Articles Service
Review
Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei
1Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
J. Microbiol. Biotechnol. 2023; 33(1): 15-27
Published January 28, 2023 https://doi.org/10.4014/jmb.2207.07032
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
Graphical Abstract
Introduction
Many bacterial pathogens are known to form biofilm, which encloses the bacteria and facilitates cellular attachment and interaction [9]. In addition, the biofilm also renders the pathogen more tolerant to antibacterial agents and host immune molecules while aiding bacterial survival under nutrient-deficient conditions [10, 11]. Bacterial biofilms are composed of an aggregation of microbial cells on biotic or abiotic surfaces enclosed by a self-produced matrix of extracellular polymeric substances (EPSs) composed of proteins, polysaccharides, nucleic acids (DNA), lipopolysaccharides (LPS), and water [10-14]. A successful biofilm formation involves four main stages: (i) surface bacterial attachment, (ii) microcolony formation, (iii) maturation of biofilm architecture, and (iv) signals and environmental cues that trigger the dispersion of cells into the planktonic state [15-17]. The common biofilm formation processes in microbes are illustrated in Fig. 1.
-
Fig. 1.
Schematic diagram representing four stages of biofilm formation (1) surface bacterial attachment, (2) microcolony formation, (3) maturation of biofilm architecture, and (4) dispersion of cells into the planktonic state (adapted from [15-17]).
In BP, biofilm formation is closely associated with its ability to adapt or survive in various environmental niches, as well as contributing to the bacteria’s pathogenicity [18, 19]. The emergence of resistance to antibiotics, including ceftazidime (CTZ), doxycycline (DOX), and imipenem, which are common drug treatments against melioidosis, is generally attributed to the presence of biofilm surrounding BP [20-22]. Despite the importance of biofilm formation features in BP that are linked to clinical pathogenicity and virulence, the detailed mechanism of biofilm formation in BP is yet to be elucidated. For the past decade, researchers have utilized genetics and ‘omics’ approaches targeting the biofilm biosynthesis pathway of BP in studies that have successfully identified genes and proteins that are crucial for BP biofilm formation. In addition, studies on other
Signaling Systems That Promote BP Biofilm Formation
Environmental factors are known to trigger the formation or dispersal of biofilm in most bacteria [23, 24]. Environmental cues such as temperature, pH, nutrient deficiency, and glucose were reported to influence biofilm formation by BP [25-27]. These ecological factors are sensed by signaling molecules, which can influence gene expression in support of biofilm formation and facilitate the conversion of free-living planktonic cells into biofilm cells [25, 28]. Cyclic di-GMP (c-di-GMP), quorum-sensing (QS) molecules, and small RNAs (sRNAs) are known to be the major signaling molecules present in the biofilm community [29-31]. c-di-GMP signaling occurs during the early stages of biofilm formation to facilitate the conversion of free-living planktonic cells to biofilm cells, while QS signaling is involved during biofilm maturation and dispersion [29, 32-34]. sRNAs serve as regulatory molecules in several bacterial metabolic processes, including
Cyclic-di-GMP Signaling
C-di-GMP is a bacterial universal intracellular secondary signaling molecule [36-38]. In bacterial biofilm formation, c-di-GMP is known to regulate genes responsible for synthesizing EPS components; extracellular polymeric exoenzymes, polysaccharides, and adhesins [39, 40]. In addition, c-di-GMP enhances bacterial adhesion and represses bacterial motility, further promoting biofilm production [32, 33, 41, 42]. Furthermore, depletion of c-di-GMP levels has been reported to trigger the dispersal of biofilms. For instance, inhibition of the final step of the denitrification pathway has been implicated in inducing biofilm dispersal [43]. Nitrate levels have been reported to significantly affect biofilm formation in BP, as they ultimately determine the fate of c-di-GMP [33]. The denitrification process, which involves the reduction of nitrate to nitrogen, is important in BP biofilms as it provides an alternative energy source under oxygen-limited conditions [33, 44]. The impact of inhibiting the denitrification pathway on biofilms was recently evaluated in
The synthesis and breakdown of c-di-GMP in most bacteria are regulated by diguanylate cyclase (DGC) and phosphodiesterase (PDE), respectively. The activity of both proteins is affected by environmental cues, in agreement with the transition of bacteria from planktonic to biofilm state being regulated by c-di-GMP in response to changes in environmental stimuli [46-48]. DGC contains the conserved GGDEF domain, while PDE contains a conserved EAL or HD-GYP domain [11, 49]. DGC catalyzes the synthesis of c-di-GMP from the condensation of two GTP molecules, while PDE catalyzes the hydrolysis of c-di-GMP, resulting in two GMP molecules [50, 51].
-
Table 1 . Proteins of
B. pseudomallei that are involved in signaling system in the regulation of biofilms.Signaling Molecules Annotation/Description Species/isolate Sequence identity to K96243 (% identity) Burkholderia pseudomallei K96243 identifier codeProtein Description for Burkholderia pseudomallei K96243Reference c-di-GMP Bp1026b_II2523 DGCBurkholderia pseudomallei 1026b 99.89 BPSS2342 Hypothetical protein [41,54] Bp1026b_I2235 GGDEF domainBurkholderia pseudomallei 1026b 99.85 BPSL1306 Hypothetical protein [41,54] Bp1026b_II0153 GGDEF domainBurkholderia pseudomallei 1026b 99.93 BPSS0136 Hypothetical protein [41,54] Bp1026b_II1380 GGDEF domainBurkholderia pseudomallei 1026b 99.73 BPSS1297 Regulatory protein [41,54] Bp1026b_II2115 GGDEF domainBurkholderia pseudomallei 1026b 99.87 BPSS1971 Two-component system fusion protein [41,54] Bcam2836 putative DGCBurkholderia cenocepacia J2315 85.70 BPSS2342 Hypothetical protein [51,54] BTH_II2363 (pdcA ) GGDEF domainBurkholderia thailandensis E264 97.43 BPSS2342 Hypothetical protein [53,54] BTH_II2364 (pdcB ) CheC/CheX domainBurkholderia thailandensis E264 98.52 BPSS2343 Hypothetical protein [53,54] BTH_II2365 (pdcC ) phosphate-accepting response regulatorBurkholderia thailandensis E264 96.72 BPSS2344 Hypothetical protein [53,54] Bp1026b_I0571 EAL domainBurkholderia pseudomallei 1026b 99.88 BPSL2744 Hypothetical protein [41,54] Bp1026b_I1579 EAL domainBurkholderia pseudomallei 1026b 100 BPSL1635 Hypothetical protein [41,54] Bp1026b_I2260 EAL domainBurkholderia pseudomallei 1026b 99.38 BPSL1286 Hypothetical protein [41,54] Bp1026b_I2659 EAL domainBurkholderia pseudomallei 1026b 99.53 BPSL0887 Hypothetical protein [41,54] Bp1026b_I3148 EAL domainBurkholderia pseudomallei 1026b 99.84 BPSL0358 Hypothetical protein [41,54] Bp1026b_II0879 EAL domainBurkholderia pseudomallei 1026b 99.48 BPSS0799 Hypothetical protein [41,54] BCAL0652 EAL domainBurkholderia cenocepacia J2315 30.17 BPSL2744 Hypothetical protein [51,54] Bp1026b_I2284 (CdpA ) GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.95 BPSL1263 Hypothetical protein [41,42,54] BCAL1069 (cdpA ) GGDEF/EAL domainBurkholderia cenocepacia J2315 85.52 BPSL1263 Hypothetical protein [51,54,135] Bp1026b_I2456 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.79 BPSL1080 Hypothetical protein [41,54] Bp1026b_I2928 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.40 BPSL0602 Hypothetical protein [41,54] Bp1026b_II0885 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.71 BPSS0805 Hypothetical protein [41,54] Bp1026b_II2498 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.83 BPSS2318 Hypothetical protein [41,54] Bcam1160 putative c-di-GMPBurkholderia cenocepacia 86.75 BPSL1080 Hypothetical protein [51,54] Bcam1349 CRP/FNR family transcriptional regulatorBurkholderia cenocepacia J2315 79.07 BPSL0617 Hypothetical protein [45,54,96,98] CRP/FNR superfamily Burkholderia pseudomallei K96243 NA BPSL0616 Hypothetical Protein [45] QS BpsI autoinducer synthaseBurkholderia pseudomallei K96243 ,KHW, H11 100 BPSS0885
BPSS1570N-acyl-homoserine lactone synthase [54,66] BpsR autoinducer binding transcriptional regulatorBurkholderia pseudomallei K96243 ,KHW, H11 99.86 BPSS0887 N-acyl-homoserine lactone dependent regulatory protein [54,66] PA0996 (pqsA )Pseudomonas aeruginosa PAO1 30.36 BPSS0481 HhqA [54,73-75,136] PA0997 (pqsB )Pseudomonas aeruginosa PAO1 38.32 BPSS0482 HhqB [54,73-75,136] PA0998 (pqsC )Pseudomonas aeruginosa PAO1 38.59 BPSS0483 HhqC [54,73-75,136] PA0999 (pqsD )Pseudomonas aeruginosa PAO1 53.68 BPSS0484 HhqD [54,73-75,136] PA1000 (pqsE )Pseudomonas aeruginosa PAO1 30.36 BPSS0485 HhqE [54,73-75,136] *NA- Not applicable
In BP, a putative DGC (
Several genes encoding proteins that contain the conserved GGDEF and EAL domains have been annotated in the BP genome (https://www.burkholderia.com/) and Plumley
-
Fig. 2.
