전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Srivastava S, Ahmad R, Khare SK. 2021. Alzheimer’s disease and its treatment by different approaches: a review. Eur. J. Med. Chem. 216: 113320.
  2. Haghighat N, Mohammadshahi M, Shayanpour S, Haghighizadeh MH, Rahmdel S, Rajaei M. 2021. The effect of synbiotic and probiotic supplementation on mental health parameters in patients undergoing hemodialysis: a double-blind, randomized, placebocontrolled trial. Indian J. Nephrol. 31: 149.
  3. Talebi M, Kakouri E, Talebi M, Tarantilis PΑ, Farkhondeh T, İlgün S, et al. 2021. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease. Exp. Rev. Neurother. 21: 625-642.
  4. DeCarolis NA, Eisch AJ. 2010. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58: 884-893.
  5. Ravetz RS. 1999. Psychiatric disorders associated with Alzheimer’s disease. J. Am. Osteopath. Assoc. 99: S13-16.
  6. Mendez MF. 2021. The relationship between anxiety and Alzheimer’s disease1. J. Alzheimer’s Disease Rep. 5: 171-177.
  7. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. 2021. Alzheimer disease. Nat. Rev. Dis. Primers 7: 33.
  8. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid M. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17: 259-275.
  9. Dinan TG, Stanton C, Cryan JF. 2013. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74: 720-726.
  10. Cheng L, Liu YW, Wu CC, Wang S, Tsai Y. 2019. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J. Food Drug Anal. 27: 632-648.
  11. Lustbader JW, Cirilli M, Lin C, Xu H, Takuma K, Wang N, et al. 2004. ABAD directly links ASS to mitochondrial toxicity in Alzheimer’s disease. Science 304: 448-452.
  12. Hunt D, Castillo PE. 2012. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr. Opin. Neurobiol. 22: 496-508.
  13. Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Vanden Dries V, et al. 2019. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol. 137: 397-412.
  14. Bertram L, Tanzi RE. 2008. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 9: 768-778.
  15. Shen J, Kelleher RJ. 2007. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA 104: 403-409.
  16. Michalicová A, Majerová P, Kováč A. 2020. TAU protein and its role in blood-brain barrier dysfunction. Front. Mol. Neurosci. 13: 570045.
  17. Medeiros R, Baglietto‐Vargas D, LaFerla FM. 2011. The role of TAU in Alzheimer’s disease and related disorders. CNS Neurosci. Ther. 17: 514-524.
  18. Iqbal K, Liu F, Chen G, Grundke‐Iqbal I. 2010. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7: 656-664.
  19. Budimir A. 2011. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm. 61: 1-14.
  20. Nita M, Grzybowski A. 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the Age-Related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longevity 2016: 1-23.
  21. Zhao Y, Zhao B. 2013. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013: 1-10.
  22. Guglielmotto. 2010. Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front. Aging Neurosci. doi: 10.3389/neuro.24.003.2010. eCollection 2010.
  23. Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu ZW, et al. 2020. New insights into the pathogenesis of Alzheimer’s disease. Front. Neurol. 10: 1312
  24. Haque MdM, Murale DP, Kim YK, Lee JH. 2019. Crosstalk between oxidative stress and tauopathy. Int. J. Mol. Sci. 20: 1959.
  25. Martin CR, Osadchiy V, Kalani A, Mayer EA. 2018. The brain-gut-microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6: 133-148.
  26. Carabotti M, Scirocco A, Maselli MA, Severi C. 2015. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28: 203-209.
  27. Morais LH, Schreiber HL, Mazmanian SK. 2020. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19: 241-255.
  28. Schroeder FA, Lin CL, Crusio WE, Akbarian S. 2007. Antidepressant-Like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psych. 62: 55-64.
  29. Frost G, Sleeth M, Sahuri-Arisoylu M, Lizarbe B, Cerdán S, Brody L, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5: 3611.
  30. Louveau A, Smirnov I, Keyes T, Eccles JD, Rouhani SJ, Peske JD, et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523: 337-341.
  31. Yoo BH, Mazmanian SK. 2017. The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46: 910-926.
  32. Morimoto K, Nakajima K. 2019. Role of the immune system in the development of the central nervous system. Front. Neurosci. 13: 916.
