Articles Service
Review
Effects of Metal and Metal Oxide Nanoparticles against Biofilm-Forming Bacteria: A Systematic Review
1Postgraduate Center (PGC), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
2School of Graduate Studies (SGS), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
4Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
J. Microbiol. Biotechnol. 2024; 34(9): 1748-1756
Published September 28, 2024 https://doi.org/10.4014/jmb.2403.03029
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
References
- Ciofu O, Rojo‐Molinero E, Macià MD, Oliver A. 2017. Antibiotic treatment of biofilm infections. APMIS 125: 304-319.
- Kaźmierczak N, Grygorcewicz B, Roszak M, Bochentyn B, Piechowicz L. 2022. Comparative assessment of bacteriophage and antibiotic activity against multidrug-resistant Staphylococcus aureus biofilms. Int. J. Mol. Sci. 23: 1274.
- Hetta HF, Ramadan YN, Al-Harbi AI, A Ahmed E, Battah B, Abd Ellah NH, et al. 2023. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11: 413.
- Kaur R, Kaur K, Alyami MH, Lang DK, Saini B, Bayan MF, et al. 2023. Combating microbial infections using metal-based nanoparticles as potential therapeutic alternatives. Antibiotics (Basel) 12: 909.
- Fulaz S, Vitale S, Quinn L, Casey E. 2019. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27: 915-926.
- Mukherjee A, Bose S, Shaoo A, Das SK. 2023. Nanotechnology based therapeutic approaches: an advanced strategy to target the biofilm of ESKAPE pathogens. Mater. Adv. 4: 2544-2572.
- Shatila F, Yalçin T, hsa Y. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biol. Turcica 32: 220-235.
- Sheng Y, Chen Z, Wu W, Lu Y. 2023. Engineered organic nanoparticles to combat biofilms. Drug Discov. Today 28: 103455.
- Kadiyala U, Kotov NA, Vanepps JS. 2018. Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr. Pharm. Des. 24: 896-903.
- Muteeb G. 2023. Nanotechnology-a light of hope for combating antibiotic resistance. Microorganisms 11: 1489.
- Masri A, Brown DM, Smith DGE, Stone V, Johnston HJ. 2022. Comparison of in vitro approaches to assess the antibacterial effects of nanomaterials. J. Funct. Biomater. 13: 255.
- Santhosh S, Kalathilparambil, Sarojini S, Umesh M. 2021. Anti-biofilm activities of nanocomposites: current scopes and limitations, pp. 83-94. Bio-manufactured Nanomaterials, Ed. Springer International Publishing.
- Natan M, Banin E. 2017. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 41: 302-322.
- Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. 2020. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View 2. 2020065.
- Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder D-P. 2023. Therapeutic strategies against biofilm infections. Life (Basel) 13: 172.
- Munir MU, Ahmad MM. 2022. Nanomaterials aiming to tackle antibiotic-resistant bacteria. Pharmaceutics 14: 582.
- Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, et al. 2022. Nanocarriers for combating biofilms: Advantages and challenges. J. Appl. Microbiol. 133: 1273-1287.
- Ozdal M, Gurkok S. 2022. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10: 115-129.
- Hj Y, Kulkarni GS, Shetty A, Paarakh PM. 2022. Nanoparticles in pharmaceutical science. J. Commun. Pharm. Pract. 2. DOI: https://doi.org/10.55529/jcpp.25.6.17.
- Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, et al. 2022. A review and revisit of nanoparticles for antimicrobial drug delivery. J. Med. Life 15: 328-335.
- Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, et al. 2020. Biofilm formation to inhibition:Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C. 108: 110319.
- Munir MU, Ahmed A, Usman M, Salman S. 2020. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int. J. Nanomed. 15: 7329-7358.
- Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. 2020. Inhibition of Bacterial Biofilm Formation, Bacterial Biofilms, Ed. IntechOpen.
