Articles Service
Review
Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus
1Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
2KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
J. Microbiol. Biotechnol. 2024; 34(11): 2143-2152
Published November 28, 2024 https://doi.org/10.4014/jmb.2407.07039
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
References
- Butel JS. 2000. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21: 405-426.
- Jha HC, Banerjee S, Robertson ES. 2016. The role of gammaherpesviruses in cancer pathogenesis. Pathogens 5: 18.
- Wen KW, Wang L, Menke JR, Damania B. 2022. Cancers associated with human gammaherpesviruses. FEBS J. 289: 7631-7669.
- Kim ET, Kim KD. 2022. Topological implications of DNA tumor viral episomes. BMB Rep. 55: 587-594.
- Lo AK, Dawson CW, Young LS, Lo KW. 2017. The role of metabolic reprogramming in gamma-herpesvirus-associated oncogenesis. Int. J. Cancer 141: 1512-1521.
- Speck SH, Ganem D. 2010. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8: 100-115.
- Sorel O, Dewals BG. 2018. The critical role of genome maintenance proteins in immune evasion during gammaherpesvirus latency. Front. Microbiol. 9: 3315.
- Yan L, Majerciak V, Zheng ZM, Lan K. 2019. Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis. Virol. Sin. 34: 135-161.
- Kempkes B, Robertson ES. 2015. Epstein-Barr virus latency: current and future perspectives. Curr. Opin. Virol. 14: 138-144.
- Yang J, Liu Z, Zeng B, Hu G, Gan R. 2020. Epstein-Barr virus-associated gastric cancer: a distinct subtype. Cancer Lett. 495: 191-199.
- Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. 2011. Virus reactivation: a panoramic view in human infections. Future Virol. 6: 451-463.
- Dubich T, Dittrich A, Bousset K, Geffers R, Busche G, Koster M, et al. 2021. 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J. Mol. Med (Berl) 99: 425-438.
- Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y, et al. 2022. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 34: 1280-1297 e1289.
- Damania B, Kenney SC, Raab-Traub N. 2022. Epstein-Barr virus: biology and clinical disease. Cell 185: 3652-3670.
- Luo Y, Liu Y, Wang C, Gan R. 2021. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 21: 93.
- Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. 2019. Kaposi sarcoma. Nat. Rev. Dis. Primers 5: 9.
- Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, et al. 2023. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab. 11: 13.
- Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. 2017. Evidence for altered glutamine metabolism in human immunodeficiency virus type 1 infected primary human CD4+ T cells. AIDS Res. Hum. Retroviruses 33: 12361247.
- Thakker S, Verma SC. 2016. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front. Microbiol. 7: 151.
- Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033.
- Liberti MV, Locasale JW. 2016. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41: 211-218.
- Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. 2021. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73: 103627.
- Chen Z, Han F, Du Y, Shi H, Zhou W. 2023. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8: 70.
- Raimundo N, Baysal BE, Shadel GS. 2011. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 17: 641-649.
- Tarrado-Castellarnau M, de Atauri P, Cascante M. 2016. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget 7: 62726-62753.
- Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. 2016. Metabolic requirements for cancer cell proliferation. Cancer Metab. 4: 16.
- Koundouros N, Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122: 4-22.
- Bosc C, Broin N, Fanjul M, Saland E, Farge T, Courdy C, et al. 2020. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat. Commun. 11: 4056.
- Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, et al. 2018. Autophagy maintains tumour growth through circulating arginine. Nature 563: 569-573.
- Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497: 633-637.
- Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536: 479-483.
- Duarte Mendes A, Freitas AR, Vicente R, Vitorino M, Vaz Batista M, Silva M, et al. 2023. Adipocyte microenvironment in ovarian cancer: a critical contributor? Int. J. Mol. Sci. 24: 16589.
- Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, et al. 2019. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79: 3251-3267.
- Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ, et al. 2015. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125: 2293-2306.
