전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article


References

  1. Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS, et al. 2023. Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon 9: e16134.
    Pubmed PMC
  2. Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, et al. 2007. A marine Mesorhizobium sp. produces structurally novel longchain N-acyl-L-homoserine lactones. Appl. Environ. Microbiol. 73: 3587-3594.
    Pubmed PMC
  3. Shahid M, Khan MS, Syed A, Marraiki N, Elgorban AM. 2021. Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Sci. Rep. 11: 9655.
    Pubmed PMC
  4. Mir MI, Kumar BK, Gopalakrishnan S, Vadlamudi S, Hameeda B. 2021. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon 7: e08321.
    Pubmed PMC
  5. Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, et al. 2016. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Int. J. Phytoremediation 18: 141-149.
    Pubmed
  6. Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGdM. 2017. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci. Rep. 7: 10684.
    Pubmed PMC
  7. Biswas B, Gresshoff PM. 2014. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 15: 7380-7397.
    Pubmed PMC
  8. Roesler BCS, Vaz RG, Castellane TCL, de Macedo Lemos EG, Burkert CAV. 2021. The potential of extracellular biopolymer production by Mesorhizobium sp. from monosaccharide constituents of lignocellulosic biomass. Biotechnol. Lett. 43: 1385-1394.
    Pubmed
  9. Jarvis B, Van Berkum P, Chen W, Nour S, Fernandez M, Cleyet-Marel J, et al. 1997. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 47: 895-898.
  10. Jung YJ, Kim HJ, Hur M. 2020. Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea. Antonie Van Leeuwenhoek 113: 1279-1287.
    Pubmed
  11. Meng D, Liu YL, Zhang JJ, Gu PF, Fan XY, Huang ZS, et al. 2022. Mesorhizobium xinjiangense sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Arch. Microbiol. 204: 29.
    Pubmed
  12. Zheng WT, Li Jr Y, Wang R, Sui XH, Zhang XX, Zhang JJ, et al. 2013. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int. J Syst. Evol. Microbiol. 63: 2002-2007.
    Pubmed
  13. De Meyer SE, Wee Tan H, Heenan PB, Andrews M, Willems A. 2015. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int. J Syst. Evol. Microbiol. 65: 3419-3426.
    Pubmed
  14. Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, et al. 2009. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int. J. Syst. Evol. Microbiol. 59: 3012-3018.
    Pubmed
  15. Wang E, Van Berkum P, Sui X, Beyene D, Chen W, Martínez-Romero E. 1999. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J Syst. Evol. Microbiol. 49: 51-65.
    Pubmed
  16. Yuan CG, Jiang Z, Xiao M, Zhou E-M, Kim CJ, Hozzein WN, et al. 2016. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int. J Syst. Evol. Microbiol. 66: 4797-4802.
    Pubmed
  17. Fu Gy, Yu Xy, Zhang Cy, Zhao Z, Wu D, Su Y, et al. 2017. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int. J Syst. Evol. Microbiol. 67: 2739-2745.
    Pubmed
  18. Siddiqi MZ, Thao NTP, Choi G, Kim D-C, Lee Y-W, Kim SY, et al. 2019. Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge. J. Microbiol. 57: 238-242.
    Pubmed
  19. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470.
    Pubmed PMC
  20. Chaudhary DK, Kim DU, Kim D, Kim J. 2019. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9: 4134.
    Pubmed PMC
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J Syst. Evol. Microbiol. 67: 1613-1617.
    Pubmed PMC
  22. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  23. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
    Pubmed
  24. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Pubmed
  25. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057.
    Pubmed
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055.
  27. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214.
    Pubmed
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624.
    Pubmed PMC
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
    Pubmed PMC
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
    Pubmed PMC
  31. Yoon SH, Ha Sm, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286.
    Pubmed
  32. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51: W46-W50.
    Pubmed PMC
  33. Meier-Kolthoff JP, Göker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
    Pubmed PMC
  34. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32: 2798-2800.
    Pubmed PMC
  35. Senghor B, Bassène H, Khelaifia S, Robert C, Fournier P-E, Ruimy R, et al. 2019. Oceanobacillus timonensis sp. nov. and Oceanobacillus senegalensis sp. nov., two new moderately halophilic, Gram-stain positive bacteria isolated from stools sample of healthy young Senegalese. Antonie Van Leeuwenhoek 112: 785-796.
    Pubmed
  36. Lee H, Chaudhary DK, Lim OB, Lee KE, Cha IT, Chi WJ, et al. 2023. Paenibacillus caseinilyticus sp. nov., isolated forest soil. Int. J. Syst. Evol. Microbiol. 73: 006171.
    Pubmed
  37. Smibert RM, Krieg NR. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R. (eds.), Methods for general and molecular bacteriology, pp. 607-654. ASM Press, Washington D.C., USA.
  38. Sasser M. 1990. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME) (MIDI Technical Note 101. Newark, DE: MIDI Inc.
  39. Komagata K, Suzuki KI. 1988. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207.
  40. Stackebrandt E. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33: 152-155.
  41. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, et al. 2008. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31: 241-250.
    Pubmed
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37: 463-464.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2024; 34(9): 1819-1825