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 2021. PRISMA 2020 explanation and elaboration:updated guidance and exemplars for reporting systematic reviews. BMJ 372: n160-n160.
- Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL, Orrantia-Borunda E, EsparzaPonce HE. 2021. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 22: 12890.
- Harris M, Fasolino T, Ivankovic D, Davis NJ, Brownlee N. 2023. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms 11: 1407.
- Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, et al. 2022. Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 11: 1115-1142.
- Alqahtani FA, Almustafa HI, Alshehri RS, Alanazi SO, Khalifa AY. 2022. Combating antibiotic resistance in bacteria: the development of novel therapeutic strategies. J. Pure Appl. Microbiol. 16: 2201-2224.
- Luo Y, Yang Q, Zhang D, Yan W. 2021. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J. Microbiol. Biotechnol. 31: 1-7.
- Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, et al. 2023. Fighting methicillin-resistant Staphylococcus aureus with targeted nanoparticles. Int. J. Mol. Sci. 24: 9030.
- Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. 2020. Tackling multidrug resistance in streptococci - from novel biotherapeutic strategies to nanomedicines. Front. Microbiol. 11: 579916-579916.
- Franco D, Calabrese G, Guglielmino SPP, Conoci S. 2022. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms 10: 1778.
- Hamdan HF, Zulkiply N, Yahya MFZR. 2023. Control strategies of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) biofilms: a review. Sci. Lett. 17: 33-49.
- Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. 2017. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 6: 383-404.
- Hemeg HA. 2022. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z. Naturforsch. C. J. Biosci. 77: 365-378.
- Shkodenko L, Kassirov I, Koshel E. 2020. Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8: 1545.
- Swolana D, Kępa M, Idzik D, Dziedzic A, Kabała-Dzik A, Wąsik TJ, et al. 2020. The antibacterial effect of silver nanoparticles on Staphylococcus epidermidis strains with different biofilm-forming ability. Nanomaterials (Basel) 10: 1010.
- Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al. 2021. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics (Basel) 10: 1338.
- Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. 2023. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J. Funct. Biomater. 14: 244.
- Pothineni BK, Keller A. 2023. Nanoparticle‐based formulations of glycopeptide antibiotics: a means for overcoming vancomycin resistance in bacterial pathogens? Adv. NanoBiomed Res. 3. DOI: 10.1002/anbr.202200134.
- Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md Akim A, et al. 2021. Approaches for mitigating microbial biofilm-related drug resistance: A focus on micro- and nanotechnologies. Molecules 26: 1870.
- Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, et al. 2022. An overview of biofilm formation-combating strategies and mechanisms of action of antibiofilm agents. Life (Basel) 12: 1110.
- Mcneilly O, Mann R, Hamidian M, Gunawan C. 2021. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol. 12: 652863-652863.
- Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, et al. 2018. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front. Biosci. 10: 352-374.
- Dove AS, Dzurny DI, Dees WR, Qin N, Nunez Rodriguez CC, Alt LA, et al. 2023. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front. Microbiol. 13: 1064095-1064095.
- Kareem PA, Salh KK, Ali FA. 2021. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast. Cell. Mol. Biol. 67: 24-34.
- Surwade P, Ghildyal C, Weikel C, Luxton T, Peloquin D, Fan X, et al. 2019. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot (Tokyo) 72: 50-53.
- Srivastava P, Kim Y, Cho H, Kim KS. 2023. Synergistic action between Copper Oxide (CuO) Nanoparticles and Anthraquinone-2Carboxylic Acid (AQ) against Staphylococcus aureus. J. Compos. Sci. 7: 135.
- Kim TH, Raiz A, Unni AD, Murhekar S, Donose BC, Floetenmeyer M, et al. 2020. Combating antibiotic‐resistant gram‐negative bacteria strains with tetracycline‐conjugated carbon nanoparticles. Adv. Biosyst. 4: e2000074.
- Dar M, Gul R, Karuppiah P, Al-Dhabi N, Alfadda A. 2022. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals 12: 179.