C-di-GMP synthesis mechanism and functional properties during BP biofilm formation. The synthesis and breakdown of cyclic-di-GMP (c-di-GMP) are regulated by two enzymes, diguanylate cyclase (DGC) and phosphodiesterase (PDE), each containing a conserved GGDEF or EAL/HD-GYP domain respectively. Two guanosine-5’-triphosphate (GTP) molecules are utilized by DGC during the condensation reaction that results in the formation of c-di-GMP, which favors biofilm formation by enhancing the transition from free-living planktonic cells to sessile cells. PDE catalyzes the hydrolysis of c-di-GMP into two guanosine monophosphate (GMP) molecules. Both enzymes are influenced by environmental signals such as temperature and concentration of sodium nitrate (NaNO3) that ultimately determine the level of c-di-GMP. The phenotypic characteristics of the cells such as the presence of flagella, pili, adhesin, and exopolysaccharide may be regulated by these enzymes at the transcriptional and post-translation levels through determining the level of c-di-GMP [41].
Quorum Sensing (QS) Signaling
Quorum sensing is also a crucial signaling system involved in forming biofilms. Autoinducers produced by bacteria serve as chemical signal molecules and are released according to cell density [59, 60]. QS is utilized by both gram-positive and gram-negative bacteria [60]. In most
BP owns three QS systems that produce AHL molecules, namely QS-1 (encoded by BpsI-BpsR), QS-2 (BpsI2-BpsR2), and QS-3 (BpsI3-BpsR3), which produce three types of AHLs,
Apart from the AHL molecules, BP is known for producing another type of QS molecule known as 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), which are similar to the
In 2008, another quorum-sensing signal, cis-2-dodecenoic acid, also known as
Regulation by Small RNAs (sRNAs)
sRNAs modulate protein expression by altering mRNA translation rates or via mRNA degradation [85]. Common metabolic processes regulated by sRNAs include QS, carbon metabolism, and iron homeostasis [86]. These metabolic processes were observed in a recent study on
Biofilm Composition in BP
The EPS matrix forms a natural protection shield for many bacteria, where it enables the bacteria that have changed from the planktonic stage growth mode to live in biofilm in response to various environmental cues and stresses. The formation and degradation of the EPS matrix in the biofilm life cycle are highly regulated and specific mechanisms are involved in the synthesis and degeneration of each of the EPS matrix components. Several major EPS matrix components in BP, including exopolysaccharides, eDNA, and proteins, have been identified. This section provides an overview of the three major EPS components of BP.
Exopolysaccharide Biosynthesis
Exopolysaccharides are a major component of most bacterial biofilm matrices [40, 88, 89]. The exopolysaccharides have been categorized into various forms, such as capsular polysaccharides, free polysaccharides, and lipopolysaccharides (O-antigen) that have a key role in preventing the diffusion of antimicrobial agents within the biofilm community [89-91]. The exopolysaccharide in BP has been structurally classified to be acidic. It consists of a tetrasaccharide repeating unit composed of three galactose (with one bearing a 2-linked O-acetyl group) and a 3-deoxy-D-manno-2-octulosonic acid (KDO) residues ([→3)-β-D-Galp2Ac-(1→4)-A-D-Galp-(1→3)-β-D-Galp-(1→5)-β-Kdo-(2→]n) [92]. Later, glucose, mannose, and rhamnose were reported as the major type of monosaccharides predominantly found in BP biofilm exopolysaccharides [93]. While the chemical synthesis of the tetrasaccharide repeating unit of [→3)-β-D-Galp2Ac-(1→4)-A-D-Galp-(1→3)-β-D-Galp-(1→5)-β-Kdo-(2→] has been successfully carried out [94], the BP proteins that are responsible for the biosynthesis of KDO molecules remains unclear. A 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase encoded by yrbI (
Recently, an exopolysaccharide gene cluster of 18 genes (
Exopolysaccharide production in
Apart from c-di-GMP,
-
Fig. 3.
Proposed BP exopolysaccharide biosynthesis regulation mechanism via c-di-GMP and QS signaling. Signaling molecules, e.g. c-di-GMP, and QS molecules, e.g., RpoS and AHLs, regulate the development of the EPS components, particularly exopolysaccharides. c-di-GMP is reported to improve the binding between the regulatory protein and the promoter region of thebecA-R gene cluster thereby triggering gene expression of the cluster to produce the enzymes that facilitate the synthesis of exopolysaccharides in the EPS.
Extracellular DNA (eDNA) in EPS
Extracellular DNA (eDNA) is a crucial component of EPS and biofilm development [100-102]. eDNA is proposed as a key component of many pathogenic bacteria that form biofilms where it contributes to shielding biofilm against antimicrobial agents, promoting adhesion, and strengthening the integrity of biofilms [101, 103, 104]. In some bacteria, eDNA is derived from chromosomal DNA that is released from the bacterial cells either by active secretion mediated by QS or through cell lysis [105-107]. These mechanisms of eDNA release have been widely described for
It was reported that eDNA is actively involved during the early stages of biofilm formation, facilitating initial attachment and bacterial aggregation under the planktonic and biofilm states [113, 114]. Deoxyribonucleases (DNAses) are able to completely inhibit eDNA activity which is reflected by a reduced biofilm mass. However, inhibition of eDNA activity beyond the initial biofilm formation step shows no significant changes in biofilm mass, due to limited access of DNAse towards eDNA in mature biofilm. Therefore, DNAse treatment could be an appropriate treatment strategy targeting eDNA during the early stages of biofilm infections [113]. The ability of eDNA to defend the biofilm community against antimicrobial agents arises from its chemical properties. The negatively charged eDNA binds to the positively charged ions on antibiotics such as aminoglycosides and antimicrobial peptides, thereby reducing the antimicrobial agents’ efficiency in eliminating biofilm-forming pathogens [100, 115]. When BP biofilm was subjected to DNase treatment, a drastic reduction in biofilm mass was observed which could not be restored following supplementation with exogenous DNA [113]. A similar observation was noted with
eDNA also exists as a lattice structure stabilized by DNABII proteins [119]. The integration host factor (IHF) and histone-like protein (HU) are two common members of the DNABII protein family that contribute to the lattice structure of the eDNA, thereby increasing the structural stability of the biofilm [120-122]. The
-
Table 2 . Genes/proteins involved in the contribution of extracellular polymeric matrix (EPS) components in
B. pseudomallei biofilms.EPS components Gene/gene cluster reported to be involved in EPS biosynthesis (Annotation/Description) Species/isolate Sequence identity to BP K96243 (% of identity) Burkholderia pseudomallei K96243 identifier codeProtein Description of Burkholderia pseudomallei K96243Reference Exopolysaccharide Bcam1330 (putative exopolysaccharide export protein)Burkholderia cenocepacia J2315 79.10 BPSL2780 Capsular polysaccharide transport protein [54,97] Bcam1331 (putative tyrosine kinase protein)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1332 (hypothetical protein)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1333 (putative exopolysaccharide acyltransferase)Burkholderia cenocepacia J2315 73.68 BPSL3087 Acyltransferase [54,97] Bcam1334 (hypothetical protein)Burkholderia cenocepacia J2315 70.37 BPSL0610 Hypothetical protein [54,97] Bcam1335 (glycosyltransferase)Burkholderia cenocepacia J2315 71.77 BPSL0604 Glycosyltransferase [54,97] Bcam1336 (putative exopolysaccharide transporter)Burkholderia cenocepacia J2315 74.91 BPSL0603 polysaccharide biosynthesis protein [54,97] Bcam1337 (glycosyltransferase)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1338 (glycosyltransferase)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1339 (hypothetical protein)Burkholderia cenocepacia J2315 73.68 BPSL1233 Lipoprotein [54,97] Bcam1340 (mannose-1-gyanylyltransferase)Burkholderia cenocepacia J2315 83.60 BPSL0605 Mannose-1-phosphate guanylyltransferase ( manC )[45,54,97] Bcam1340 (mannose-1-gyanylyltransferase)Burkholderia cenocepacia J2315 74.61 BPSS1835 LPS biosynthesis mannose-1-phosphate guanylyltransferase ( BceA )[54,97] Bcam1341 (hypothetical protein)Burkholderia cenocepacia J2315 77.67 BPSL0606 Hypothetical protein [54,97] - Burkholderia pseudomallei K96243 NA BPSL0618 putative sugar transferase [45] - Burkholderia pseudomallei K96243 NA BPSL0619 putative polysaccharide biosynthesis/export protein [45] - Burkholderia pseudomallei K96243 NA BPSL0620 glycosyl transferase group 1 protein [45] - Burkholderia pseudomallei K96243 NA BPSS1649 sugar-binding protein [45] - Burkholderia pseudomallei K96243 NA BPSS1978 EPS transport-related membrane protein kinase [45] Bp 1026b_I2907- Bp1026b_I2927 becA-R Burkholderia pseudomallei 1026b NA BPSL0603-BPSL0620 Exopolysaccharide gene cluster [96] Bp1026b-I0648 wbiA Burkholderia pseudomallei 1026b 99.1 BPSL2671 Glycosyltransferase family protein [54,96] Bp1026b-I0649 wbiA Burkholderia pseudomallei 1026b 100 BPSL2670 UDP-glucose-4-epimerase [54,96] bps IBurkholderia pseudomallei K96243 NA BPSS0885 acyl homoserine lactone (AHL) [93] rpo SBurkholderia pseudomallei K96243 NA BPSL1505 RNA polymerase sigma factor [93] - Burkholderia pseudomallei K96243 NA BPSL1366 polyphosphate kinase [93] wcbK Burkholderia pseudomallei K96243 NA BPSL2729 UTP glucose-1-phosphate [93] eDNA Bcal1585 (histone like protein) (hupb) Burkholderia cenocepacia J2315 76.98 BPSL0004 DNA-binding protein HU-alpha [54,122] Bcal3530 (histone like protein) (hupA) Burkholderia cenocepacia J2315 93.45 BPSL0004 DNA-binding protein HU-alpha [54,122] Bcal1487 (integration host factor alpha) Burkholderia cenocepacia J2315 88.04 BPSL1939 integration host factor alpha [54,122] Bcal2949 (integration host factor beta) Burkholderia cenocepacia J2315 89.56 BPSL2514 integration host factor beta [54,122] BPSL1887 (transcriptional regulatory protein) Burkholderia pseudomallei K96243 NA BPSL1887 sigma-54 related transcriptional regulatory protein [110] Proteins - Burkholderia pseudomallei K96243 NA BPSS0093 outer membrane usher protein [45] - Burkholderia pseudomallei K96243 NA BPSL1800 outer membrane usher protein [45] bceF Burkholderia pseudomallei K96243 NA BPSS1830 Tyrosine kinase [54] AK34_RS27645 (Alginate lyase) Burkholderia dolosa AU0158 85.42 BPSL3363 Hypothetical protein [54] - Burkholderia pseudomallei K96243 NA BPSL0782 Type 4 Pili 1 [130] - Burkholderia pseudomallei K96243 NA BPSL1821 Type 4 Pili 2 [130] - Burkholderia pseudomallei K96243 NA BPSL1899 Type 4 Pili 3 [130] - Burkholderia pseudomallei K96243 NA BPSL2752 Type 4 Pili 4 [130] - Burkholderia pseudomallei K96243 NA BPSL2756 Type 4 Pili 4 [130] - Burkholderia pseudomallei K96243 NA BPSL3008 Type 4 Pili 5 [130] - Burkholderia pseudomallei K96243 NA BPSL3170 Type 4 Pili 6 [130] - Burkholderia pseudomallei K96243 NA BPSS1593 Type 4 Pili 7 [130] - Burkholderia pseudomallei K96243 NA BPSS1595 Type 4 Pili 7 [130] - Burkholderia pseudomallei K96243 NA BPSS2185 Type 4 Pili 8 [130] - Burkholderia pseudomallei K96243 NA BPSS2186 Type 4 Pili 8 [130] *NA-Not applicable
Proteins in EPS
The abundance of proteins in EPSs has been examined recently in most bacteria capable of forming biofilms. The function of these proteins to achieve a successful biofilm are diverse [124]. Currently, proteins within EPSs are categorized as enzymes and structural proteins [125]. Numerous enzymes in EPSs are involved in the synthesis or degradation of matrix components. For instance, tyrosine kinase encoded by
EPS proteins that contribute to structural stability include surface-associated proteins, such as pili and flagella, which mediate bacterial initial attachment and adhesion in
Conclusion and Future Perspective
BP biofilms have been implicated as a virulence factor contributing to the pathogenesis of melioidosis during BP infections. This review systematically presents the genes and proteins that have been shown or predicted to be involved in the biosynthesis of essential
Supplemental Materials
Acknowledgments
This work is supported by research grants from the Ministry of Higher Education (MoHE) Malaysia (FRGS/1/ 2018/STG04/UKM/02/3) and Universiti Kebangsaan Malaysia (Geran Universiti Penyelidikan (GUP), GUP-2021-069). Graphical abstract and Figure 1 were created using BioRender.com. Part of Figure 2 was drawn by using pictures from Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
Conflict of Interest
The authors have no financial conflicts of interest to declare.
References
- Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. 2021. Hijacking of the Host's Immune Surveillance Radars by
Burkholderia pseudomallei .Front. Immunol. 12 : 718719. - Wiersinga WJ, Virk HS, Torres AG,
et al . 2018. Melioidosis.Nat. Rev. Dis. Primers 4 : 17108. - Yip C-H, Ghazali A-K, Nathan S. 2020.
Burkholderia pseudomallei pathogenesis and survival in different niches.Biochem. Soc. Trans. 48 : 569-579. - Panomket P, Wongsana P, Wanram S, Wongratanacheewin S. 2017.
Burkholderia pseudomallei biofilm plays a key role in chronic inflammation in C57BL/6 mice.Southeast Asian J. Trop. Med. Public Health 48 : 73-82. - Duangurai T, Indrawattana N, Pumirat P. 2018.
Burkholderia pseudomallei adaptation for survival in stressful conditions.Biomed Res. Int. 2018 : 3039106. - Willcocks SJ, Cia F, Francisco AF, Wren BW. 2020. Revisiting aminocoumarins for the treatment of melioidosis.
Int. J. Antimicrob. Agents 56 : 106002. - Schwarz S, Van Dijck P. 2017. Trehalose metabolism: A sweet spot for
Burkholderia pseudomallei virulence.Virulence 8 : 5-7. - Limmathurotsakul D, Paeyao A, Wongratanacheewin S, Saiprom N, Takpho N, Thaipadungpanit J,
et al . 2014. Role ofBurkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis.Clin. Microbiol. Infect. 20 : O854-O856. - Ghosh R, Barman S, Mandal NC. 2019. Phosphate deficiency induced biofilm formation of
Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate.Sci. Rep. 9 : 5477. - Vestby LK, Grønseth T, Simm R, Nesse LL. 2020. Bacterial biofilm and its role in the pathogenesis of disease.
Antibiotics 9 : 59. - Flemming H-C. 2016. EPS-Then and now.
Microorganisms 4 : 41. - Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. 2018. In vitro biofilm formation by
Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance.Int. J. Gen. Med. 11 : 25-32. - Yan J, Bassler BL. 2019. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms.
Cell Host Microbe 26 : 15-21. - Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q. 2020. The exopolysaccharide-eDNA interaction modulates 3D architecture of
Bacillus subtilis biofilm.BMC Microbiol. 20 : 115. - Tolker-Nielsen T. 2015. Biofilm Development.
Microbiol. Spectr. 3 : 51-66. - Mcferrin A, Engineering C, Building JEB, Texas A. 2010. Insights on
Escherichia coli biofilm formation and inhibition from wholetranscriptome profiling thomas.Environ. Microbiol. 11 : 1-15. - Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era.
Cold Spring Harb. Perspect. Med. 3 : a010306. - Duangurai T, Indrawattana N, Pumirat P. 2018.
Burkholderia pseudomallei adaptation for survival in stressful conditions.Biomed Res. Int. 2018 : 3039106. - Kunyanee C, Kamjumphol W, Taweechaisupapong S, Kanthawong S, Wongwajana S, Wongratanacheewin S,
et al . 2016.Burkholderia pseudomallei biofilm promotes adhesion, internalization and stimulates proinflammatory cytokines in human epithelial A549 cells.PLoS One 11 : e0160741. - Castelo-Branco DSCM, Riello GB, Vasconcelos DC, Guedes GMM, Serpa R, Bandeira TJPG,
et al . 2016. Farnesol increases the susceptibility ofBurkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis.J. Appl. Microbiol. 120 : 600-606. - Sirijant N, Sermswan RW, Wongratanacheewin S. 2016.
Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps.J. Med. Microbiol. 65 : 1296-1306. - Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. 2010. Growing
Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance.PLoS One 5 : e9196. - Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. 2016. Environmental factors that shape biofilm formation.
Biosci. Biotechnol. Biochem. 80 : 7-12. - Lin Chua S, Liu Y, Li Y, Ting HJ, Kohli GS, Cai Z,
et al . 2017. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes inPseudomonas aeruginosa .Front. Cell. Infect. Microbiol. 7 : 451. - Ramli NSK, Eng Guan C, Nathan S, Vadivelu J. 2012. The effect of environmental conditions on biofilm formation of
Burkholderia pseudomallei clinical isolates.PLoS One 7 : e44104. - Paksanont S, Sintiprungrat K, Yimthin T, Pumirat P, Peacock SJ, Chantratita N. 2018. Effect of temperature on
Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments.Sci. Rep. 8 : 9196. - Anutrakunchai C, Bolscher JGM, Krom BP, Kanthawong S, Chareonsudjai S, Taweechaisupapong S. 2018. Impact of nutritional stress on drug susceptibility and biofilm structures of
Burkholderia pseudomallei andBurkholderia thailandensis grown in static and microfluidic systems.PLoS One 13 : e0194946. - Zhou G, Yuan J, Gao H. 2015. Regulation of biofilm formation by BpfA, BpfD, and BpfG in
Shewanella oneidensis .Front. Microbiol. 6 : 790. - Kim B, Park J-S, Choi H-Y, Yoon SS, Kim W-G. 2018. Terrein is an inhibitor of quorum sensing and c-di-GMP in
Pseudomonas aeruginosa : a connection between quorum sensing and c-di-GMP.Sci. Rep. 8 : 8617. - Opoku-Temeng C, Sintim HO. 2017. Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. In: c-di-GMP Signaling: Methods and Protocols. Sauer K (Ed.), Springer New York, New York, NY, pp. 419-430 (2017).
- Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. 2014. Regulation of biofilm formation in
Pseudomonas andBurkholderia species.Environ. Microbiol. 16 : 1961-1981. - Jones CJ, Utada A, Davis KR,
et al . 2015. c-di-GMP Regulates motile to sessile transition by modulating MshA Pili Biogenesis and near-surface motility behavior inVibrio cholerae .PLoS Pathog. 11 : e1005068. - Mangalea MR, Plumley BA, Borlee BR. 2017. Nitrate sensing and metabolism inhibit biofilm formation in the opportunistic pathogen
Burkholderia pseudomallei by reducing the intracellular concentration of c-di-GMP.Front. Microbiol. 8 : 1353. - Tseng BS, Majerczyk CD, Passos da Silva D, Chandler JR, Peter Greenberg E, Parsek MR. 2016. Quorum sensing influences
Burkholderia thailandensis biofilm development and matrix production.J. Bacteriol. 198 : 2643-2650. - Van Acker H, Crabbé A, Jurėnas D, Ostyn L, Sass A, Daled S,
et al . 2019. The role of small proteins inBurkholderia cenocepacia J2315 biofilm formation, persistence and intracellular growth.Biofilm. 1 : 100001. - Chen L-H, Köseoğlu VK, Güvener ZT, Myers-Morales T, Reed JM, D'Orazio SEF,
et al . 2014. Cyclic di-GMP-dependent Signaling pathways in the pathogenic firmicuteListeria monocytogenes .PLoS Pathog. 10 : e1004301. - Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: Second messenger extraordinaire.
Nat. Rev. Microbiol. 15 : 271-284. - Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria.
Nat. Rev. Microbiol. 14 : 576-588. - Jiang Y, Geng M, Bai L. 2020. Targeting biofilms therapy: Current research strategies and development hurdles.
Microorganisms 8 : 1222. - Bellich B, Jou IA, Caterino M, Rizzo R, Ravenscroft N, Fazli M,
et al . 2020.Burkholderia cenocepacia H111 produces a waterinsoluble exopolysaccharide in biofilm: Structural determination and molecular modelling.Int. J. Mol. Sci. 21 : 1702. - Plumley BA, Martin KH, Borlee GI, Marlenee NL, Burtnick MN, Brett PJ,
et al . 2017. Thermoregulation of biofilm formation inBurkholderia pseudomallei is disrupted by mutation of a putative diguanylate cyclase.J. Bacteriol. 199 : e00780-16. - Lee HS, Gu F, Ching SM, Lam Y, Chua KL. 2010. CdpA is a
Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity.Infect. Immun. 78 : 1832-1840. - Vitale A, Paszti S, Takahashi K, Toyofuku M, Pessi G, Eberl L. 2020. Mapping of the denitrification pathway in
Burkholderia thailandensis by genome-wide mutant profiling.J. Bacteriol. 202 : e00304-20. - Mangalea MR, Borlee BR. 2022. The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in
Burkholderia pseudomallei .Sci. Rep. 12 : 203. - Chin C-Y, Hara Y, Ghazali A-K, Yap S-J, Kong C, Wong Y-C,
et al . 2015. Global transcriptional analysis ofBurkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence.BMC Genomics 16 : 471. - Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. 2019. Characterization and analysis of a novel diguanylate cyclase PA0847 from
Pseudomonas aeruginosa PAO1.Infect. Drug Resist. 12 : 655-665. - Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.
Microbiol. Mol. Biol. Rev. 77 : 1-52. - Orr MW, Donaldson GP, Severin GB,
et al . 2015. Oligoribonuclease is the primary degradative enzyme for pGpG inPseudomonas aeruginosa that is required for cyclic-di-GMP turnover.Proc. Natl. Acad. Sci. USA 112 : E5048-E5057. - Ha D-G, O'Toole GA. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a
Pseudomonas aeruginosa review.Microbiol. Spectr. 3 : MB-0003-2014. - Nicastro GG, Kaihami GH, Pulschen AA,
et al . 2020. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein.Sci. Rep. 10 : 3077. - Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M,
et al . 2019. Key players and individualists of Cyclic-di-GMP signaling inBurkholderia cenocepacia .Front. Microbiol. 10 : 3286. - Borlee GI, Mangalea MR, Martin KH, Plumley BA, Golon SJ, Borlee BR. 2022. Disruption of c-di-GMP signaling networks unlocks cryptic expression of secondary metabolites during biofilm growth in
Burkholderia pseudomallei .Appl. Environ. Microbiol. 88 : e02431-21. - Wang Z, Xie X, Shang D, Xie L, Hua Y, Song L,
et al . 2022. A c-di-GMP signaling cascade controls motility, biofilm formation, and virulence inBurkholderia thailandensis .Appl. Environ. Microbiol. 88 : e02529-21. - Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FSL. 2008. The
Burkholderia genome database: facilitating flexible queries and comparative analyses.Bioinformatics 24 : 2803-2804. - Galperin MY, Nikolskaya AN, Koonin EV. 2001. Novel domains of the prokaryotic two-component signal transduction systems.
FEMS Microbiol. Lett. 203 : 11-21. - Whiteley CG, Lee D-J. 2015. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development.
Biotechnol. Adv. 33 : 124-141. - Hengge R, Galperin MY, Ghigo J-M, Gomelsky M, Green J, Hughes KT,
et al . 2016. Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins ofEscherichia coli .J. Bacteriol. 198 : 7-11. - Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: Its role in virulence and possibilities for its control.
Cold Spring Harb. Perspect. Med. 2 : 1-25. - Reen FJ, Gutiérrez-Barranquero JA, Parages ML. 2018. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition.
Appl. Microbiol. Biotechnol. 102 : 2063-2073. - Zhao X, Yu Z, Ding T. 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria.
Microorganisms 8 : 425. - Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T. 2009. Use of quorum sensing inhibitors to interfere with biofilm formation and development in
Burkholderia multivorans andBurkholderia cenocepacia .Res. Microbiol. 160 : 144-151. - Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents.
Curr. Pharm. Des. 21 : 5-11. - Ulrich RL, Ulrich RL. 2004. Quorum quenching: Enzymatic disruption of
N -acylhomoserine lactone-mediated bacterial communication inBurkholderia thailandensis .Appl. Environ. Microbiol. 70 : 6173-6180. - Tan W-S, Law JW-F, Letchumanan V, Chan K-G. 2019. Decoding the mystery of how bacteria "talk": Among Gram-negative microorganisms.
Prog. Microbes Mol. Biol. 2 . DOI: https://doi.org/10.36877/pmmb.a0000038. - Klaus JR, Deay J, Neuenswander B,
et al . 2018. Malleilactone is aBurkholderia pseudomallei virulence factor regulated by antibiotics and quorum sensing.J. Bacteriol. 200 : e00008-18. - Gamage AM, Shui G, Wenk MR, Chua KL. 2011. N-Octanoylhomoserine lactone signalling mediated by the BpsI-BpsR quorum sensing system plays a major role in biofilm formation of
Burkholderia pseudomallei .Microbiology 157 : 1176-1186. - Kumari A, Pasini P, Daunert S. 2008. Detection of bacterial quorum sensing
N -acyl homoserine lactones in clinical samples.Anal. Bioanal. Chem. 391 : 1619-1627. - Mangwani N, Kumari S, Das S. 2015. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium
Pseudomonas aeruginosa N6P6.Appl. Microbiol. Biotechnol. 99 : 10283-10297. - Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. 2017. The RhlR quorum-sensing receptor controls
Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer.PLoS Pathog. 13 : 1-25. - Song Y, Xie C, Ong Y-M, Gan Y-H, Chua K-L. 2005. The BpsIR quorum-sensing system of
Burkholderia pseudomallei .J. Bacteriol. 187 : 785-790. - Mott T, Panchal RG, Rajamani S. 2017. Quorum sensing in
Burkholderia pseudomallei and otherBurkholderia species.Curr. Trop. Med. Rep. 4 : 199-207. - Lazar Adler NR, Dean RE, Saint RJ, Stevens MP, Prior JL, Atkins TP,
et al . 2013. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation ofBurkholderia pseudomallei .PLoS One 8 : e79461. - Coulon PML, Zlosnik JEA, Déziel E. 2021. Presence of the Hmq system and production of 4-Hydroxy-3-Methyl-2-Alkylquinolines are heterogeneously distributed between
Burkholderia cepacia complex species and more prevalent among environmental than clinical isolates.Microbiol. Spectr. 9 : e00127-21. - Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. 2011. Quinolones: from antibiotics to autoinducers.
FEMS Microbiol. Rev. 35 : 247-274. - Vial L, Lépine F, Milot S, Groleau M-C, Dekimpe V, Woods DE,
et al . 2008.Burkholderia pseudomallei ,B. thailandensis , andB. ambifaria produce 4-Hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation.J. Bacteriol. 190 : 5339-5352. - Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. 2016.
Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence.Res. Microbiol. 167 : 159-167. - Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y,
et al . 2008. A novel DSF-like signal fromBurkholderia cenocepacia interferes withCandida albicans morphological transition.ISME J. 2 : 27-36. - Deng Y, Boon C, Eberl L, Zhang L-H. 2009. Differential modulation of
Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase.J. Bacteriol. 191 : 7270-7278. - Yang C, Cui C, Ye Q, Kan J, Fu S, Song S,
et al . 2017.Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence.Proc. Natl. Acad. Sci. USA 114 : 13006-13011. - Deng Y, Schmid N, Wang C, Wang J, Pessi G, Wu D,
et al . 2012. Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover.Proc. Natl. Acad. Sci. USA 109 : 15479-15484. - Deng Y, Lim A, Wang J, Zhou T, Chen S, Lee J,
et al . 2013. Cis-2-dodecenoic acid quorum sensing system modulatesN -acyl homoserine lactone production through RpfR and cyclic di-GMP turnover inBurkholderia cenocepacia .BMC Microbiol. 13 : 148. - Cui C, Yang C, Song S,
et al . 2018. A novel two-component system modulates quorum sensing and pathogenicity inBurkholderia cenocepacia .Mol. Microbiol. 108 : 32-44. - Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS,
et al . 2019. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF.PLoS Biol. 17 : e3000123. - Wang M, Li X, Song S, Cui C, Zhang L-H, Deng Y. 2022. The
cis -2-dodecenoic acid (BDSF) quorum sensing system inBurkholderia cenocepacia .Appl. Environ. Microbiol. 88 : e02342-21. - Sass A, Kiekens S, Coenye T. 2017. Identification of small RNAs abundant in
Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism.Sci. Rep. 7 : 15665. - Pita T, Feliciano JR, Leitão JH. 2018. Small noncoding regulatory RNAs from
Pseudomonas aeruginosa andBurkholderia cepacia complex.Int. J. Mol. Sci. 19 : 3759. - Kiekens S, Sass A, Van Nieuwerburgh F, Deforce D, Coenye T. 2018. The small RNA ncS35 regulates growth in
Burkholderia cenocepacia J2315.mSphere 3 : e00579-17. - Rossi F, De Philippis R. 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats.
Life 5 : 1218-1238. - Cuzzi B, Herasimenka Y, Silipo A, Lanzetta R, Liut G, Rizzo R,
et al . 2014. Versatility of theBurkholderia cepacia complex for the biosynthesis of exopolysaccharides: A comparative structural investigation.PLoS One 9 : e94372. - Ciofu O, Tolker-Nielsen T. 2019. Tolerance and resistance of
Pseudomonas aeruginosa biofilms to antimicrobial agents-howP. aeruginosa can escape antibiotics.Front. Microbiol. 10 : 913. - Mangalea MR, Borlee GI, Borlee BR. 2017. The current status of extracellular polymeric substances produced by
Burkholderia pseudomallei .Curr. Trop. Med. Reports 4 : 117-126. - Nimtz M, Wray V, Domke T, Brenneke B, Häussler S, Steinmetz I. 1997. Structure of an acidic exopolysaccharide of
Burkholderia pseudomallei .Eur. J. Biochem. 250 : 608-616. - Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. 2015. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in
Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains.Microbiol. Immunol. 59 : 653-663. - Laroussarie A, Barycza B, Andriamboavonjy H, Tamigney Kenfack M, Blériot Y, Gauthier C. 2015. Synthesis of the tetrasaccharide repeating unit of the β-Kdo-containing exopolysaccharide from
Burkholderia pseudomallei andB. cepacia complex.J. Org. Chem. 80 : 10386-10396. - Park J, Lee D, Kim M-S, Kim DY, Shin DH. 2015. A preliminary X-ray study of 3-deoxy-d-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI) from
Burkholderia pseudomallei .Acta Crystallogr. Sect. F Struct. Biol. Commun. 71 : 790-793. - Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN,
et al . 2017. Genome-scale analysis of the genes that contribute toBurkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster.PLoS Negl. Trop. Dis. 11 : e0005689. - Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker‐Nielsen T. 2013. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in
Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349.Microbiologyopen 2 : 105-122. - Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M,
et al . 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogenBurkholderia cenocepacia .Mol. Microbiol. 82 : 327-341. - Poulin MB, Kuperman LL. 2021. Regulation of biofilm exopolysaccharide production by cyclic di-guanosine monophosphate.
Front. Microbiol. 12 : 2506. - Chiang W-C, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, Givskov M,
et al . 2013. Extracellular DNA shields against aminoglycosides inPseudomonas aeruginosa biofilms.Antimicrob. Agents Chemother. 57 : 2352-2361. - Kavanaugh JS, Flack CE, Lister J, Ricker EB, Ibberson CB, Jenul C,
et al . 2019. Identification of extracellular DNA-binding proteins in the biofilm matrix.mBio 10 : e01137-19. - Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P,
et al . 2020. Proteomic studies of the biofilm matrix including outer membrane vesicles ofBurkholderia multivorans c1576, a strain of clinical importance for cystic fibrosis.Microorganisms 8 : 1826. - Panlilio H, Rice CV. 2021. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms.
Biotechnol. Bioeng. 118 : 2129-2141. - Wongkaewkhiaw S, Kanthawong S, Bolscher JGM, Nazmi K, Taweechaisupapong S, Krom BP. 2020. DNase-mediated eDNA removal enhances D-LL-31 activity against biofilms of bacteria isolated from chronic rhinosinusitis patients.
Biofouling 36 : 1117-1128. - Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. 2017. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities.
Front. Microbiol. 8 : 1390. - Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. 2013. Life after death: The critical role of extracellular DNA in microbial biofilms.
Lett. Appl. Microbiol. 57 : 467-475. - Das T, Sehar S, Manefield M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development.
Environ. Microbiol. Rep. 5 : 778-786. - Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S,
et al . 2007. Role of autolysin-mediated DNA release in biofilm formation ofStaphylococcus epidermidis .Microbiology 153 : 2083-2092. - Petrova OE, Schurr JR, Schurr MJ, Sauer K. 2011. The novel
Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA.Mol. Microbiol. 81 : 767-783. - Austin CR, Goodyear AW, Bartek IL, Stewart A, Sutherland MD, Silva EB,
et al . 2015. ABurkholderia pseudomallei colony variant necessary for gastric colonization.mBio. 6 : e02462--14. - Okaro U, Mou S, DeShazer D. 2021. Production and molecular composition of Burkholderia pseudomallei and Burkholderia thailandensis biofilms. Authorea.
- Alwis PA, Treerat P, Gong L, Lucas DD, Allwood EM, Prescott M,
et al . 2020. Disruption of theBurkholderia pseudomallei twocomponent signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation.Vet. Microbiol. 242 : 108603. - Pakkulnan R, Anutrakunchai C, Kanthawong S, Taweechaisupapong S, Chareonsudjai P, Chareonsudjai S. 2019. Extracellular DNA facilitates bacterial adhesion during
Burkholderia pseudomallei biofilm formation.PLoS One 14 : e0213288. - Sena-Vélez M, Redondo C, Graham JH, Cubero J. 2016. Presence of extracellular DNA during biofilm formation by
Xnthomonas citri subsp. citri strains with different host range.PLoS One 11 : e0156695. - Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms.
Crit. Rev. Microbiol. 41 : 341-352. - Lappann M, Claus H, Van Alen T, Harmsen M, Elias J, Molin S,
et al . 2010. A dual role of extracellular DNA during biofilm formation ofNeisseria meningitidis .Mol. Microbiol. 75 : 1355-1371. - Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S,
et al . 2020. The biofilm matrix scaffold ofPseudomonas species contains non-canonically base paired extracellular DNA and RNA.bioRxiv. doi: https://doi.org/10.1101/527267. - Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, Foo YH,
et al . 2021. The biofilm matrix scaffold ofPeudomonas aeruginosa contains G-quadruplex extracellular DNA structures.NPJ Biofilms Microbiomes 7 : 27. - Goodman SD, Obergfell KP, Jurcisek JA, Novotny LA, Downey JS, Ayala EA,
et al . 2011. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins.Mucosal Immunol. 4 : 625-637. - Devaraj A, Buzzo JR, Mashburn-Warren L,
et al . 2019. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates.Proc. Natl. Acad. Sci. USA 116 : 25068 LP-25077. - Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. 2017. Nontypeable haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery.
Proc. Natl. Acad. Sci. USA 114 : E6632-E6641. - Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. 2013. Structural stability of
Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein.PLoS One 8 : e67629. - Novotny LA, Goodman SD, Bakaletz LO. 2020. Targeting a bacterial DNABII protein with a chimeric peptide immunogen or humanised monoclonal antibody to prevent or treat recalcitrant biofilm-mediated infections.
EBioMedicine 59 : 102867. - Fong JNC, Yildiz FH. 2015. Biofilm matrix proteins.
Microbiol. Spectr. 3 : 10.1128/microbiolspec.MB-0004-2014. - Flemming H-CC, Wingender J. 2010. The biofilm matrix.
Nat. Rev. Microbiol. 8 : 623-633. - Ferreira AS, Silva IN, Oliveira VH, Becker JD, Givskov M, Ryan RP,
et al . 2013. Comparative transcriptomic analysis of theBurkholderia cepacia tyrosine kinasebceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence.Appl. Environ. Microbiol. 79 : 3009-3020. - Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L,
et al . 2020. Characterization of different alginate lyases for dissolvingPseudomonas aeruginosa biofilms.Sci. Rep. 10 : 9390. - Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C,
et al . 2014. Biofilm-specific extracellular matrix proteins of nontypeableHaemophilus influenzae .Pathog. Dis. 72 : 143-160. - Berne C, Ducret A, Hardy GG, Brun YV. 2015. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria [Internet]. In: Microbial Biofilms, John Wiley & Sons, Ltd, pp. 163-199.
