectives. Curr. Opin. Virol. 14: 138-144.
    Pubmed KoreaMed
  10. Yang J, Liu Z, Zeng B, Hu G, Gan R. 2020. Epstein-Barr virus-associated gastric cancer: a distinct subtype. Cancer Lett. 495: 191-199.
    Pubmed
  11. Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. 2011. Virus reactivation: a panoramic view in human infections. Future Virol. 6: 451-463.
    Pubmed KoreaMed
  12. Dubich T, Dittrich A, Bousset K, Geffers R, Busche G, Koster M, et al. 2021. 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J. Mol. Med (Berl) 99: 425-438.
    Pubmed KoreaMed
  13. Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y, et al. 2022. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 34: 1280-1297 e1289.
    Pubmed KoreaMed
  14. Damania B, Kenney SC, Raab-Traub N. 2022. Epstein-Barr virus: biology and clinical disease. Cell 185: 3652-3670.
    Pubmed KoreaMed
  15. Luo Y, Liu Y, Wang C, Gan R. 2021. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 21: 93.
    Pubmed KoreaMed
  16. Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. 2019. Kaposi sarcoma. Nat. Rev. Dis. Primers 5: 9.
    Pubmed KoreaMed
  17. Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, et al. 2023. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab. 11: 13.
    Pubmed KoreaMed
  18. Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. 2017. Evidence for altered glutamine metabolism in human immunodeficiency virus type 1 infected primary human CD4+ T cells. AIDS Res. Hum. Retroviruses 33: 12361247.
    Pubmed KoreaMed
  19. Thakker S, Verma SC. 2016. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front. Microbiol. 7: 151.
    Pubmed KoreaMed
  20. Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033.
    Pubmed KoreaMed
  21. Liberti MV, Locasale JW. 2016. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41: 211-218.
    Pubmed KoreaMed
  22. Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. 2021. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73: 103627.
    Pubmed KoreaMed
  23. Chen Z, Han F, Du Y, Shi H, Zhou W. 2023. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8: 70.
    Pubmed KoreaMed
  24. Raimundo N, Baysal BE, Shadel GS. 2011. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 17: 641-649.
    Pubmed KoreaMed
  25. Tarrado-Castellarnau M, de Atauri P, Cascante M. 2016. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget 7: 62726-62753.
    Pubmed KoreaMed
  26. Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. 2016. Metabolic requirements for cancer cell proliferation. Cancer Metab. 4: 16.
    Pubmed KoreaMed
  27. Koundouros N, Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122: 4-22.
    Pubmed KoreaMed
  28. Bosc C, Broin N, Fanjul M, Saland E, Farge T, Courdy C, et al. 2020. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat. Commun. 11: 4056.
    Pubmed KoreaMed
  29. Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, et al. 2018. Autophagy maintains tumour growth through circulating arginine. Nature 563: 569-573.
    Pubmed KoreaMed
  30. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497: 633-637.
    Pubmed KoreaMed
  31. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536: 479-483.
    Pubmed KoreaMed
  32. Duarte Mendes A, Freitas AR, Vicente R, Vitorino M, Vaz Batista M, Silva M, et al. 2023. Adipocyte microenvironment in ovarian cancer: a critical contributor? Int. J. Mol. Sci. 24: 16589.
    Pubmed KoreaMed
  33. Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, et al. 2019. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79: 3251-3267.
    Pubmed KoreaMed
  34. Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ, et al. 2015. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125: 2293-2306.
    Pubmed KoreaMed
  35. Yao K, Liu H, Yin J, Yuan J, Tao H. 2021. Synthetic lethality and synergetic effect: the effective strategies for therapy of IDH-mutated cancers. J. Exp. Clin. Cancer Res. 40: 263.
    Pubmed KoreaMed
  36. Zhang J, Jia L, Lin W, Yip YL, Lo KW, Lau VMY, et al. 2017. Epstein-barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-kappaB signaling pathways. J. Virol. 91: e02168-16.
    Pubmed KoreaMed
  37. Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. 2019. mTORC2-mediated PDHE1alpha nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene 38: 4669-4684.
    Pubmed KoreaMed
  38. Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M, et al. 2014. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 33: 4568-4578.
    Pubmed KoreaMed
  39. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. 2011. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208: 313-326.
    Pubmed KoreaMed
  40. Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, et al. 2015. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 34: 6079-6091.
    Pubmed KoreaMed
  41. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. 2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc. Natl. Acad. Sci. USA 107: 1069610701.
    Pubmed KoreaMed
  42. Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. 2018. Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog. 14: e1007062.
    Pubmed KoreaMed
  43. Ma T, Patel H, Babapoor-Farrokhran S, Franklin R, Semenza GL, Sodhi A, et al. 2015. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma. Angiogenesis 18: 477-488.
    Pubmed KoreaMed
  44. Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao SJ, et al. 2022. A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ. 29: 22332246.
    Pubmed KoreaMed
  45. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. 2016. An oncogenic virus promotes cell survival and cellular transformation by suppressing glycolysis. PLoS Pathog. 12: e1005648.
    Pubmed KoreaMed
  46. Luo X, Hong L, Cheng C, Li N, Zhao X, Shi F, et al. 2018. DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis. 9: 619.
    Pubmed KoreaMed
  47. Pal AD, Basak NP, Banerjee AS, Banerjee S. 2014. Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis 35: 1592-1601.
    Pubmed
  48. Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, et al. 2019. Epstein-barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 30: 539-555 e511.
    Pubmed KoreaMed
  49. Holmes DL, Vogt DT, Lagunoff M. 2020. A CRISPR-Cas9 screen identifies mitochondrial translation as an essential process in latent KSHV infection of human endothelial cells. Proc. Natl. Acad. Sci. USA 117: 28384-28392.