- El-Masry RM, Talat D, Hassoubah SA, Zabermawi NM, Eleiwa NZ, Sherif RM, et al. 2022. Evaluation of the antimicrobial activity of ZnO nanoparticles against enterotoxigenic Staphylococcus aureus. Life (Basel) 12: 1662.
- Naskar A, Kim K-S. 2019. Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections:Advantages and limitations. Microorganisms 7: 356.
- Yang X, Chung E, Johnston I, Ren G, Cheong Y-K. 2021. Exploitation of antimicrobial nanoparticles and their applications in biomedical engineering. Appl. Sci. 11: 4520.
- Joshi AS, Singh P, Mijakovic I. 2020. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind Inhibition and resistance. Int. J. Mol. Sci. 21: 7658.
- Rana R, Awasthi R, Sharma B, Kulkarni GT. 2020. Nanoantibiotic formulations to combat antibiotic resistance - old wine in a new bottle. Recent Pat. Drug Deliv. Formul. 13: 174-183.
Related articles in JMB
Article
Review
J. Microbiol. Biotechnol. 2024; 34(9): 1748-1756
Published online September 28, 2024 https://doi.org/10.4014/jmb.2403.03029
Copyright © The Korean Society for Microbiology and Biotechnology.
Effects of Metal and Metal Oxide Nanoparticles against Biofilm-Forming Bacteria: A Systematic Review
Hend Algadi1, Mohammed Abdelfatah Alhoot 2,3*, Anis Rageh Al-Maleki4, and Neny Purwitasari3
1Postgraduate Center (PGC), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
2School of Graduate Studies (SGS), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
4Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
Correspondence to:Mohammed Abdelfatah Alhoot, malhoot@hotmail.com
Abstract
Biofilm formation by bacteria poses a significant challenge across diverse industries, displaying resilience against conventional antimicrobial agents. Nanoparticles emerge as a promising alternative for addressing biofilm-related issues. This review aims to assess the efficacy of metal and metal oxide nanoparticles in inhibiting or disrupting biofilm formation by various bacterial species. It delineates trends, identifies gaps, and outlines avenues for future research, emphasizing best practices and optimal nanoparticles for biofilm prevention and eradication. Additionally, it underscores the potential of nanoparticles as substitutes for traditional antibiotics in healthcare and combating antibiotic resistance. A systematic literature search, encompassing Web of Science, PubMed, and Google Scholar from 2015 to 2023, yielded 48 publications meeting the review criteria. These studies employed diverse methods to explore the antibacterial activity of nanoparticles against biofilm-forming bacteria strains. The implications of this study are profound, offering prospects for novel antimicrobial agents targeting biofilm-forming bacteria, often resistant to conventional antibiotics. In conclusion, nanoparticles present a promising frontier in countering biofilm-forming bacteria. This review delivers a structured analysis of current research, providing insights into the potential and challenges of nanoparticle utilization against biofilm-related challenges. While nanoparticles exhibit inherent antimicrobial properties with applications spanning healthcare, agriculture, and industries, the review acknowledges limitations such as the narrow scope of tested nanoparticles and the imperative need for extensive research on long-term toxicity and environmental impacts.
Keywords: Antimicrobial resistance, biofilm, synergistic effects, metal nanoparticles, metal oxide nanoparticles
References
- Ciofu O, Rojo‐Molinero E, Macià MD, Oliver A. 2017. Antibiotic treatment of biofilm infections. APMIS 125: 304-319.
- Kaźmierczak N, Grygorcewicz B, Roszak M, Bochentyn B, Piechowicz L. 2022. Comparative assessment of bacteriophage and antibiotic activity against multidrug-resistant Staphylococcus aureus biofilms. Int. J. Mol. Sci. 23: 1274.
- Hetta HF, Ramadan YN, Al-Harbi AI, A Ahmed E, Battah B, Abd Ellah NH, et al. 2023. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11: 413.