- Essex-Lopresti AE, Boddey JA, Thomas R,
et al . 2005. A type IV Pilin, PilA, contributes to Adherence ofBurkholderia pseudomallei and virulence in vivo.Infect. Immun. 73 : 1260-1264. - Okaro U, Mou S, Lenkoue G, Williams JA, Bonagofski A, Larson P,
et al . 2022. A type IVB pilin influences twitching motility and in vitro adhesion to epithelial cells inBurkholderia pseudomallei .Microbiology 168 : 001150. - Jan AT. 2017. Outer Membrane Vesicles (OMVs) of Gram-negative bacteria: A perspective update.
Front. Microbiol. 8 : 1053. - Wang W, Chanda W, Zhong M. 2015. The relationship between biofilm and outer membrane vesicles: a novel therapy overview.
FEMS Microbiol. Lett. 362 : fnv117. - Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles.
Annu. Rev. Microbiol. 64 : 163-184. - Kumar B, Sorensen JL, Cardona ST. 2018. A c-di-GMP-modulating protein regulates swimming motility of
Burkholderia cenocepacia in response to arginine and glutamate.Front. Cell. Infect. Microbiol. 8 : 56. - Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. 2016. Enhanced annotations and features for comparing thousands of
Pseudomonas genomes in thePseudomonas genome database.Nucleic Acids Res. 44 : D646-53. - Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O,
et al . 2022. Search and sequence analysis tools services from EMBL-EBI in 2022.Nucleic Acids Res. 50 : W276-W279. - Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 42 : W320-W324.
Related articles in JMB
Article
Review
J. Microbiol. Biotechnol. 2023; 33(1): 15-27
Published online January 28, 2023 https://doi.org/10.4014/jmb.2207.07032
Copyright © The Korean Society for Microbiology and Biotechnology.
Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei
Pravin Kumran Nyanasegran1, Sheila Nathan2, Mohd Firdaus-Raih1,2, Nor Azlan Nor Muhammad1, and Chyan Leong Ng1*
1Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Correspondence to:Chyan Leong Ng, clng@ukm.edu.my
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Keywords: Burkholderia pseudomallei, biofilm, exopolysaccharide, eDNA, cyclic-di-GMP, quorum sensing
Introduction
Many bacterial pathogens are known to form biofilm, which encloses the bacteria and facilitates cellular attachment and interaction [9]. In addition, the biofilm also renders the pathogen more tolerant to antibacterial agents and host immune molecules while aiding bacterial survival under nutrient-deficient conditions [10, 11]. Bacterial biofilms are composed of an aggregation of microbial cells on biotic or abiotic surfaces enclosed by a self-produced matrix of extracellular polymeric substances (EPSs) composed of proteins, polysaccharides, nucleic acids (DNA), lipopolysaccharides (LPS), and water [10-14]. A successful biofilm formation involves four main stages: (i) surface bacterial attachment, (ii) microcolony formation, (iii) maturation of biofilm architecture, and (iv) signals and environmental cues that trigger the dispersion of cells into the planktonic state [15-17]. The common biofilm formation processes in microbes are illustrated in Fig. 1.
-
Figure 1.
Schematic diagram representing four stages of biofilm formation (1) surface bacterial attachment, (2) microcolony formation, (3) maturation of biofilm architecture, and (4) dispersion of cells into the planktonic state (adapted from [15-17]).
In BP, biofilm formation is closely associated with its ability to adapt or survive in various environmental niches, as well as contributing to the bacteria’s pathogenicity [18, 19]. The emergence of resistance to antibiotics, including ceftazidime (CTZ), doxycycline (DOX), and imipenem, which are common drug treatments against melioidosis, is generally attributed to the presence of biofilm surrounding BP [20-22]. Despite the importance of biofilm formation features in BP that are linked to clinical pathogenicity and virulence, the detailed mechanism of biofilm formation in BP is yet to be elucidated. For the past decade, researchers have utilized genetics and ‘omics’ approaches targeting the biofilm biosynthesis pathway of BP in studies that have successfully identified genes and proteins that are crucial for BP biofilm formation. In addition, studies on other
Signaling Systems That Promote BP Biofilm Formation
Environmental factors are known to trigger the formation or dispersal of biofilm in most bacteria [23, 24]. Environmental cues such as temperature, pH, nutrient deficiency, and glucose were reported to influence biofilm formation by BP [25-27]. These ecological factors are sensed by signaling molecules, which can influence gene expression in support of biofilm formation and facilitate the conversion of free-living planktonic cells into biofilm cells [25, 28]. Cyclic di-GMP (c-di-GMP), quorum-sensing (QS) molecules, and small RNAs (sRNAs) are known to be the major signaling molecules present in the biofilm community [29-31]. c-di-GMP signaling occurs during the early stages of biofilm formation to facilitate the conversion of free-living planktonic cells to biofilm cells, while QS signaling is involved during biofilm maturation and dispersion [29, 32-34]. sRNAs serve as regulatory molecules in several bacterial metabolic processes, including
Cyclic-di-GMP Signaling
C-di-GMP is a bacterial universal intracellular secondary signaling molecule [36-38]. In bacterial biofilm formation, c-di-GMP is known to regulate genes responsible for synthesizing EPS components; extracellular polymeric exoenzymes, polysaccharides, and adhesins [39, 40]. In addition, c-di-GMP enhances bacterial adhesion and represses bacterial motility, further promoting biofilm production [32, 33, 41, 42]. Furthermore, depletion of c-di-GMP levels has been reported to trigger the dispersal of biofilms. For instance, inhibition of the final step of the denitrification pathway has been implicated in inducing biofilm dispersal [43]. Nitrate levels have been reported to significantly affect biofilm formation in BP, as they ultimately determine the fate of c-di-GMP [33]. The denitrification process, which involves the reduction of nitrate to nitrogen, is important in BP biofilms as it provides an alternative energy source under oxygen-limited conditions [33, 44]. The impact of inhibiting the denitrification pathway on biofilms was recently evaluated in
The synthesis and breakdown of c-di-GMP in most bacteria are regulated by diguanylate cyclase (DGC) and phosphodiesterase (PDE), respectively. The activity of both proteins is affected by environmental cues, in agreement with the transition of bacteria from planktonic to biofilm state being regulated by c-di-GMP in response to changes in environmental stimuli [46-48]. DGC contains the conserved GGDEF domain, while PDE contains a conserved EAL or HD-GYP domain [11, 49]. DGC catalyzes the synthesis of c-di-GMP from the condensation of two GTP molecules, while PDE catalyzes the hydrolysis of c-di-GMP, resulting in two GMP molecules [50, 51].
-
Table 1 . Proteins of
B. pseudomallei that are involved in signaling system in the regulation of biofilms..Signaling Molecules Annotation/Description Species/isolate Sequence identity to K96243 (% identity) Burkholderia pseudomallei K96243 identifier codeProtein Description for Burkholderia pseudomallei K96243Reference c-di-GMP Bp1026b_II2523 DGCBurkholderia pseudomallei 1026b 99.89 BPSS2342 Hypothetical protein [41,54] Bp1026b_I2235 GGDEF domainBurkholderia pseudomallei 1026b 99.85 BPSL1306 Hypothetical protein [41,54] Bp1026b_II0153 GGDEF domainBurkholderia pseudomallei 1026b 99.93 BPSS0136 Hypothetical protein [41,54] Bp1026b_II1380 GGDEF domainBurkholderia pseudomallei 1026b 99.73 BPSS1297 Regulatory protein [41,54] Bp1026b_II2115 GGDEF domainBurkholderia pseudomallei 1026b 99.87 BPSS1971 Two-component system fusion protein [41,54] Bcam2836 putative DGCBurkholderia cenocepacia J2315 85.70 BPSS2342 Hypothetical protein [51,54] BTH_II2363 (pdcA ) GGDEF domainBurkholderia thailandensis E264 97.43 BPSS2342 Hypothetical protein [53,54] BTH_II2364 (pdcB ) CheC/CheX domainBurkholderia thailandensis E264 98.52 BPSS2343 Hypothetical protein [53,54] BTH_II2365 (pdcC ) phosphate-accepting response regulatorBurkholderia thailandensis E264 96.72 BPSS2344 Hypothetical protein [53,54] Bp1026b_I0571 EAL domainBurkholderia pseudomallei 1026b 99.88 BPSL2744 Hypothetical protein [41,54] Bp1026b_I1579 EAL domainBurkholderia pseudomallei 1026b 100 BPSL1635 Hypothetical protein [41,54] Bp1026b_I2260 EAL domainBurkholderia pseudomallei 1026b 99.38 BPSL1286 Hypothetical protein [41,54] Bp1026b_I2659 EAL domainBurkholderia pseudomallei 1026b 99.53 BPSL0887 Hypothetical protein [41,54] Bp1026b_I3148 EAL domainBurkholderia pseudomallei 1026b 99.84 BPSL0358 Hypothetical protein [41,54] Bp1026b_II0879 EAL domainBurkholderia pseudomallei 1026b 99.48 BPSS0799 Hypothetical protein [41,54] BCAL0652 EAL domainBurkholderia cenocepacia J2315 30.17 BPSL2744 Hypothetical protein [51,54] Bp1026b_I2284 (CdpA ) GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.95 BPSL1263 Hypothetical protein [41,42,54] BCAL1069 (cdpA ) GGDEF/EAL domainBurkholderia cenocepacia J2315 85.52 BPSL1263 Hypothetical protein [51,54,135] Bp1026b_I2456 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.79 BPSL1080 Hypothetical protein [41,54] Bp1026b_I2928 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.40 BPSL0602 Hypothetical protein [41,54] Bp1026b_II0885 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.71 BPSS0805 Hypothetical protein [41,54] Bp1026b_II2498 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.83 BPSS2318 Hypothetical protein [41,54] Bcam1160 putative c-di-GMPBurkholderia cenocepacia 86.75 BPSL1080 Hypothetical protein [51,54] Bcam1349 CRP/FNR family transcriptional regulatorBurkholderia cenocepacia J2315 79.07 BPSL0617 Hypothetical protein [45,54,96,98] CRP/FNR superfamily Burkholderia pseudomallei K96243 NA BPSL0616 Hypothetical Protein [45] QS BpsI autoinducer synthaseBurkholderia pseudomallei K96243 ,KHW, H11 100 BPSS0885 BPSS1570 N-acyl-homoserine lactone synthase [54,66] BpsR autoinducer binding transcriptional regulatorBurkholderia pseudomallei K96243 ,KHW, H11 99.86 BPSS0887 N-acyl-homoserine lactone dependent regulatory protein [54,66] PA0996 (pqsA )Pseudomonas aeruginosa PAO1 30.36 BPSS0481 HhqA [54,73-75,136] PA0997 (pqsB )Pseudomonas aeruginosa PAO1 38.32 BPSS0482 HhqB [54,73-75,136] PA0998 (pqsC )Pseudomonas aeruginosa PAO1 38.59 BPSS0483 HhqC [54,73-75,136] PA0999 (pqsD )Pseudomonas aeruginosa PAO1 53.68 BPSS0484 HhqD [54,73-75,136] PA1000 (pqsE )Pseudomonas aeruginosa PAO1 30.36 BPSS0485 HhqE [54,73-75,136] *NA- Not applicable.