  33. Ortega SB, Torres V, Latchney SE, Whoolery CW, Noorbhai I, Poinsatte K, et al. 2020. B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc. Natl. Acad. Sci. USA 117: 4983-4993.
  34. Erny D, De Angelis ALH, Jaitin DA, Wieghofer P, Staszewski O, David E, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18: 965-977.
  35. Mukherjee S, Joardar N, Sengupta S, Babu SPS. 2018. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J. Nutr. Biochem. 61: 111-128.
  36. Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, et al. 2017. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 7: 2426.
  37. Archie SR, Shoyaib AA, Cucullo L. 2021. Blood-brain barrier dysfunction in CNS disorders and putative therapeutic targets: an overview. Pharmaceutics 13: 1779.
  38. Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, et al. 2017. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep. 7: 13510.
  39. Kobayashi Y, Kuhara T, Oki M, Xiao J. 2019. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 10: 511-520.
  40. Han D, Li Z, Liu T, Yang N, Li Y, He J, et al. 2020. Prebiotics regulation of intestinal microbiota attenuates cognitive dysfunction induced by surgery stimulation in APP/PS1 mice. Aging Dis. 11: 1029.
  41. Arora K, Green M, Prakash S. 2020. The microbiome and Alzheimer’s disease: potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front. Bioeng. Biotechnol. 8: 537847.
  42. Pistollato F, Iglesias RC, Ruíz R, Aparicio S, Crespo J, López LAD, et al. 2018. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol. Res. 131: 32-43.
  43. Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, et al. 2017. Prebiotic effect of fructooligosaccharides from morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front. Aging Neurosci. 9: 403.
  44. Pasinetti GM. 2020. Synbiotic-derived metabolites reduce neuroinflammatory symptoms of Alzheimer’s disease. Curr. Dev. Nutr. 4: nzaa062_035.
  45. Wang W, Liu F, Xu C, Liu Z, Ma J, Gu L, et al. 2021. Lactobacillus plantarum 69-2 Combined with galacto-oligosaccharides alleviates d-galactose-induced aging by regulating the AMPK/SIRT1 signaling pathway and gut microbiota in mice. J. Agric. Food Chem. 69: 2745-2757.
  46. Westfall S, Lomis N, Prakash S. 2019. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS One 14: e0214985.
  47. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, et al. 2018. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J. Neuroinflammation 15: 11.
  48. Patel C, Patel C, Acharya S. 2020. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR58 against scopolamine-induced memory impairment in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 393: 1955-1962.
  49. Deng S, Chen C, Lin H, Cheng IH. 2021. The beneficial effect of synbiotics consumption on Alzheimer’s disease mouse model via reducing local and systemic inflammation. IUBMB Life 74: 748-753.
  50. Tamtaji OR, Heidari‐Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, et al. 2019. Probiotic and selenium cosupplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin. Nutr. 38: 2569-2575.
  51. Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, et al. 2020. Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid. Med. Cell. Longev. 2020: 2638703.
  52. Haghighat N, Rajabi S, Mohammadshahi M. 2019. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: a randomized, double-blinded, clinical trial. Nutr. Neurosci. 24: 490-499.
  53. Su F, Bai F, Zhang Z. 2016. Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci. Bull. 32: 469-480.
  54. Garcez ML, Mina F, Bellettini-Santos T, Carneiro FG, Amparo L, Schiavo GL, et al. 2017. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 77: 23-31.
  55. Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8: 595-608.
  56. Quintanilla RA, Orellana D, González-Billault C, Maccioni RB. 2004. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exper. Cell Res. 295: 245-257.
  57. Khoury JE, Moore KJ, Means TK, Leung JH, Terada K, Toft M, et al. 2003. CD36 mediates the innate host response to Β-Amyloid. J. Exper. Med. 197: 1657-1666.
  58. Chellappa RC, Lukose B, Rani P. 2020. G82S RAGE polymorphism influences amyloid-RAGE interactions relevant in Alzheimer’s disease pathology. PLoS One 15: e0225487.
  59. Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S, et al. 2008. Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTG-AD mice. Am. J. Pathol. 173: 1768-1782.