- Kaur R, Kaur K, Alyami MH, Lang DK, Saini B, Bayan MF, et al. 2023. Combating microbial infections using metal-based nanoparticles as potential therapeutic alternatives. Antibiotics (Basel) 12: 909.
- Fulaz S, Vitale S, Quinn L, Casey E. 2019. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27: 915-926.
- Mukherjee A, Bose S, Shaoo A, Das SK. 2023. Nanotechnology based therapeutic approaches: an advanced strategy to target the biofilm of ESKAPE pathogens. Mater. Adv. 4: 2544-2572.
- Shatila F, Yalçin T, hsa Y. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biol. Turcica 32: 220-235.
- Sheng Y, Chen Z, Wu W, Lu Y. 2023. Engineered organic nanoparticles to combat biofilms. Drug Discov. Today 28: 103455.
- Kadiyala U, Kotov NA, Vanepps JS. 2018. Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr. Pharm. Des. 24: 896-903.
- Muteeb G. 2023. Nanotechnology-a light of hope for combating antibiotic resistance. Microorganisms 11: 1489.
- Masri A, Brown DM, Smith DGE, Stone V, Johnston HJ. 2022. Comparison of in vitro approaches to assess the antibacterial effects of nanomaterials. J. Funct. Biomater. 13: 255.
- Santhosh S, Kalathilparambil, Sarojini S, Umesh M. 2021. Anti-biofilm activities of nanocomposites: current scopes and limitations, pp. 83-94. Bio-manufactured Nanomaterials, Ed. Springer International Publishing.
- Natan M, Banin E. 2017. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 41: 302-322.
- Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. 2020. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View 2. 2020065.
- Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder D-P. 2023. Therapeutic strategies against biofilm infections. Life (Basel) 13: 172.
- Munir MU, Ahmad MM. 2022. Nanomaterials aiming to tackle antibiotic-resistant bacteria. Pharmaceutics 14: 582.
- Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, et al. 2022. Nanocarriers for combating biofilms: Advantages and challenges. J. Appl. Microbiol. 133: 1273-1287.
- Ozdal M, Gurkok S. 2022. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10: 115-129.
- Hj Y, Kulkarni GS, Shetty A, Paarakh PM. 2022. Nanoparticles in pharmaceutical science. J. Commun. Pharm. Pract. 2. DOI: https://doi.org/10.55529/jcpp.25.6.17.
- Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, et al. 2022. A review and revisit of nanoparticles for antimicrobial drug delivery. J. Med. Life 15: 328-335.
- Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, et al. 2020. Biofilm formation to inhibition:Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C. 108: 110319.
- Munir MU, Ahmed A, Usman M, Salman S. 2020. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int. J. Nanomed. 15: 7329-7358.
- Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. 2020. Inhibition of Bacterial Biofilm Formation, Bacterial Biofilms, Ed. IntechOpen.
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 2021. PRISMA 2020 explanation and elaboration:updated guidance and exemplars for reporting systematic reviews. BMJ 372: n160-n160.
- Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL, Orrantia-Borunda E, EsparzaPonce HE. 2021. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 22: 12890.
- Harris M, Fasolino T, Ivankovic D, Davis NJ, Brownlee N. 2023. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms 11: 1407.
- Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, et al. 2022. Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 11: 1115-1142.
- Alqahtani FA, Almustafa HI, Alshehri RS, Alanazi SO, Khalifa AY. 2022. Combating antibiotic resistance in bacteria: the development of novel therapeutic strategies. J. Pure Appl. Microbiol. 16: 2201-2224.
- Luo Y, Yang Q, Zhang D, Yan W. 2021. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J. Microbiol. Biotechnol. 31: 1-7.
- Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, et al. 2023. Fighting methicillin-resistant Staphylococcus aureus with targeted nanoparticles. Int. J. Mol. Sci. 24: 9030.
- Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. 2020. Tackling multidrug resistance in streptococci - from novel biotherapeutic strategies to nanomedicines. Front. Microbiol. 11: 579916-579916.
