전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review


References

  1. Ciofu O, Rojo‐Molinero E, Macià MD, Oliver A. 2017. Antibiotic treatment of biofilm infections. APMIS 125: 304-319.
    Pubmed
  2. Kaźmierczak N, Grygorcewicz B, Roszak M, Bochentyn B, Piechowicz L. 2022. Comparative assessment of bacteriophage and antibiotic activity against multidrug-resistant Staphylococcus aureus biofilms. Int. J. Mol. Sci. 23: 1274.
    Pubmed PMC
  3. Hetta HF, Ramadan YN, Al-Harbi AI, A Ahmed E, Battah B, Abd Ellah NH, et al. 2023. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11: 413.
    Pubmed PMC
  4. Kaur R, Kaur K, Alyami MH, Lang DK, Saini B, Bayan MF, et al. 2023. Combating microbial infections using metal-based nanoparticles as potential therapeutic alternatives. Antibiotics (Basel) 12: 909.
    Pubmed PMC
  5. Fulaz S, Vitale S, Quinn L, Casey E. 2019. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27: 915-926.
    Pubmed
  6. Mukherjee A, Bose S, Shaoo A, Das SK. 2023. Nanotechnology based therapeutic approaches: an advanced strategy to target the biofilm of ESKAPE pathogens. Mater. Adv. 4: 2544-2572.
  7. Shatila F, Yalçin T, hsa Y. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biol. Turcica 32: 220-235.
  8. Sheng Y, Chen Z, Wu W, Lu Y. 2023. Engineered organic nanoparticles to combat biofilms. Drug Discov. Today 28: 103455.
    Pubmed
  9. Kadiyala U, Kotov NA, Vanepps JS. 2018. Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr. Pharm. Des. 24: 896-903.
    Pubmed PMC
  10. Muteeb G. 2023. Nanotechnology-a light of hope for combating antibiotic resistance. Microorganisms 11: 1489.
    Pubmed PMC
  11. Masri A, Brown DM, Smith DGE, Stone V, Johnston HJ. 2022. Comparison of in vitro approaches to assess the antibacterial effects of nanomaterials. J. Funct. Biomater. 13: 255.
    Pubmed PMC
  12. Santhosh S, Kalathilparambil, Sarojini S, Umesh M. 2021. Anti-biofilm activities of nanocomposites: current scopes and limitations, pp. 83-94. Bio-manufactured Nanomaterials, Ed. Springer International Publishing.
  13. Natan M, Banin E. 2017. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 41: 302-322.
    Pubmed
  14. Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. 2020. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View 2. 2020065.
  15. Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder D-P. 2023. Therapeutic strategies against biofilm infections. Life (Basel) 13: 172.
    Pubmed PMC
  16. Munir MU, Ahmad MM. 2022. Nanomaterials aiming to tackle antibiotic-resistant bacteria. Pharmaceutics 14: 582.
    Pubmed PMC
  17. Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, et al. 2022. Nanocarriers for combating biofilms: Advantages and challenges. J. Appl. Microbiol. 133: 1273-1287.
    Pubmed
  18. Ozdal M, Gurkok S. 2022. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10: 115-129.
    Pubmed PMC
  19. Hj Y, Kulkarni GS, Shetty A, Paarakh PM. 2022. Nanoparticles in pharmaceutical science. J. Commun. Pharm. Pract. 2. DOI: https://doi.org/10.55529/jcpp.25.6.17.
  20. Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, et al. 2022. A review and revisit of nanoparticles for antimicrobial drug delivery. J. Med. Life 15: 328-335.
    Pubmed PMC
  21. Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, et al. 2020. Biofilm formation to inhibition:Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C. 108: 110319.
    Pubmed
  22. Munir MU, Ahmed A, Usman M, Salman S. 2020. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int. J. Nanomed. 15: 7329-7358.
    Pubmed PMC
  23. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. 2020. Inhibition of Bacterial Biofilm Formation, Bacterial Biofilms, Ed. IntechOpen.
  24. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 2021. PRISMA 2020 explanation and elaboration:updated guidance and exemplars for reporting systematic reviews. BMJ 372: n160-n160.
    Pubmed PMC
  25. Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL, Orrantia-Borunda E, EsparzaPonce HE. 2021. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 22: 12890.
    Pubmed PMC
  26. Harris M, Fasolino T, Ivankovic D, Davis NJ, Brownlee N. 2023. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms 11: 1407.
    Pubmed PMC
  27. Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, et al. 2022. Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 11: 1115-1142.
  28. Alqahtani FA, Almustafa HI, Alshehri RS, Alanazi SO, Khalifa AY. 2022. Combating antibiotic resistance in bacteria: the development of novel therapeutic strategies. J. Pure Appl. Microbiol. 16: 2201-2224.
  29. Luo Y, Yang Q, Zhang D, Yan W. 2021. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J. Microbiol. Biotechnol. 31: 1-7.
    Pubmed PMC