- Yao K, Liu H, Yin J, Yuan J, Tao H. 2021. Synthetic lethality and synergetic effect: the effective strategies for therapy of IDH-mutated cancers. J. Exp. Clin. Cancer Res. 40: 263.
- Zhang J, Jia L, Lin W, Yip YL, Lo KW, Lau VMY, et al. 2017. Epstein-barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-kappaB signaling pathways. J. Virol. 91: e02168-16.
- Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. 2019. mTORC2-mediated PDHE1alpha nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene 38: 4669-4684.
- Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M, et al. 2014. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 33: 4568-4578.
- Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. 2011. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208: 313-326.
- Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, et al. 2015. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 34: 6079-6091.
- Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. 2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc. Natl. Acad. Sci. USA 107: 1069610701.
- Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. 2018. Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog. 14: e1007062.
- Ma T, Patel H, Babapoor-Farrokhran S, Franklin R, Semenza GL, Sodhi A, et al. 2015. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma. Angiogenesis 18: 477-488.
- Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao SJ, et al. 2022. A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ. 29: 22332246.
- Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. 2016. An oncogenic virus promotes cell survival and cellular transformation by suppressing glycolysis. PLoS Pathog. 12: e1005648.
- Luo X, Hong L, Cheng C, Li N, Zhao X, Shi F, et al. 2018. DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis. 9: 619.
- Pal AD, Basak NP, Banerjee AS, Banerjee S. 2014. Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis 35: 1592-1601.
- Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, et al. 2019. Epstein-barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 30: 539-555 e511.
- Holmes DL, Vogt DT, Lagunoff M. 2020. A CRISPR-Cas9 screen identifies mitochondrial translation as an essential process in latent KSHV infection of human endothelial cells. Proc. Natl. Acad. Sci. USA 117: 28384-28392.
- Yogev O, Lagos D, Enver T, Boshoff C. 2014. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog. 10: e1004400.
- Vo MT, Smith BJ, Nicholas J, Choi YB. 2019. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat. Commun. 10: 3203.
- Liang JH, Wang C, Yiu SPT, Zhao B, Guo R, Gewurz BE. 2021. Epstein-barr Virus Induced Cytidine Metabolism Roles in Transformed B-Cell Growth and Survival. mBio 12: e0153021.
- Lee SW, Chen TJ, Lin LC, Li CF, Chen LT, Hsing CH, et al. 2013. Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma. Exp. Mol. Pathol. 95: 83-90.
- Lamontagne RJ, Soldan SS, Su C, Wiedmer A, Won KJ, Lu F, et al. 2021. A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathog. 17: e1009208.
- Zhu Y, Li T, Ramos da Silva S, Lee JJ, Lu C, Eoh H, et al. 2017. A critical role of glutamine and asparagine gamma-Nitrogen in nucleotide biosynthesis in cancer cells Hijacked by an oncogenic virus. mBio 8: e01179-17.
- Cinquina CC, Grogan E, Sun R, Lin SF, Beardsley GP, Miller G. 2000. Dihydrofolate reductase from Kaposi's sarcoma-associated herpesvirus. Virology 268: 201-217.
- Wan Q, Tavakoli L, Wang TY, Tucker AJ, Zhou R, Liu Q, et al. 2024. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat. Commun. 15: 1442.
- Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. 2015. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology 4: e1026530.
- Raber P, Ochoa AC, Rodriguez PC. 2012. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41: 614-634.
- Liu WL, Lin YH, Xiao H, Xing S, Chen H, Chi PD, et al. 2014. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-kappaB pathways:impairment in T cell functions. J. Virol. 88: 6660-6671.
- Guo D, Wang Y, Wu X, Gao Y, Wang A, Zhang Z, et al. 2023. Expression of Tryptophan Metabolism Enzymes in Patients with Diffuse Large B-cell Lymphoma and NK/T-cell Lymphoma. Cancer Med. 12: 12139-12148.