  60. McAlpine FE, Lee J, Harms AS, Ruhn KA, Blurton‐Jones M, Hong JJ, et al. 2009. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis. 34: 163-177.
  61. Berg JV, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I, et al. 2012. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med. 18: 1812-1819.
  62. Liu L, Xu Y, Liu Z, Chen JG, Zhang Y, Zhu J, et al. 2011. IL12 polymorphisms, HBV infection and risk of hepatocellular carcinoma in a high‐risk Chinese population. Int. J. Cancer 128: 1692-1696.
  63. Halder N, Lal G. 2021. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front. Immunol. 12: 660342.
  64. Shah S, Yoon GH, Chung S, Abid MN, Kim TH, Lee HY, et al. 2016. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry 22: 407-416.
  65. Assefa BT, Tafere GG, Wondafrash DZ, Gidey MT. 2020. The bewildering effect of AMPK activators in Alzheimer’s disease: review of the current evidence. BioMed Res. Int. 2020: 9895121.
  66. Zhang M, Tang Z. 2023. Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation. Biomed. Pharmacother. 161: 114474.
  67. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M. 2016. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell. Longev. 2016: 8590578.
  68. Oliver D, Reddy PH. 2019. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol. Cell. Neurosci. 96: 47-62.
  69. Drake J, Link CD, Butterfield DA. 2003. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (142) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 24: 415-420.
  70. Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, et al. 2007. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J. Psychiatr. Res. 41: 387-394.
  71. Mori Y, Tsuji M, Oguchi T, Kasuga K, Kimura A, Futamura A, et al. 2021. Serum BDNF as a potential biomarker of Alzheimer’s disease: verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy. Front. Neurol. 12: 653267.
  72. Zilberter Y, Zilberter M. 2017. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. J. Neurosci. Res. 95: 2217-2235.
  73. Yılmaz A, Geddes TJ, Han B-S, Wilson GD, Imam K, Maddens M, et al. 2017. Diagnostic biomarkers of Alzheimer’s disease as identified in saliva using 1H NMR-based metabolomics. J. Alzheimer’s disease 58: 355-359.
  74. Cui M, Jiang Y, Zhao Q, Zhu Z, Liang X, Zhang K, et al. 2020. Metabolomics and incident dementia in older Chinese adults: the Shanghai aging study. Alzheimers Dement. 16: 779-788.
  75. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. 2017. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Exp. Rev. Neurother. 18: 83-90.
  76. Fernando WMADB, Martins I, Morici M, Bharadwaj P, Rainey-Smith SR, Lim WLF, et al. 2020. Sodium butyrate reduces brain amyloid-Β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimer’s Dis. 74: 91-99.
  77. Filippone A, Lanza M, Campolo M, Casili G, Paterniti I, Cuzzocrea S, et al. 2020. Protective effect of sodium propionate in Aβ1-42 induced neurotoxicity and spinal cord trauma. Neuropharmacology 166: 107977.
  78. Westfall S, Lomis N, Prakash S. 2018. A novel polyphenolic prebiotic and probiotic formulation have synergistic effects on the gut microbiota influencing Drosophila melanogaster physiology. Artif. Cells Nanomed. Biotechnol. 46: 441-455.
  79. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. 2006. Depression and risk for Alzheimer disease. Arch. Gen. Psych. 63: 530.
  80. Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. 2021. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct. 12: 4284-4314.
  81. Ayichew T, Belete A, Alebachew T, Tsehaye H, Berhanu H, Minwuyelet A. 2017. Bacterial probiotics their importances and limitations: a review. J. Nutr. Health Sci. 4. DOI:10.15744/2393-9060.4.202.
  82. Dudek-Wicher R, Junka A, Paleczny J, Bartoszewicz M. 2020. Clinical trials of probiotic strains in selected disease entities. Int. J. Microbiol. 2020: 8854119.
  83. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174: 1388-1405.e21.
  84. Suez J, Zmora N, Segal E, Elinav E. 2019. The pros, cons, and many unknowns of probiotics. Nat. Med. 25: 716-729.
  85. Boyer EW, Shannon M. 2005. The serotonin syndrome. New Engl. J. Med. 352: 1112-1120.
  86. Lee YS, Lai DM, Huang HJ, Lee‐Chen G, Chang CH, Hsieh-Li HM, et al. 2021. Prebiotic lactulose ameliorates the cognitive deficit in Alzheimer’s disease mouse model through macroautophagy and chaperone-mediated autophagy pathways. J. Agric. Food Chem. 69: 2422-2437.