  30. Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, et al. 2023. Fighting methicillin-resistant Staphylococcus aureus with targeted nanoparticles. Int. J. Mol. Sci. 24: 9030.
    Pubmed PMC
  31. Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. 2020. Tackling multidrug resistance in streptococci - from novel biotherapeutic strategies to nanomedicines. Front. Microbiol. 11: 579916-579916.
    Pubmed PMC
  32. Franco D, Calabrese G, Guglielmino SPP, Conoci S. 2022. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms 10: 1778.
    Pubmed PMC
  33. Hamdan HF, Zulkiply N, Yahya MFZR. 2023. Control strategies of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) biofilms: a review. Sci. Lett. 17: 33-49.
  34. Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. 2017. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 6: 383-404.
  35. Hemeg HA. 2022. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z. Naturforsch. C. J. Biosci. 77: 365-378.
    Pubmed
  36. Shkodenko L, Kassirov I, Koshel E. 2020. Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8: 1545.
    Pubmed PMC
  37. Swolana D, Kępa M, Idzik D, Dziedzic A, Kabała-Dzik A, Wąsik TJ, et al. 2020. The antibacterial effect of silver nanoparticles on Staphylococcus epidermidis strains with different biofilm-forming ability. Nanomaterials (Basel) 10: 1010.
    Pubmed PMC
  38. Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al. 2021. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics (Basel) 10: 1338.
    Pubmed PMC
  39. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. 2023. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J. Funct. Biomater. 14: 244.
    Pubmed PMC
  40. Pothineni BK, Keller A. 2023. Nanoparticle‐based formulations of glycopeptide antibiotics: a means for overcoming vancomycin resistance in bacterial pathogens? Adv. NanoBiomed Res. 3. DOI: 10.1002/anbr.202200134.
  41. Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md Akim A, et al. 2021. Approaches for mitigating microbial biofilm-related drug resistance: A focus on micro- and nanotechnologies. Molecules 26: 1870.
    Pubmed PMC
  42. Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, et al. 2022. An overview of biofilm formation-combating strategies and mechanisms of action of antibiofilm agents. Life (Basel) 12: 1110.
    Pubmed PMC
  43. Mcneilly O, Mann R, Hamidian M, Gunawan C. 2021. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol. 12: 652863-652863.
    Pubmed PMC
  44. Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, et al. 2018. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front. Biosci. 10: 352-374.
    Pubmed
  45. Dove AS, Dzurny DI, Dees WR, Qin N, Nunez Rodriguez CC, Alt LA, et al. 2023. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front. Microbiol. 13: 1064095-1064095.
    Pubmed PMC
  46. Kareem PA, Salh KK, Ali FA. 2021. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast. Cell. Mol. Biol. 67: 24-34.
    Pubmed
  47. Surwade P, Ghildyal C, Weikel C, Luxton T, Peloquin D, Fan X, et al. 2019. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot (Tokyo) 72: 50-53.
    Pubmed PMC
  48. Srivastava P, Kim Y, Cho H, Kim KS. 2023. Synergistic action between Copper Oxide (CuO) Nanoparticles and Anthraquinone-2Carboxylic Acid (AQ) against Staphylococcus aureus. J. Compos. Sci. 7: 135.
  49. Kim TH, Raiz A, Unni AD, Murhekar S, Donose BC, Floetenmeyer M, et al. 2020. Combating antibiotic‐resistant gram‐negative bacteria strains with tetracycline‐conjugated carbon nanoparticles. Adv. Biosyst. 4: e2000074.
    Pubmed
  50. Dar M, Gul R, Karuppiah P, Al-Dhabi N, Alfadda A. 2022. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals 12: 179.
  51. El-Masry RM, Talat D, Hassoubah SA, Zabermawi NM, Eleiwa NZ, Sherif RM, et al. 2022. Evaluation of the antimicrobial activity of ZnO nanoparticles against enterotoxigenic Staphylococcus aureus. Life (Basel) 12: 1662.
    Pubmed PMC
  52. Naskar A, Kim K-S. 2019. Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections:Advantages and limitations. Microorganisms 7: 356.
    Pubmed PMC
  53. Yang X, Chung E, Johnston I, Ren G, Cheong Y-K. 2021. Exploitation of antimicrobial nanoparticles and their applications in biomedical engineering. Appl. Sci. 11: 4520.
  54. Joshi AS, Singh P, Mijakovic I. 2020. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind Inhibition and resistance. Int. J. Mol. Sci. 21: 7658.
    Pubmed PMC
  55. Rana R, Awasthi R, Sharma B, Kulkarni GT. 2020. Nanoantibiotic formulations to combat antibiotic resistance - old wine in a new bottle. Recent Pat. Drug Deliv. Formul. 13: 174-183.
    Pubmed

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2024; 34(9): 1748-1756

Published online September 28, 2024 https://doi.org/10.4014/jmb.2403.03029

Copyright © The Korean Society for Microbiology and Biotechnology.