Published online September 28, 2024 https://doi.org/10.4014/jmb.2404.04026

Copyright © The Korean Society for Microbiology and Biotechnology.

Mesorhizobium koreense sp. nov., Isolated from Soil

Hyosun Lee1, Dhiraj Kumar Chaudhary2, and Dong-Uk Kim1*

1Department of Biological Science, College of Science and Engineering, Sangji University, Wonju 26339, Republic of Korea
2Department of Microbiology, Pukyong National University, Busan 48513 Republic of Korea

Correspondence to:Dong-Uk Kim,         dukim@sangji.ac.kr

Received: April 16, 2024; Revised: May 28, 2024; Accepted: June 4, 2024

Abstract

An aerobic, Gram-stain-negative, catalase-positive, rod-shaped, and motile bacteria, designated as a strain WR6T was isolated from soil in Republic of Korea. Strain WR6T grew at temperatures of 10–37°C, at pH of 5.0–9.0, and at NaCl concentrations of 0–3.0% (w/v). Phylogenetic and 16S rRNA gene nucleotide sequence analysis confirmed that strain WR6T affiliated to the genus Mesorhizobium, with the nearest relative being Mesorhizobium waimense ICMP 19557T (98.5%). The genome of strain WR6T was 5,035,462 bp with DNA G+C content of 62.6%. In strain WR6T, Q-10 was sole ubiquinone; summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c were predominant fatty acids; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, and phosphatidylethanolamine were major polar lipids. Based on these polyphasic taxonomic data, strain WR6T represents a novel species in the genus Mesorhizobium. Accordingly, we propose the name Mesorhizobium koreense sp. nov., with the type strain WR6T (=KCTC 92695T =NBRC 116021T).

Keywords: Mesorhizobium koreense sp. nov. soil, Phyllobacteriaceae, Pseudomonadota, phylogenetics