- Franco D, Calabrese G, Guglielmino SPP, Conoci S. 2022. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms 10: 1778.
- Hamdan HF, Zulkiply N, Yahya MFZR. 2023. Control strategies of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) biofilms: a review. Sci. Lett. 17: 33-49.
- Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. 2017. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 6: 383-404.
- Hemeg HA. 2022. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z. Naturforsch. C. J. Biosci. 77: 365-378.
- Shkodenko L, Kassirov I, Koshel E. 2020. Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8: 1545.
- Swolana D, Kępa M, Idzik D, Dziedzic A, Kabała-Dzik A, Wąsik TJ, et al. 2020. The antibacterial effect of silver nanoparticles on Staphylococcus epidermidis strains with different biofilm-forming ability. Nanomaterials (Basel) 10: 1010.
- Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al. 2021. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics (Basel) 10: 1338.
- Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. 2023. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J. Funct. Biomater. 14: 244.
- Pothineni BK, Keller A. 2023. Nanoparticle‐based formulations of glycopeptide antibiotics: a means for overcoming vancomycin resistance in bacterial pathogens? Adv. NanoBiomed Res. 3. DOI: 10.1002/anbr.202200134.
- Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md Akim A, et al. 2021. Approaches for mitigating microbial biofilm-related drug resistance: A focus on micro- and nanotechnologies. Molecules 26: 1870.
- Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, et al. 2022. An overview of biofilm formation-combating strategies and mechanisms of action of antibiofilm agents. Life (Basel) 12: 1110.
- Mcneilly O, Mann R, Hamidian M, Gunawan C. 2021. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol. 12: 652863-652863.
- Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, et al. 2018. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front. Biosci. 10: 352-374.
- Dove AS, Dzurny DI, Dees WR, Qin N, Nunez Rodriguez CC, Alt LA, et al. 2023. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front. Microbiol. 13: 1064095-1064095.
- Kareem PA, Salh KK, Ali FA. 2021. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast. Cell. Mol. Biol. 67: 24-34.
- Surwade P, Ghildyal C, Weikel C, Luxton T, Peloquin D, Fan X, et al. 2019. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot (Tokyo) 72: 50-53.
- Srivastava P, Kim Y, Cho H, Kim KS. 2023. Synergistic action between Copper Oxide (CuO) Nanoparticles and Anthraquinone-2Carboxylic Acid (AQ) against Staphylococcus aureus. J. Compos. Sci. 7: 135.
- Kim TH, Raiz A, Unni AD, Murhekar S, Donose BC, Floetenmeyer M, et al. 2020. Combating antibiotic‐resistant gram‐negative bacteria strains with tetracycline‐conjugated carbon nanoparticles. Adv. Biosyst. 4: e2000074.
- Dar M, Gul R, Karuppiah P, Al-Dhabi N, Alfadda A. 2022. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals 12: 179.
- El-Masry RM, Talat D, Hassoubah SA, Zabermawi NM, Eleiwa NZ, Sherif RM, et al. 2022. Evaluation of the antimicrobial activity of ZnO nanoparticles against enterotoxigenic Staphylococcus aureus. Life (Basel) 12: 1662.
- Naskar A, Kim K-S. 2019. Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections:Advantages and limitations. Microorganisms 7: 356.
- Yang X, Chung E, Johnston I, Ren G, Cheong Y-K. 2021. Exploitation of antimicrobial nanoparticles and their applications in biomedical engineering. Appl. Sci. 11: 4520.
- Joshi AS, Singh P, Mijakovic I. 2020. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind Inhibition and resistance. Int. J. Mol. Sci. 21: 7658.
- Rana R, Awasthi R, Sharma B, Kulkarni GT. 2020. Nanoantibiotic formulations to combat antibiotic resistance - old wine in a new bottle. Recent Pat. Drug Deliv. Formul. 13: 174-183.