- Chen X, Zang Y, Li D, Guo J, Wang Y, Lin Y, et al. 2020. IDO, TDO, and AHR overexpression is associated with poor outcome in diffuse large B-cell lymphoma patients in the rituximab era. Medicine (Baltimore) 99: e19883.
- Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, et al. 2011. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann. Hematol. 90: 409-416.
- Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. 2015. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. PLoS Pathog. 11: e1005052.
- Valiya Veettil M, Dutta D, Bottero V, Bandyopadhyay C, Gjyshi O, Sharma-Walia N, et al. 2014. Glutamate secretion and metabotropic glutamate receptor 1 expression during Kaposi's sarcoma-associated herpesvirus infection promotes cell proliferation. PLoS Pathog. 10: e1004389.
- Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, et al. 2010. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog. 6: e1000742.
- Dai L, Cao Y, Chen Y, Parsons C, Qin Z. 2014. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J. Hematol. Oncol. 7: 30.
- Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, et al. 2020. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc. Natl. Acad. Sci. USA 117: 8083-8093.
- Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S. 2004. Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J. Virol. 78: 4197-4206.
- Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS. 2013. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 7: 731-741.
- Lo AK, Lung RW, Dawson CW, Young LS, Ko CW, Yeung WW, et al. 2018. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 246: 180-190.
- Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, et al. 2019. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog. 15: e1008030.
- Feng J, Zhang P, Yao P, Zhang H. 2023. EBNA2 mediates lipid metabolism and tumorigenesis through activation of ATF4 pathway. Am. J. Cancer Res. 13: 1363-1376.
- Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. 2021. Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J. Virol. 95: e01857-20.
- Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, et al. 2020. Downregulation of adipose triglyceride lipase by EB viralencoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol. Oncol. 14: 3234-3252.
- Liu SC, Tsang NM, Lee PJ, Sui YH, Huang CH, Liu TT. 2021. Epstein-Barr Virus induces adipocyte dedifferentiation to modulate the tumor microenvironment. Cancer Res. 81: 3283-3294.
- Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND, Noble WS, et al. 2017. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog. 13: e1006256.
- Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, et al. 2018. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog. 14: e1006844.
- Delgado T, Sanchez EL, Camarda R, Lagunoff M. 2012. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog. 8: e1002866.
- Singh RK, Bose D, Robertson ES. 2021. HIF1alpha-regulated expression of the fatty acid binding protein family is important for hypoxic reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J. Virol. 95: e02063-20.
- Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, et al. 2022. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep. 40: 111234.
Related articles in JMB
Article
Review
J. Microbiol. Biotechnol. 2024; 34(11): 2143-2152
Published online November 28, 2024 https://doi.org/10.4014/jmb.2407.07039
Copyright © The Korean Society for Microbiology and Biotechnology.
Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus
Un Yung Choi1,2* and Seung Hyun Lee1,2
1Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
2KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
Correspondence to:Un Yung Choi, uychoi@kku.ac.kr
Abstract
Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.
Keywords: Metabolic reprogramming, EBV, KSHV, oncogenic virus, metabolic therapeutics
References
- Butel JS. 2000. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21: 405-426.
- Jha HC, Banerjee S, Robertson ES. 2016. The role of gammaherpesviruses in cancer pathogenesis. Pathogens 5: 18.
- Wen KW, Wang L, Menke JR, Damania B. 2022. Cancers associated with human gammaherpesviruses. FEBS J. 289: 7631-7669.
- Kim ET, Kim KD. 2022. Topological implications of DNA tumor viral episomes. BMB Rep. 55: 587-594.
- Lo AK, Dawson CW, Young LS, Lo KW. 2017. The role of metabolic reprogramming in gamma-herpesvirus-associated oncogenesis. Int. J. Cancer 141: 1512-1521.
- Speck SH, Ganem D. 2010. Viral latency and its regulation: lessons from the gamma-herpesviruses. Cell Host Microbe 8: 100-115.