In BP, a putative DGC (
Several genes encoding proteins that contain the conserved GGDEF and EAL domains have been annotated in the BP genome (https://www.burkholderia.com/) and Plumley
-
Figure 2.
C-di-GMP synthesis mechanism and functional properties during BP biofilm formation. The synthesis and breakdown of cyclic-di-GMP (c-di-GMP) are regulated by two enzymes, diguanylate cyclase (DGC) and phosphodiesterase (PDE), each containing a conserved GGDEF or EAL/HD-GYP domain respectively. Two guanosine-5’-triphosphate (GTP) molecules are utilized by DGC during the condensation reaction that results in the formation of c-di-GMP, which favors biofilm formation by enhancing the transition from free-living planktonic cells to sessile cells. PDE catalyzes the hydrolysis of c-di-GMP into two guanosine monophosphate (GMP) molecules. Both enzymes are influenced by environmental signals such as temperature and concentration of sodium nitrate (NaNO3) that ultimately determine the level of c-di-GMP. The phenotypic characteristics of the cells such as the presence of flagella, pili, adhesin, and exopolysaccharide may be regulated by these enzymes at the transcriptional and post-translation levels through determining the level of c-di-GMP [41].
Quorum Sensing (QS) Signaling
Quorum sensing is also a crucial signaling system involved in forming biofilms. Autoinducers produced by bacteria serve as chemical signal molecules and are released according to cell density [59, 60]. QS is utilized by both gram-positive and gram-negative bacteria [60]. In most
BP owns three QS systems that produce AHL molecules, namely QS-1 (encoded by BpsI-BpsR), QS-2 (BpsI2-BpsR2), and QS-3 (BpsI3-BpsR3), which produce three types of AHLs,
Apart from the AHL molecules, BP is known for producing another type of QS molecule known as 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), which are similar to the
In 2008, another quorum-sensing signal, cis-2-dodecenoic acid, also known as
Regulation by Small RNAs (sRNAs)
sRNAs modulate protein expression by altering mRNA translation rates or via mRNA degradation [85]. Common metabolic processes regulated by sRNAs include QS, carbon metabolism, and iron homeostasis [86]. These metabolic processes were observed in a recent study on
Biofilm Composition in BP
The EPS matrix forms a natural protection shield for many bacteria, where it enables the bacteria that have changed from the planktonic stage growth mode to live in biofilm in response to various environmental cues and stresses. The formation and degradation of the EPS matrix in the biofilm life cycle are highly regulated and specific mechanisms are involved in the synthesis and degeneration of each of the EPS matrix components. Several major EPS matrix components in BP, including exopolysaccharides, eDNA, and proteins, have been identified. This section provides an overview of the three major EPS components of BP.
Exopolysaccharide Biosynthesis
Exopolysaccharides are a major component of most bacterial biofilm matrices [40, 88, 89]. The exopolysaccharides have been categorized into various forms, such as capsular polysaccharides, free polysaccharides, and lipopolysaccharides (O-antigen) that have a key role in preventing the diffusion of antimicrobial agents within the biofilm community [89-91]. The exopolysaccharide in BP has been structurally classified to be acidic. It consists of a tetrasaccharide repeating unit composed of three galactose (with one bearing a 2-linked O-acetyl group) and a 3-deoxy-D-manno-2-octulosonic acid (KDO) residues ([→3)-β-D-Galp2Ac-(1→4)-A-D-Galp-(1→3)-β-D-Galp-(1→5)-β-Kdo-(2→]n) [92]. Later, glucose, mannose, and rhamnose were reported as the major type of monosaccharides predominantly found in BP biofilm exopolysaccharides [93]. While the chemical synthesis of the tetrasaccharide repeating unit of [→3)-β-D-Galp2Ac-(1→4)-A-D-Galp-(1→3)-β-D-Galp-(1→5)-β-Kdo-(2→] has been successfully carried out [94], the BP proteins that are responsible for the biosynthesis of KDO molecules remains unclear. A 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase encoded by yrbI (
Recently, an exopolysaccharide gene cluster of 18 genes (
Exopolysaccharide production in
Apart from c-di-GMP,
-
Figure 3.
Proposed BP exopolysaccharide biosynthesis regulation mechanism via c-di-GMP and QS signaling. Signaling molecules, e.g. c-di-GMP, and QS molecules, e.g., RpoS and AHLs, regulate the development of the EPS components, particularly exopolysaccharides. c-di-GMP is reported to improve the binding between the regulatory protein and the promoter region of thebecA-R gene cluster thereby triggering gene expression of the cluster to produce the enzymes that facilitate the synthesis of exopolysaccharides in the EPS.
Extracellular DNA (eDNA) in EPS
Extracellular DNA (eDNA) is a crucial component of EPS and biofilm development [100-102]. eDNA is proposed as a key component of many pathogenic bacteria that form biofilms where it contributes to shielding biofilm against antimicrobial agents, promoting adhesion, and strengthening the integrity of biofilms [101, 103, 104]. In some bacteria, eDNA is derived from chromosomal DNA that is released from the bacterial cells either by active secretion mediated by QS or through cell lysis [105-107]. These mechanisms of eDNA release have been widely described for
It was reported that eDNA is actively involved during the early stages of biofilm formation, facilitating initial attachment and bacterial aggregation under the planktonic and biofilm states [113, 114]. Deoxyribonucleases (DNAses) are able to completely inhibit eDNA activity which is reflected by a reduced biofilm mass. However, inhibition of eDNA activity beyond the initial biofilm formation step shows no significant changes in biofilm mass, due to limited access of DNAse towards eDNA in mature biofilm. Therefore, DNAse treatment could be an appropriate treatment strategy targeting eDNA during the early stages of biofilm infections [113]. The ability of eDNA to defend the biofilm community against antimicrobial agents arises from its chemical properties. The negatively charged eDNA binds to the positively charged ions on antibiotics such as aminoglycosides and antimicrobial peptides, thereby reducing the antimicrobial agents’ efficiency in eliminating biofilm-forming pathogens [100, 115]. When BP biofilm was subjected to DNase treatment, a drastic reduction in biofilm mass was observed which could not be restored following supplementation with exogenous DNA [113]. A similar observation was noted with
eDNA also exists as a lattice structure stabilized by DNABII proteins [119]. The integration host factor (IHF) and histone-like protein (HU) are two common members of the DNABII protein family that contribute to the lattice structure of the eDNA, thereby increasing the structural stability of the biofilm [120-122]. The
-
Table 2 . Genes/proteins involved in the contribution of extracellular polymeric matrix (EPS) components in