Effects of Metal and Metal Oxide Nanoparticles against Biofilm-Forming Bacteria: A Systematic Review

Hend Algadi1, Mohammed Abdelfatah Alhoot 2,3*, Anis Rageh Al-Maleki4, and Neny Purwitasari3

1Postgraduate Center (PGC), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
2School of Graduate Studies (SGS), Management & Science University (MSU), Shah Alam 40100, Selangor, Malaysia
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
4Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia

Correspondence to:Mohammed Abdelfatah Alhoot,     malhoot@hotmail.com

Received: March 14, 2024; Revised: June 21, 2024; Accepted: June 25, 2024

Abstract

Biofilm formation by bacteria poses a significant challenge across diverse industries, displaying resilience against conventional antimicrobial agents. Nanoparticles emerge as a promising alternative for addressing biofilm-related issues. This review aims to assess the efficacy of metal and metal oxide nanoparticles in inhibiting or disrupting biofilm formation by various bacterial species. It delineates trends, identifies gaps, and outlines avenues for future research, emphasizing best practices and optimal nanoparticles for biofilm prevention and eradication. Additionally, it underscores the potential of nanoparticles as substitutes for traditional antibiotics in healthcare and combating antibiotic resistance. A systematic literature search, encompassing Web of Science, PubMed, and Google Scholar from 2015 to 2023, yielded 48 publications meeting the review criteria. These studies employed diverse methods to explore the antibacterial activity of nanoparticles against biofilm-forming bacteria strains. The implications of this study are profound, offering prospects for novel antimicrobial agents targeting biofilm-forming bacteria, often resistant to conventional antibiotics. In conclusion, nanoparticles present a promising frontier in countering biofilm-forming bacteria. This review delivers a structured analysis of current research, providing insights into the potential and challenges of nanoparticle utilization against biofilm-related challenges. While nanoparticles exhibit inherent antimicrobial properties with applications spanning healthcare, agriculture, and industries, the review acknowledges limitations such as the narrow scope of tested nanoparticles and the imperative need for extensive research on long-term toxicity and environmental impacts.

Keywords: Antimicrobial resistance, biofilm, synergistic effects, metal nanoparticles, metal oxide nanoparticles