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2024; 34(9): 1739-1747

Published online September 28, 2024 https://doi.org/10.4014/jmb.2403.03021

Copyright © The Korean Society for Microbiology and Biotechnology.

Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease

Anh Pham Thi Ngoc1, Adil Zahoor1, Dong Gyun Kim1, and Seung Hwan Yang1*

Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea

Correspondence to:Seung Hwan Yang,          ymichigan@jnu.ac.kr

Received: March 12, 2024; Revised: May 29, 2024; Accepted: June 10, 2024

Abstract

Alzheimer’s disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut–brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut–brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.

Keywords: Alzheimer&rsquo,s disease, synbiotics, anxiety, gut-brain axis

References

  1. Srivastava S, Ahmad R, Khare SK. 2021. Alzheimer’s disease and its treatment by different approaches: a review. Eur. J. Med. Chem. 216: 113320.
  2. Haghighat N, Mohammadshahi M, Shayanpour S, Haghighizadeh MH, Rahmdel S, Rajaei M. 2021. The effect of synbiotic and probiotic supplementation on mental health parameters in patients undergoing hemodialysis: a double-blind, randomized, placebocontrolled trial. Indian J. Nephrol. 31: 149.
  3. Talebi M, Kakouri E, Talebi M, Tarantilis PΑ, Farkhondeh T, İlgün S, et al. 2021. Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer’s disease. Exp. Rev. Neurother. 21: 625-642.
  4. DeCarolis NA, Eisch AJ. 2010. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58: 884-893.
  5. Ravetz RS. 1999. Psychiatric disorders associated with Alzheimer’s disease. J. Am. Osteopath. Assoc. 99: S13-16.
  6. Mendez MF. 2021. The relationship between anxiety and Alzheimer’s disease1. J. Alzheimer’s Disease Rep. 5: 171-177.
  7. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. 2021. Alzheimer disease. Nat. Rev. Dis. Primers 7: 33.
  8. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid M. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17: 259-275.
  9. Dinan TG, Stanton C, Cryan JF. 2013. Psychobiotics: a novel class of psychotropic. Biol. Psychiatry 74: 720-726.
  10. Cheng L, Liu YW, Wu CC, Wang S, Tsai Y. 2019. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J. Food Drug Anal. 27: 632-648.
  11. Lustbader JW, Cirilli M, Lin C, Xu H, Takuma K, Wang N, et al. 2004. ABAD directly links ASS to mitochondrial toxicity in Alzheimer’s disease. Science 304: 448-452.
  12. Hunt D, Castillo PE. 2012. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr. Opin. Neurobiol. 22: 496-508.
  13. Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Vanden Dries V, et al. 2019. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol. 137: 397-412.
  14. Bertram L, Tanzi RE. 2008. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 9: 768-778.
  15. Shen J, Kelleher RJ. 2007. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA 104: 403-409.
  16. Michalicová A, Majerová P, Kováč A. 2020. TAU protein and its role in blood-brain barrier dysfunction. Front. Mol. Neurosci. 13: 570045.
  17. Medeiros R, Baglietto‐Vargas D, LaFerla FM. 2011. The role of TAU in Alzheimer’s disease and related disorders. CNS Neurosci. Ther. 17: 514-524.
  18. Iqbal K, Liu F, Chen G, Grundke‐Iqbal I. 2010. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7: 656-664.
  19. Budimir A. 2011. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm. 61: 1-14.
  20. Nita M, Grzybowski A. 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the Age-Related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longevity 2016: 1-23.