References

  1. Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, Alshahrani TS, et al. 2023. Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon 9: e16134.
    Pubmed KoreaMed
  2. Krick A, Kehraus S, Eberl L, Riedel K, Anke H, Kaesler I, et al. 2007. A marine Mesorhizobium sp. produces structurally novel longchain N-acyl-L-homoserine lactones. Appl. Environ. Microbiol. 73: 3587-3594.
    Pubmed KoreaMed
  3. Shahid M, Khan MS, Syed A, Marraiki N, Elgorban AM. 2021. Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Sci. Rep. 11: 9655.
    Pubmed KoreaMed
  4. Mir MI, Kumar BK, Gopalakrishnan S, Vadlamudi S, Hameeda B. 2021. Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon 7: e08321.
    Pubmed KoreaMed
  5. Teng Y, Li X, Chen T, Zhang M, Wang X, Li Z, et al. 2016. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Int. J. Phytoremediation 18: 141-149.
    Pubmed
  6. Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGdM. 2017. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci. Rep. 7: 10684.
    Pubmed KoreaMed
  7. Biswas B, Gresshoff PM. 2014. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 15: 7380-7397.
    Pubmed KoreaMed
  8. Roesler BCS, Vaz RG, Castellane TCL, de Macedo Lemos EG, Burkert CAV. 2021. The potential of extracellular biopolymer production by Mesorhizobium sp. from monosaccharide constituents of lignocellulosic biomass. Biotechnol. Lett. 43: 1385-1394.
    Pubmed
  9. Jarvis B, Van Berkum P, Chen W, Nour S, Fernandez M, Cleyet-Marel J, et al. 1997. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. Syst. Bacteriol. 47: 895-898.
  10. Jung YJ, Kim HJ, Hur M. 2020. Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea. Antonie Van Leeuwenhoek 113: 1279-1287.
    Pubmed
  11. Meng D, Liu YL, Zhang JJ, Gu PF, Fan XY, Huang ZS, et al. 2022. Mesorhizobium xinjiangense sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Arch. Microbiol. 204: 29.
    Pubmed
  12. Zheng WT, Li Jr Y, Wang R, Sui XH, Zhang XX, Zhang JJ, et al. 2013. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int. J Syst. Evol. Microbiol. 63: 2002-2007.
    Pubmed
  13. De Meyer SE, Wee Tan H, Heenan PB, Andrews M, Willems A. 2015. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int. J Syst. Evol. Microbiol. 65: 3419-3426.
    Pubmed
  14. Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, et al. 2009. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int. J. Syst. Evol. Microbiol. 59: 3012-3018.
    Pubmed
  15. Wang E, Van Berkum P, Sui X, Beyene D, Chen W, Martínez-Romero E. 1999. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int. J Syst. Evol. Microbiol. 49: 51-65.
    Pubmed
  16. Yuan CG, Jiang Z, Xiao M, Zhou E-M, Kim CJ, Hozzein WN, et al. 2016. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int. J Syst. Evol. Microbiol. 66: 4797-4802.
    Pubmed
  17. Fu Gy, Yu Xy, Zhang Cy, Zhao Z, Wu D, Su Y, et al. 2017. Mesorhizobium oceanicum sp. nov., isolated from deep seawater. Int. J Syst. Evol. Microbiol. 67: 2739-2745.
    Pubmed
  18. Siddiqi MZ, Thao NTP, Choi G, Kim D-C, Lee Y-W, Kim SY, et al. 2019. Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge. J. Microbiol. 57: 238-242.
    Pubmed
  19. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470.
    Pubmed KoreaMed
  20. Chaudhary DK, Kim DU, Kim D, Kim J. 2019. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9: 4134.
    Pubmed KoreaMed
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J Syst. Evol. Microbiol. 67: 1613-1617.
    Pubmed KoreaMed
  22. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  23. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
    Pubmed
  24. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
    Pubmed
  25. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057.
    Pubmed
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055.
  27. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214.
    Pubmed
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624.
    Pubmed KoreaMed
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
    Pubmed KoreaMed
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
    Pubmed KoreaMed
  31. Yoon SH, Ha Sm, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286.
    Pubmed
  32. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. 2023. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51: W46-W50.
    Pubmed KoreaMed
  33. Meier-Kolthoff JP, Göker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
    Pubmed KoreaMed
  34. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32: 2798-2800.
    Pubmed KoreaMed
  35. Senghor B, Bassène H, Khelaifia S, Robert C, Fournier P-E, Ruimy R, et al. 2019. Oceanobacillus timonensis sp. nov. and Oceanobacillus senegalensis sp. nov., two new moderately halophilic, Gram-stain positive bacteria isolated from stools sample of healthy young Senegalese. Antonie Van Leeuwenhoek 112: 785-796.
    Pubmed
  36. Lee H, Chaudhary DK, Lim OB, Lee KE, Cha IT, Chi WJ, et al. 2023. Paenibacillus caseinilyticus sp. nov., isolated forest soil. Int. J. Syst. Evol. Microbiol. 73: 006171.
    Pubmed
  37. Smibert RM, Krieg NR. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R. G. E., Wood, W. A., and Krieg, N. R. (eds.), Methods for general and molecular bacteriology, pp. 607-654. ASM Press, Washington D.C., USA.
  38. Sasser M. 1990. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME) (MIDI Technical Note 101. Newark, DE: MIDI Inc.
  39. Komagata K, Suzuki KI. 1988. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207.
  40. Stackebrandt E. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33: 152-155.
  41. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, et al. 2008. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31: 241-250.
    Pubmed
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37: 463-464.