References

  1. Ciofu O, Rojo‐Molinero E, Macià MD, Oliver A. 2017. Antibiotic treatment of biofilm infections. APMIS 125: 304-319.
    Pubmed
  2. Kaźmierczak N, Grygorcewicz B, Roszak M, Bochentyn B, Piechowicz L. 2022. Comparative assessment of bacteriophage and antibiotic activity against multidrug-resistant Staphylococcus aureus biofilms. Int. J. Mol. Sci. 23: 1274.
    Pubmed KoreaMed
  3. Hetta HF, Ramadan YN, Al-Harbi AI, A Ahmed E, Battah B, Abd Ellah NH, et al. 2023. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines 11: 413.
    Pubmed KoreaMed
  4. Kaur R, Kaur K, Alyami MH, Lang DK, Saini B, Bayan MF, et al. 2023. Combating microbial infections using metal-based nanoparticles as potential therapeutic alternatives. Antibiotics (Basel) 12: 909.
    Pubmed KoreaMed
  5. Fulaz S, Vitale S, Quinn L, Casey E. 2019. Nanoparticle-biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27: 915-926.
    Pubmed
  6. Mukherjee A, Bose S, Shaoo A, Das SK. 2023. Nanotechnology based therapeutic approaches: an advanced strategy to target the biofilm of ESKAPE pathogens. Mater. Adv. 4: 2544-2572.
  7. Shatila F, Yalçin T, hsa Y. 2019. Insight on microbial biofilms and recent antibiofilm approaches. Acta Biol. Turcica 32: 220-235.
  8. Sheng Y, Chen Z, Wu W, Lu Y. 2023. Engineered organic nanoparticles to combat biofilms. Drug Discov. Today 28: 103455.
    Pubmed
  9. Kadiyala U, Kotov NA, Vanepps JS. 2018. Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr. Pharm. Des. 24: 896-903.
    Pubmed KoreaMed
  10. Muteeb G. 2023. Nanotechnology-a light of hope for combating antibiotic resistance. Microorganisms 11: 1489.
    Pubmed KoreaMed
  11. Masri A, Brown DM, Smith DGE, Stone V, Johnston HJ. 2022. Comparison of in vitro approaches to assess the antibacterial effects of nanomaterials. J. Funct. Biomater. 13: 255.
    Pubmed KoreaMed
  12. Santhosh S, Kalathilparambil, Sarojini S, Umesh M. 2021. Anti-biofilm activities of nanocomposites: current scopes and limitations, pp. 83-94. Bio-manufactured Nanomaterials, Ed. Springer International Publishing.
  13. Natan M, Banin E. 2017. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 41: 302-322.
    Pubmed
  14. Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. 2020. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View 2. 2020065.
  15. Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder D-P. 2023. Therapeutic strategies against biofilm infections. Life (Basel) 13: 172.
    Pubmed KoreaMed
  16. Munir MU, Ahmad MM. 2022. Nanomaterials aiming to tackle antibiotic-resistant bacteria. Pharmaceutics 14: 582.
    Pubmed KoreaMed
  17. Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, et al. 2022. Nanocarriers for combating biofilms: Advantages and challenges. J. Appl. Microbiol. 133: 1273-1287.
    Pubmed
  18. Ozdal M, Gurkok S. 2022. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10: 115-129.
    Pubmed KoreaMed
  19. Hj Y, Kulkarni GS, Shetty A, Paarakh PM. 2022. Nanoparticles in pharmaceutical science. J. Commun. Pharm. Pract. 2. DOI: https://doi.org/10.55529/jcpp.25.6.17.
  20. Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, et al. 2022. A review and revisit of nanoparticles for antimicrobial drug delivery. J. Med. Life 15: 328-335.
    Pubmed KoreaMed
  21. Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, et al. 2020. Biofilm formation to inhibition:Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C. 108: 110319.
    Pubmed
  22. Munir MU, Ahmed A, Usman M, Salman S. 2020. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int. J. Nanomed. 15: 7329-7358.
    Pubmed KoreaMed
  23. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. 2020. Inhibition of Bacterial Biofilm Formation, Bacterial Biofilms, Ed. IntechOpen.
  24. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 2021. PRISMA 2020 explanation and elaboration:updated guidance and exemplars for reporting systematic reviews. BMJ 372: n160-n160.
    Pubmed KoreaMed
  25. Balderrama-González AS, Piñón-Castillo HA, Ramírez-Valdespino CA, Landeros-Martínez LL, Orrantia-Borunda E, EsparzaPonce HE. 2021. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 22: 12890.
    Pubmed KoreaMed
  26. Harris M, Fasolino T, Ivankovic D, Davis NJ, Brownlee N. 2023. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms 11: 1407.
    Pubmed KoreaMed
  27. Hochvaldová L, Večeřová R, Kolář M, Prucek R, Kvítek L, Lapčík L, et al. 2022. Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol. Rev. 11: 1115-1142.
  28. Alqahtani FA, Almustafa HI, Alshehri RS, Alanazi SO, Khalifa AY. 2022. Combating antibiotic resistance in bacteria: the development of novel therapeutic strategies. J. Pure Appl. Microbiol. 16: 2201-2224.
  29. Luo Y, Yang Q, Zhang D, Yan W. 2021. Mechanisms and control strategies of antibiotic resistance in pathological biofilms. J. Microbiol. Biotechnol. 31: 1-7.
    Pubmed KoreaMed