  21. Zhao Y, Zhao B. 2013. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2013: 1-10.
  22. Guglielmotto. 2010. Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front. Aging Neurosci. doi: 10.3389/neuro.24.003.2010. eCollection 2010.
  23. Fan L, Mao C, Hu X, Zhang S, Yang Z, Hu ZW, et al. 2020. New insights into the pathogenesis of Alzheimer’s disease. Front. Neurol. 10: 1312
  24. Haque MdM, Murale DP, Kim YK, Lee JH. 2019. Crosstalk between oxidative stress and tauopathy. Int. J. Mol. Sci. 20: 1959.
  25. Martin CR, Osadchiy V, Kalani A, Mayer EA. 2018. The brain-gut-microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6: 133-148.
  26. Carabotti M, Scirocco A, Maselli MA, Severi C. 2015. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 28: 203-209.
  27. Morais LH, Schreiber HL, Mazmanian SK. 2020. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19: 241-255.
  28. Schroeder FA, Lin CL, Crusio WE, Akbarian S. 2007. Antidepressant-Like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psych. 62: 55-64.
  29. Frost G, Sleeth M, Sahuri-Arisoylu M, Lizarbe B, Cerdán S, Brody L, et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5: 3611.
  30. Louveau A, Smirnov I, Keyes T, Eccles JD, Rouhani SJ, Peske JD, et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523: 337-341.
  31. Yoo BH, Mazmanian SK. 2017. The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46: 910-926.
  32. Morimoto K, Nakajima K. 2019. Role of the immune system in the development of the central nervous system. Front. Neurosci. 13: 916.
  33. Ortega SB, Torres V, Latchney SE, Whoolery CW, Noorbhai I, Poinsatte K, et al. 2020. B cells migrate into remote brain areas and support neurogenesis and functional recovery after focal stroke in mice. Proc. Natl. Acad. Sci. USA 117: 4983-4993.
  34. Erny D, De Angelis ALH, Jaitin DA, Wieghofer P, Staszewski O, David E, et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18: 965-977.
  35. Mukherjee S, Joardar N, Sengupta S, Babu SPS. 2018. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J. Nutr. Biochem. 61: 111-128.
  36. Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, et al. 2017. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 7: 2426.
  37. Archie SR, Shoyaib AA, Cucullo L. 2021. Blood-brain barrier dysfunction in CNS disorders and putative therapeutic targets: an overview. Pharmaceutics 13: 1779.
  38. Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, et al. 2017. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep. 7: 13510.
  39. Kobayashi Y, Kuhara T, Oki M, Xiao J. 2019. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 10: 511-520.
  40. Han D, Li Z, Liu T, Yang N, Li Y, He J, et al. 2020. Prebiotics regulation of intestinal microbiota attenuates cognitive dysfunction induced by surgery stimulation in APP/PS1 mice. Aging Dis. 11: 1029.
  41. Arora K, Green M, Prakash S. 2020. The microbiome and Alzheimer’s disease: potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front. Bioeng. Biotechnol. 8: 537847.
  42. Pistollato F, Iglesias RC, Ruíz R, Aparicio S, Crespo J, López LAD, et al. 2018. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol. Res. 131: 32-43.
  43. Chen D, Yang X, Yang J, Lai G, Yong T, Tang X, et al. 2017. Prebiotic effect of fructooligosaccharides from morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front. Aging Neurosci. 9: 403.
  44. Pasinetti GM. 2020. Synbiotic-derived metabolites reduce neuroinflammatory symptoms of Alzheimer’s disease. Curr. Dev. Nutr. 4: nzaa062_035.