- Sorel O, Dewals BG. 2018. The critical role of genome maintenance proteins in immune evasion during gammaherpesvirus latency. Front. Microbiol. 9: 3315.
- Yan L, Majerciak V, Zheng ZM, Lan K. 2019. Towards better understanding of KSHV life cycle: from transcription and posttranscriptional regulations to pathogenesis. Virol. Sin. 34: 135-161.
- Kempkes B, Robertson ES. 2015. Epstein-Barr virus latency: current and future perspectives. Curr. Opin. Virol. 14: 138-144.
- Yang J, Liu Z, Zeng B, Hu G, Gan R. 2020. Epstein-Barr virus-associated gastric cancer: a distinct subtype. Cancer Lett. 495: 191-199.
- Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. 2011. Virus reactivation: a panoramic view in human infections. Future Virol. 6: 451-463.
- Dubich T, Dittrich A, Bousset K, Geffers R, Busche G, Koster M, et al. 2021. 3D culture conditions support Kaposi's sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J. Mol. Med (Berl) 99: 425-438.
- Guo R, Liang JH, Zhang Y, Lutchenkov M, Li Z, Wang Y, et al. 2022. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 34: 1280-1297 e1289.
- Damania B, Kenney SC, Raab-Traub N. 2022. Epstein-Barr virus: biology and clinical disease. Cell 185: 3652-3670.
- Luo Y, Liu Y, Wang C, Gan R. 2021. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 21: 93.
- Cesarman E, Damania B, Krown SE, Martin J, Bower M, Whitby D. 2019. Kaposi sarcoma. Nat. Rev. Dis. Primers 5: 9.
- Privatt SR, Braga CP, Johnson A, Lidenge SJ, Berry L, Ngowi JR, et al. 2023. Comparative polar and lipid plasma metabolomics differentiate KSHV infection and disease states. Cancer Metab. 11: 13.
- Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. 2017. Evidence for altered glutamine metabolism in human immunodeficiency virus type 1 infected primary human CD4+ T cells. AIDS Res. Hum. Retroviruses 33: 12361247.
- Thakker S, Verma SC. 2016. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front. Microbiol. 7: 151.
- Vander Heiden MG, Cantley LC, Thompson CB. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033.
- Liberti MV, Locasale JW. 2016. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41: 211-218.
- Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. 2021. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73: 103627.
- Chen Z, Han F, Du Y, Shi H, Zhou W. 2023. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8: 70.
- Raimundo N, Baysal BE, Shadel GS. 2011. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 17: 641-649.
- Tarrado-Castellarnau M, de Atauri P, Cascante M. 2016. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget 7: 62726-62753.
- Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. 2016. Metabolic requirements for cancer cell proliferation. Cancer Metab. 4: 16.
- Koundouros N, Poulogiannis G. 2020. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122: 4-22.
- Bosc C, Broin N, Fanjul M, Saland E, Farge T, Courdy C, et al. 2020. Autophagy regulates fatty acid availability for oxidative phosphorylation through mitochondria-endoplasmic reticulum contact sites. Nat. Commun. 11: 4056.
- Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, et al. 2018. Autophagy maintains tumour growth through circulating arginine. Nature 563: 569-573.
- Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497: 633-637.
- Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536: 479-483.
- Duarte Mendes A, Freitas AR, Vicente R, Vitorino M, Vaz Batista M, Silva M, et al. 2023. Adipocyte microenvironment in ovarian cancer: a critical contributor? Int. J. Mol. Sci. 24: 16589.
- Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, et al. 2019. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res. 79: 3251-3267.
- Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ, et al. 2015. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125: 2293-2306.
- Yao K, Liu H, Yin J, Yuan J, Tao H. 2021. Synthetic lethality and synergetic effect: the effective strategies for therapy of IDH-mutated cancers. J. Exp. Clin. Cancer Res. 40: 263.