  30. Andrade S, Ramalho MJ, Santos SB, Melo LDR, Santos RS, Guimarães N, et al. 2023. Fighting methicillin-resistant Staphylococcus aureus with targeted nanoparticles. Int. J. Mol. Sci. 24: 9030.
    Pubmed KoreaMed
  31. Alves-Barroco C, Rivas-García L, Fernandes AR, Baptista PV. 2020. Tackling multidrug resistance in streptococci - from novel biotherapeutic strategies to nanomedicines. Front. Microbiol. 11: 579916-579916.
    Pubmed KoreaMed
  32. Franco D, Calabrese G, Guglielmino SPP, Conoci S. 2022. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms 10: 1778.
    Pubmed KoreaMed
  33. Hamdan HF, Zulkiply N, Yahya MFZR. 2023. Control strategies of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) biofilms: a review. Sci. Lett. 17: 33-49.
  34. Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL. 2017. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 6: 383-404.
  35. Hemeg HA. 2022. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z. Naturforsch. C. J. Biosci. 77: 365-378.
    Pubmed
  36. Shkodenko L, Kassirov I, Koshel E. 2020. Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8: 1545.
    Pubmed KoreaMed
  37. Swolana D, Kępa M, Idzik D, Dziedzic A, Kabała-Dzik A, Wąsik TJ, et al. 2020. The antibacterial effect of silver nanoparticles on Staphylococcus epidermidis strains with different biofilm-forming ability. Nanomaterials (Basel) 10: 1010.
    Pubmed KoreaMed
  38. Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al. 2021. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics (Basel) 10: 1338.
    Pubmed KoreaMed
  39. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. 2023. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J. Funct. Biomater. 14: 244.
    Pubmed KoreaMed
  40. Pothineni BK, Keller A. 2023. Nanoparticle‐based formulations of glycopeptide antibiotics: a means for overcoming vancomycin resistance in bacterial pathogens? Adv. NanoBiomed Res. 3. DOI: 10.1002/anbr.202200134.
  41. Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md Akim A, et al. 2021. Approaches for mitigating microbial biofilm-related drug resistance: A focus on micro- and nanotechnologies. Molecules 26: 1870.
    Pubmed KoreaMed
  42. Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, et al. 2022. An overview of biofilm formation-combating strategies and mechanisms of action of antibiofilm agents. Life (Basel) 12: 1110.
    Pubmed KoreaMed
  43. Mcneilly O, Mann R, Hamidian M, Gunawan C. 2021. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol. 12: 652863-652863.
    Pubmed KoreaMed
  44. Muzammil S, Hayat S, Fakhar-E-Alam M, Aslam B, Siddique MH, Nisar MA, et al. 2018. Nanoantibiotics: future nanotechnologies to combat antibiotic resistance. Front. Biosci. 10: 352-374.
    Pubmed
  45. Dove AS, Dzurny DI, Dees WR, Qin N, Nunez Rodriguez CC, Alt LA, et al. 2023. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. Front. Microbiol. 13: 1064095-1064095.
    Pubmed KoreaMed
  46. Kareem PA, Salh KK, Ali FA. 2021. ZnO, TiO2 and Ag nanoparticles impact against some species of pathogenic bacteria and yeast. Cell. Mol. Biol. 67: 24-34.
    Pubmed
  47. Surwade P, Ghildyal C, Weikel C, Luxton T, Peloquin D, Fan X, et al. 2019. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot (Tokyo) 72: 50-53.
    Pubmed KoreaMed
  48. Srivastava P, Kim Y, Cho H, Kim KS. 2023. Synergistic action between Copper Oxide (CuO) Nanoparticles and Anthraquinone-2Carboxylic Acid (AQ) against Staphylococcus aureus. J. Compos. Sci. 7: 135.
  49. Kim TH, Raiz A, Unni AD, Murhekar S, Donose BC, Floetenmeyer M, et al. 2020. Combating antibiotic‐resistant gram‐negative bacteria strains with tetracycline‐conjugated carbon nanoparticles. Adv. Biosyst. 4: e2000074.
    Pubmed
  50. Dar M, Gul R, Karuppiah P, Al-Dhabi N, Alfadda A. 2022. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals 12: 179.
  51. El-Masry RM, Talat D, Hassoubah SA, Zabermawi NM, Eleiwa NZ, Sherif RM, et al. 2022. Evaluation of the antimicrobial activity of ZnO nanoparticles against enterotoxigenic Staphylococcus aureus. Life (Basel) 12: 1662.
    Pubmed KoreaMed
  52. Naskar A, Kim K-S. 2019. Nanomaterials as delivery vehicles and components of new strategies to combat bacterial infections:Advantages and limitations. Microorganisms 7: 356.
    Pubmed KoreaMed
  53. Yang X, Chung E, Johnston I, Ren G, Cheong Y-K. 2021. Exploitation of antimicrobial nanoparticles and their applications in biomedical engineering. Appl. Sci. 11: 4520.
  54. Joshi AS, Singh P, Mijakovic I. 2020. Interactions of gold and silver nanoparticles with bacterial biofilms: molecular interactions behind Inhibition and resistance. Int. J. Mol. Sci. 21: 7658.
    Pubmed KoreaMed
  55. Rana R, Awasthi R, Sharma B, Kulkarni GT. 2020. Nanoantibiotic formulations to combat antibiotic resistance - old wine in a new bottle. Recent Pat. Drug Deliv. Formul. 13: 174-183.
    Pubmed