  45. Wang W, Liu F, Xu C, Liu Z, Ma J, Gu L, et al. 2021. Lactobacillus plantarum 69-2 Combined with galacto-oligosaccharides alleviates d-galactose-induced aging by regulating the AMPK/SIRT1 signaling pathway and gut microbiota in mice. J. Agric. Food Chem. 69: 2745-2757.
  46. Westfall S, Lomis N, Prakash S. 2019. A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS One 14: e0214985.
  47. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, et al. 2018. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J. Neuroinflammation 15: 11.
  48. Patel C, Patel C, Acharya S. 2020. Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR58 against scopolamine-induced memory impairment in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 393: 1955-1962.
  49. Deng S, Chen C, Lin H, Cheng IH. 2021. The beneficial effect of synbiotics consumption on Alzheimer’s disease mouse model via reducing local and systemic inflammation. IUBMB Life 74: 748-753.
  50. Tamtaji OR, Heidari‐Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, et al. 2019. Probiotic and selenium cosupplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin. Nutr. 38: 2569-2575.
  51. Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, et al. 2020. Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid. Med. Cell. Longev. 2020: 2638703.
  52. Haghighat N, Rajabi S, Mohammadshahi M. 2019. Effect of synbiotic and probiotic supplementation on serum brain-derived neurotrophic factor level, depression and anxiety symptoms in hemodialysis patients: a randomized, double-blinded, clinical trial. Nutr. Neurosci. 24: 490-499.
  53. Su F, Bai F, Zhang Z. 2016. Inflammatory cytokines and Alzheimer’s disease: a review from the perspective of genetic polymorphisms. Neurosci. Bull. 32: 469-480.
  54. Garcez ML, Mina F, Bellettini-Santos T, Carneiro FG, Amparo L, Schiavo GL, et al. 2017. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1-42) in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 77: 23-31.
  55. Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8: 595-608.
  56. Quintanilla RA, Orellana D, González-Billault C, Maccioni RB. 2004. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exper. Cell Res. 295: 245-257.
  57. Khoury JE, Moore KJ, Means TK, Leung JH, Terada K, Toft M, et al. 2003. CD36 mediates the innate host response to Β-Amyloid. J. Exper. Med. 197: 1657-1666.
  58. Chellappa RC, Lukose B, Rani P. 2020. G82S RAGE polymorphism influences amyloid-RAGE interactions relevant in Alzheimer’s disease pathology. PLoS One 15: e0225487.
  59. Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S, et al. 2008. Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTG-AD mice. Am. J. Pathol. 173: 1768-1782.
  60. McAlpine FE, Lee J, Harms AS, Ruhn KA, Blurton‐Jones M, Hong JJ, et al. 2009. Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol. Dis. 34: 163-177.
  61. Berg JV, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I, et al. 2012. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat. Med. 18: 1812-1819.
  62. Liu L, Xu Y, Liu Z, Chen JG, Zhang Y, Zhu J, et al. 2011. IL12 polymorphisms, HBV infection and risk of hepatocellular carcinoma in a high‐risk Chinese population. Int. J. Cancer 128: 1692-1696.
  63. Halder N, Lal G. 2021. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front. Immunol. 12: 660342.
  64. Shah S, Yoon GH, Chung S, Abid MN, Kim TH, Lee HY, et al. 2016. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry 22: 407-416.
  65. Assefa BT, Tafere GG, Wondafrash DZ, Gidey MT. 2020. The bewildering effect of AMPK activators in Alzheimer’s disease: review of the current evidence. BioMed Res. Int. 2020: 9895121.