- Zhang J, Jia L, Lin W, Yip YL, Lo KW, Lau VMY, et al. 2017. Epstein-barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-kappaB signaling pathways. J. Virol. 91: e02168-16.
- Zhang J, Jia L, Liu T, Yip YL, Tang WC, Lin W, et al. 2019. mTORC2-mediated PDHE1alpha nuclear translocation links EBV-LMP1 reprogrammed glucose metabolism to cancer metastasis in nasopharyngeal carcinoma. Oncogene 38: 4669-4684.
- Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M, et al. 2014. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 33: 4568-4578.
- Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al. 2011. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208: 313-326.
- Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, et al. 2015. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 34: 6079-6091.
- Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. 2010. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc. Natl. Acad. Sci. USA 107: 1069610701.
- Singh RK, Lang F, Pei Y, Jha HC, Robertson ES. 2018. Metabolic reprogramming of Kaposi's sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog. 14: e1007062.
- Ma T, Patel H, Babapoor-Farrokhran S, Franklin R, Semenza GL, Sodhi A, et al. 2015. KSHV induces aerobic glycolysis and angiogenesis through HIF-1-dependent upregulation of pyruvate kinase 2 in Kaposi's sarcoma. Angiogenesis 18: 477-488.
- Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao SJ, et al. 2022. A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ. 29: 22332246.
- Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. 2016. An oncogenic virus promotes cell survival and cellular transformation by suppressing glycolysis. PLoS Pathog. 12: e1005648.
- Luo X, Hong L, Cheng C, Li N, Zhao X, Shi F, et al. 2018. DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis. 9: 619.
- Pal AD, Basak NP, Banerjee AS, Banerjee S. 2014. Epstein-Barr virus latent membrane protein-2A alters mitochondrial dynamics promoting cellular migration mediated by Notch signaling pathway. Carcinogenesis 35: 1592-1601.
- Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, et al. 2019. Epstein-barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 30: 539-555 e511.
- Holmes DL, Vogt DT, Lagunoff M. 2020. A CRISPR-Cas9 screen identifies mitochondrial translation as an essential process in latent KSHV infection of human endothelial cells. Proc. Natl. Acad. Sci. USA 117: 28384-28392.
- Yogev O, Lagos D, Enver T, Boshoff C. 2014. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells. PLoS Pathog. 10: e1004400.
- Vo MT, Smith BJ, Nicholas J, Choi YB. 2019. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat. Commun. 10: 3203.
- Liang JH, Wang C, Yiu SPT, Zhao B, Guo R, Gewurz BE. 2021. Epstein-barr Virus Induced Cytidine Metabolism Roles in Transformed B-Cell Growth and Survival. mBio 12: e0153021.
- Lee SW, Chen TJ, Lin LC, Li CF, Chen LT, Hsing CH, et al. 2013. Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma. Exp. Mol. Pathol. 95: 83-90.
- Lamontagne RJ, Soldan SS, Su C, Wiedmer A, Won KJ, Lu F, et al. 2021. A multi-omics approach to Epstein-Barr virus immortalization of B-cells reveals EBNA1 chromatin pioneering activities targeting nucleotide metabolism. PLoS Pathog. 17: e1009208.
- Zhu Y, Li T, Ramos da Silva S, Lee JJ, Lu C, Eoh H, et al. 2017. A critical role of glutamine and asparagine gamma-Nitrogen in nucleotide biosynthesis in cancer cells Hijacked by an oncogenic virus. mBio 8: e01179-17.
- Cinquina CC, Grogan E, Sun R, Lin SF, Beardsley GP, Miller G. 2000. Dihydrofolate reductase from Kaposi's sarcoma-associated herpesvirus. Virology 268: 201-217.
- Wan Q, Tavakoli L, Wang TY, Tucker AJ, Zhou R, Liu Q, et al. 2024. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat. Commun. 15: 1442.
- Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. 2015. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology 4: e1026530.
- Raber P, Ochoa AC, Rodriguez PC. 2012. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol. Invest. 41: 614-634.
- Liu WL, Lin YH, Xiao H, Xing S, Chen H, Chi PD, et al. 2014. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-kappaB pathways:impairment in T cell functions. J. Virol. 88: 6660-6671.
- Guo D, Wang Y, Wu X, Gao Y, Wang A, Zhang Z, et al. 2023. Expression of Tryptophan Metabolism Enzymes in Patients with Diffuse Large B-cell Lymphoma and NK/T-cell Lymphoma. Cancer Med. 12: 12139-12148.
- Chen X, Zang Y, Li D, Guo J, Wang Y, Lin Y, et al. 2020. IDO, TDO, and AHR overexpression is associated with poor outcome in diffuse large B-cell lymphoma patients in the rituximab era. Medicine (Baltimore) 99: e19883.
- Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, et al. 2011. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann. Hematol. 90: 409-416.
- Sanchez EL, Carroll PA, Thalhofer AB, Lagunoff M. 2015. Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival. PLoS Pathog. 11: e1005052.
- Valiya Veettil M, Dutta D, Bottero V, Bandyopadhyay C, Gjyshi O, Sharma-Walia N, et al. 2014. Glutamate secretion and metabotropic glutamate receptor 1 expression during Kaposi's sarcoma-associated herpesvirus infection promotes cell proliferation. PLoS Pathog. 10: e1004389.
- Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, et al. 2010. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog. 6: e1000742.
- Dai L, Cao Y, Chen Y, Parsons C, Qin Z. 2014. Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J. Hematol. Oncol. 7: 30.
- Choi UY, Lee JJ, Park A, Zhu W, Lee HR, Choi YJ, et al. 2020. Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proc. Natl. Acad. Sci. USA 117: 8083-8093.
- Li Y, Webster-Cyriaque J, Tomlinson CC, Yohe M, Kenney S. 2004. Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J. Virol. 78: 4197-4206.
- Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS. 2013. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 7: 731-741.
- Lo AK, Lung RW, Dawson CW, Young LS, Ko CW, Yeung WW, et al. 2018. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 246: 180-190.
- Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, et al. 2019. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog. 15: e1008030.
- Feng J, Zhang P, Yao P, Zhang H. 2023. EBNA2 mediates lipid metabolism and tumorigenesis through activation of ATF4 pathway. Am. J. Cancer Res. 13: 1363-1376.
- Hulse M, Johnson SM, Boyle S, Caruso LB, Tempera I. 2021. Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J. Virol. 95: e01857-20.
- Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, et al. 2020. Downregulation of adipose triglyceride lipase by EB viralencoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol. Oncol. 14: 3234-3252.
- Liu SC, Tsang NM, Lee PJ, Sui YH, Huang CH, Liu TT. 2021. Epstein-Barr Virus induces adipocyte dedifferentiation to modulate the tumor microenvironment. Cancer Res. 81: 3283-3294.
- Sychev ZE, Hu A, DiMaio TA, Gitter A, Camp ND, Noble WS, et al. 2017. Integrated systems biology analysis of KSHV latent infection reveals viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog. 13: e1006256.
- Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, et al. 2018. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog. 14: e1006844.
- Delgado T, Sanchez EL, Camarda R, Lagunoff M. 2012. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog. 8: e1002866.
- Singh RK, Bose D, Robertson ES. 2021. HIF1alpha-regulated expression of the fatty acid binding protein family is important for hypoxic reactivation of Kaposi's Sarcoma-Associated Herpesvirus. J. Virol. 95: e02063-20.
- Choi UY, Lee JJ, Park A, Jung KL, Lee SA, Choi YJ, et al. 2022. Herpesvirus-induced spermidine synthesis and eIF5A hypusination for viral episomal maintenance. Cell Rep. 40: 111234.