    Pubmed KoreaMed
  50. Yogev O, Lagos D, Enver T, Boshoff C. 2014. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog. 10: e1004400.
    Pubmed KoreaMed
  51. Vo MT, Smith BJ, Nicholas J, Choi YB. 2019. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat. Commun. 10: 3203.
    Pubmed KoreaMed
  52. Liang JH, Wang C, Yiu SPT, Zhao B, Guo R, Gewurz BE. 2021. Epstein-barr Virus Induced Cytidine Metabolism Roles in Transformed B-Cell Growth and Survival. mBio 12: e0153021.
    Pubmed KoreaMed
  53. Lee SW, Chen TJ, Lin LC, Li CF, Chen LT, Hsing CH, et al. 2013. Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma. Exp. Mol. Pathol. 95: 83-90.
    Pubmed
  54. Lamontagne RJ, Soldan SS, Su C, Wiedmer A, Won KJ, Lu F, et al. 2021. A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathog. 17: e1009208.
    Pubmed KoreaMed
  55. Zhu Y, Li T, Ramos da Silva S, Lee JJ, Lu C, Eoh H, et al. 2017. A critical role of glutamine and asparagine gamma-Nitrogen in nucleotide biosynthesis in cancer cells Hijacked by an oncogenic virus. mBio 8: e01179-17.
    Pubmed KoreaMed
  56. Cinquina CC, Grogan E, Sun R, Lin SF, Beardsley GP, Miller G. 2000. Dihydrofolate reductase from Kaposi's sarcoma-associated herpesvirus. Virology 268: 201-217.
    Pubmed
  57. Wan Q, Tavakoli L, Wang TY, Tucker AJ, Zhou R, Liu Q, et al. 2024. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat. Commun. 15: 1442.
    Pubmed KoreaMed
  58. Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. 2015. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology 4: e1026530.
    Pubmed KoreaMed
  59. Raber P, Ochoa AC, Rodriguez PC. 2012. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41: 614-634.
    Pubmed KoreaMed
  60. Liu WL, Lin YH, Xiao H, Xing S, Chen H, Chi PD, et al. 2014. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-kappaB pathways:impairment in T cell functions. J. Virol. 88: 6660-6671.
    Pubmed KoreaMed
  61. Guo D, Wang Y, Wu X, Gao Y, Wang A, Zhang Z, et al. 2023. Expression of Tryptophan Metabolism Enzymes in Patients with Diffuse Large B-cell Lymphoma and NK/T-cell Lymphoma. Cancer Med. 12: 12139-12148.
    Pubmed KoreaMed
  62. Chen X, Zang Y, Li D, Guo J, Wang Y, Lin Y, et al. 2020. IDO, TDO, and AHR overexpression is associated with poor outcome in diffuse large B-cell lymphoma patients in the rituximab era. Medicine (Baltimore) 99: e19883.
    Pubmed KoreaMed
  63. Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, et al. 2011. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann. Hematol. 90: 409-416.
    Pubmed
  64. Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. 2015. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. PLoS Pathog. 11: e1005052.
    Pubmed KoreaMed
  65. Valiya Veettil M, Dutta D, Bottero V, Bandyopadhyay C, Gjyshi O, Sharma-Walia N, et al. 2014. Glutamate secretion and metabotropic glutamate receptor 1 expression during Kaposi's sarcoma-associated herpesvirus infection promotes cell proliferation. PLoS Pathog. 10: e1004389.
    Pubmed KoreaMed
  66. Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, et al. 2010. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog. 6: e1000742.
    Pubmed KoreaMed
  67. Dai L, Cao Y, Chen Y, Parsons C, Qin Z. 2014. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J. Hematol. Oncol. 7: 30.
    Pubmed KoreaMed
  68. Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, et al. 2020. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc. Natl. Acad. Sci. USA 117: 8083-8093.
    Pubmed KoreaMed
  69. Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S. 2004. Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J. Virol. 78: 4197-4206.
    Pubmed KoreaMed
  70. Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS. 2013. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 7: 731-741.
    Pubmed KoreaMed
  71. Lo AK, Lung RW, Dawson CW, Young LS, Ko CW, Yeung WW, et al. 2018. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 246: 180-190.
    Pubmed KoreaMed
  72. Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, et al. 2019. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog. 15: e1008030.
    Pubmed KoreaMed
  73. Feng J, Zhang P, Yao P, Zhang H. 2023. EBNA2 mediates lipid metabolism and tumorigenesis through activation of ATF4 pathway. Am. J. Cancer Res. 13: 1363-1376.
  74. Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. 2021. Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J. Virol. 95: e01857-20.
    Pubmed KoreaMed
  75. Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, et al. 2020. Downregulation of adipose triglyceride lipase by EB viralencoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol. Oncol. 14: 3234-3252.
    Pubmed KoreaMed
  76. Liu SC, Tsang NM, Lee PJ, Sui YH, Huang CH, Liu TT. 2021. Epstein-Barr Virus induces adipocyte dedifferentiation to modulate the tumor microenvironment. Cancer Res. 81: 3283-3294.
    Pubmed
  77. Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND, Noble WS, et al. 2017. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog. 13: e1006256.
    Pubmed KoreaMed
  78. Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, et al. 2018. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog. 14: e1006844.
    Pubmed KoreaMed
  79. Delgado T, Sanchez EL, Camarda R, Lagunoff M. 2012. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog. 8: e1002866.
    Pubmed KoreaMed
  80. Singh RK, Bose D, Robertson ES. 2021. HIF1alpha-regulated expression of the fatty acid binding protein family is important for hypoxic reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J. Virol. 95: e02063-20.
    Pubmed KoreaMed
  81. Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, et al. 2022. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep. 40: 111234.
    Pubmed KoreaMed