  66. Zhang M, Tang Z. 2023. Therapeutic potential of natural molecules against Alzheimer’s disease via SIRT1 modulation. Biomed. Pharmacother. 161: 114474.
  67. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M. 2016. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxid. Med. Cell. Longev. 2016: 8590578.
  68. Oliver D, Reddy PH. 2019. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol. Cell. Neurosci. 96: 47-62.
  69. Drake J, Link CD, Butterfield DA. 2003. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (142) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 24: 415-420.
  70. Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, et al. 2007. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J. Psychiatr. Res. 41: 387-394.
  71. Mori Y, Tsuji M, Oguchi T, Kasuga K, Kimura A, Futamura A, et al. 2021. Serum BDNF as a potential biomarker of Alzheimer’s disease: verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy. Front. Neurol. 12: 653267.
  72. Zilberter Y, Zilberter M. 2017. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. J. Neurosci. Res. 95: 2217-2235.
  73. Yılmaz A, Geddes TJ, Han B-S, Wilson GD, Imam K, Maddens M, et al. 2017. Diagnostic biomarkers of Alzheimer’s disease as identified in saliva using 1H NMR-based metabolomics. J. Alzheimer’s disease 58: 355-359.
  74. Cui M, Jiang Y, Zhao Q, Zhu Z, Liang X, Zhang K, et al. 2020. Metabolomics and incident dementia in older Chinese adults: the Shanghai aging study. Alzheimers Dement. 16: 779-788.
  75. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. 2017. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Exp. Rev. Neurother. 18: 83-90.
  76. Fernando WMADB, Martins I, Morici M, Bharadwaj P, Rainey-Smith SR, Lim WLF, et al. 2020. Sodium butyrate reduces brain amyloid-Β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J. Alzheimer’s Dis. 74: 91-99.
  77. Filippone A, Lanza M, Campolo M, Casili G, Paterniti I, Cuzzocrea S, et al. 2020. Protective effect of sodium propionate in Aβ1-42 induced neurotoxicity and spinal cord trauma. Neuropharmacology 166: 107977.
  78. Westfall S, Lomis N, Prakash S. 2018. A novel polyphenolic prebiotic and probiotic formulation have synergistic effects on the gut microbiota influencing Drosophila melanogaster physiology. Artif. Cells Nanomed. Biotechnol. 46: 441-455.
  79. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. 2006. Depression and risk for Alzheimer disease. Arch. Gen. Psych. 63: 530.
  80. Methiwala HN, Vaidya B, Addanki VK, Bishnoi M, Sharma SS, Kondepudi KK. 2021. Gut microbiota in mental health and depression: role of pre/pro/synbiotics in their modulation. Food Funct. 12: 4284-4314.
  81. Ayichew T, Belete A, Alebachew T, Tsehaye H, Berhanu H, Minwuyelet A. 2017. Bacterial probiotics their importances and limitations: a review. J. Nutr. Health Sci. 4. DOI:10.15744/2393-9060.4.202.
  82. Dudek-Wicher R, Junka A, Paleczny J, Bartoszewicz M. 2020. Clinical trials of probiotic strains in selected disease entities. Int. J. Microbiol. 2020: 8854119.
  83. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174: 1388-1405.e21.
  84. Suez J, Zmora N, Segal E, Elinav E. 2019. The pros, cons, and many unknowns of probiotics. Nat. Med. 25: 716-729.
  85. Boyer EW, Shannon M. 2005. The serotonin syndrome. New Engl. J. Med. 352: 1112-1120.
  86. Lee YS, Lai DM, Huang HJ, Lee‐Chen G, Chang CH, Hsieh-Li HM, et al. 2021. Prebiotic lactulose ameliorates the cognitive deficit in Alzheimer’s disease mouse model through macroautophagy and chaperone-mediated autophagy pathways. J. Agric. Food Chem. 69: 2422-2437.