B. pseudomallei biofilms..EPS components Gene/gene cluster reported to be involved in EPS biosynthesis (Annotation/Description) Species/isolate Sequence identity to BP K96243 (% of identity) Burkholderia pseudomallei K96243 identifier codeProtein Description of Burkholderia pseudomallei K96243Reference Exopolysaccharide Bcam1330 (putative exopolysaccharide export protein)Burkholderia cenocepacia J2315 79.10 BPSL2780 Capsular polysaccharide transport protein [54,97] Bcam1331 (putative tyrosine kinase protein)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1332 (hypothetical protein)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1333 (putative exopolysaccharide acyltransferase)Burkholderia cenocepacia J2315 73.68 BPSL3087 Acyltransferase [54,97] Bcam1334 (hypothetical protein)Burkholderia cenocepacia J2315 70.37 BPSL0610 Hypothetical protein [54,97] Bcam1335 (glycosyltransferase)Burkholderia cenocepacia J2315 71.77 BPSL0604 Glycosyltransferase [54,97] Bcam1336 (putative exopolysaccharide transporter)Burkholderia cenocepacia J2315 74.91 BPSL0603 polysaccharide biosynthesis protein [54,97] Bcam1337 (glycosyltransferase)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1338 (glycosyltransferase)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1339 (hypothetical protein)Burkholderia cenocepacia J2315 73.68 BPSL1233 Lipoprotein [54,97] Bcam1340 (mannose-1-gyanylyltransferase)Burkholderia cenocepacia J2315 83.60 BPSL0605 Mannose-1-phosphate guanylyltransferase ( manC )[45,54,97] Bcam1340 (mannose-1-gyanylyltransferase)Burkholderia cenocepacia J2315 74.61 BPSS1835 LPS biosynthesis mannose-1-phosphate guanylyltransferase ( BceA )[54,97] Bcam1341 (hypothetical protein)Burkholderia cenocepacia J2315 77.67 BPSL0606 Hypothetical protein [54,97] - Burkholderia pseudomallei K96243 NA BPSL0618 putative sugar transferase [45] - Burkholderia pseudomallei K96243 NA BPSL0619 putative polysaccharide biosynthesis/export protein [45] - Burkholderia pseudomallei K96243 NA BPSL0620 glycosyl transferase group 1 protein [45] - Burkholderia pseudomallei K96243 NA BPSS1649 sugar-binding protein [45] - Burkholderia pseudomallei K96243 NA BPSS1978 EPS transport-related membrane protein kinase [45] Bp 1026b_I2907- Bp1026b_I2927 becA-R Burkholderia pseudomallei 1026b NA BPSL0603-BPSL0620 Exopolysaccharide gene cluster [96] Bp1026b-I0648 wbiA Burkholderia pseudomallei 1026b 99.1 BPSL2671 Glycosyltransferase family protein [54,96] Bp1026b-I0649 wbiA Burkholderia pseudomallei 1026b 100 BPSL2670 UDP-glucose-4-epimerase [54,96] bps IBurkholderia pseudomallei K96243 NA BPSS0885 acyl homoserine lactone (AHL) [93] rpo SBurkholderia pseudomallei K96243 NA BPSL1505 RNA polymerase sigma factor [93] - Burkholderia pseudomallei K96243 NA BPSL1366 polyphosphate kinase [93] wcbK Burkholderia pseudomallei K96243 NA BPSL2729 UTP glucose-1-phosphate [93] eDNA Bcal1585 (histone like protein) (hupb) Burkholderia cenocepacia J2315 76.98 BPSL0004 DNA-binding protein HU-alpha [54,122] Bcal3530 (histone like protein) (hupA) Burkholderia cenocepacia J2315 93.45 BPSL0004 DNA-binding protein HU-alpha [54,122] Bcal1487 (integration host factor alpha) Burkholderia cenocepacia J2315 88.04 BPSL1939 integration host factor alpha [54,122] Bcal2949 (integration host factor beta) Burkholderia cenocepacia J2315 89.56 BPSL2514 integration host factor beta [54,122] BPSL1887 (transcriptional regulatory protein) Burkholderia pseudomallei K96243 NA BPSL1887 sigma-54 related transcriptional regulatory protein [110] Proteins - Burkholderia pseudomallei K96243 NA BPSS0093 outer membrane usher protein [45] - Burkholderia pseudomallei K96243 NA BPSL1800 outer membrane usher protein [45] bceF Burkholderia pseudomallei K96243 NA BPSS1830 Tyrosine kinase [54] AK34_RS27645 (Alginate lyase) Burkholderia dolosa AU0158 85.42 BPSL3363 Hypothetical protein [54] - Burkholderia pseudomallei K96243 NA BPSL0782 Type 4 Pili 1 [130] - Burkholderia pseudomallei K96243 NA BPSL1821 Type 4 Pili 2 [130] - Burkholderia pseudomallei K96243 NA BPSL1899 Type 4 Pili 3 [130] - Burkholderia pseudomallei K96243 NA BPSL2752 Type 4 Pili 4 [130] - Burkholderia pseudomallei K96243 NA BPSL2756 Type 4 Pili 4 [130] - Burkholderia pseudomallei K96243 NA BPSL3008 Type 4 Pili 5 [130] - Burkholderia pseudomallei K96243 NA BPSL3170 Type 4 Pili 6 [130] - Burkholderia pseudomallei K96243 NA BPSS1593 Type 4 Pili 7 [130] - Burkholderia pseudomallei K96243 NA BPSS1595 Type 4 Pili 7 [130] - Burkholderia pseudomallei K96243 NA BPSS2185 Type 4 Pili 8 [130] - Burkholderia pseudomallei K96243 NA BPSS2186 Type 4 Pili 8 [130] *NA-Not applicable.
Proteins in EPS
The abundance of proteins in EPSs has been examined recently in most bacteria capable of forming biofilms. The function of these proteins to achieve a successful biofilm are diverse [124]. Currently, proteins within EPSs are categorized as enzymes and structural proteins [125]. Numerous enzymes in EPSs are involved in the synthesis or degradation of matrix components. For instance, tyrosine kinase encoded by
EPS proteins that contribute to structural stability include surface-associated proteins, such as pili and flagella, which mediate bacterial initial attachment and adhesion in
Conclusion and Future Perspective
BP biofilms have been implicated as a virulence factor contributing to the pathogenesis of melioidosis during BP infections. This review systematically presents the genes and proteins that have been shown or predicted to be involved in the biosynthesis of essential
Supplemental Materials
Acknowledgments
This work is supported by research grants from the Ministry of Higher Education (MoHE) Malaysia (FRGS/1/ 2018/STG04/UKM/02/3) and Universiti Kebangsaan Malaysia (Geran Universiti Penyelidikan (GUP), GUP-2021-069). Graphical abstract and Figure 1 were created using BioRender.com. Part of Figure 2 was drawn by using pictures from Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
Conflict of Interest
The authors have no financial conflicts of interest to declare.
- Abstract
- Introduction
- Signaling Systems That Promote BP Biofilm Formation
- Cyclic-di-GMP Signaling
- Quorum Sensing (QS) Signaling
- Regulation by Small RNAs (sRNAs)
- Biofilm Composition in BP
- Exopolysaccharide Biosynthesis
- Extracellular DNA (eDNA) in EPS
- Proteins in EPS
- Conclusion and Future Perspective
- Supplemental Materials
- Acknowledgments
- Conflict of Interest
Fig 1.
Fig 2.
Fig 3.
-
Table 1 . Proteins of
B. pseudomallei that are involved in signaling system in the regulation of biofilms..Signaling Molecules Annotation/Description Species/isolate Sequence identity to K96243 (% identity) Burkholderia pseudomallei K96243 identifier codeProtein Description for Burkholderia pseudomallei K96243Reference c-di-GMP Bp1026b_II2523 DGCBurkholderia pseudomallei 1026b 99.89 BPSS2342 Hypothetical protein [41,54] Bp1026b_I2235 GGDEF domainBurkholderia pseudomallei 1026b 99.85 BPSL1306 Hypothetical protein [41,54] Bp1026b_II0153 GGDEF domainBurkholderia pseudomallei 1026b 99.93 BPSS0136 Hypothetical protein [41,54] Bp1026b_II1380 GGDEF domainBurkholderia pseudomallei 1026b 99.73 BPSS1297 Regulatory protein [41,54] Bp1026b_II2115 GGDEF domainBurkholderia pseudomallei 1026b 99.87 BPSS1971 Two-component system fusion protein [41,54] Bcam2836 putative DGCBurkholderia cenocepacia J2315 85.70 BPSS2342 Hypothetical protein [51,54] BTH_II2363 (pdcA ) GGDEF domainBurkholderia thailandensis E264 97.43 BPSS2342 Hypothetical protein [53,54] BTH_II2364 (pdcB ) CheC/CheX domainBurkholderia thailandensis E264 98.52 BPSS2343 Hypothetical protein [53,54] BTH_II2365 (pdcC ) phosphate-accepting response regulatorBurkholderia thailandensis E264 96.72 BPSS2344 Hypothetical protein [53,54] Bp1026b_I0571 EAL domainBurkholderia pseudomallei 1026b 99.88 BPSL2744 Hypothetical protein [41,54] Bp1026b_I1579 EAL domainBurkholderia pseudomallei 1026b 100 BPSL1635 Hypothetical protein [41,54] Bp1026b_I2260 EAL domainBurkholderia pseudomallei 1026b 99.38 BPSL1286 Hypothetical protein [41,54] Bp1026b_I2659 EAL domainBurkholderia pseudomallei 1026b 99.53 BPSL0887 Hypothetical protein [41,54] Bp1026b_I3148 EAL domainBurkholderia pseudomallei 1026b 99.84 BPSL0358 Hypothetical protein [41,54] Bp1026b_II0879 EAL domainBurkholderia pseudomallei 1026b 99.48 BPSS0799 Hypothetical protein [41,54] BCAL0652 EAL domainBurkholderia cenocepacia J2315 30.17 BPSL2744 Hypothetical protein [51,54] Bp1026b_I2284 (CdpA ) GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.95 BPSL1263 Hypothetical protein [41,42,54] BCAL1069 (cdpA ) GGDEF/EAL domainBurkholderia cenocepacia J2315 85.52 BPSL1263 Hypothetical protein [51,54,135] Bp1026b_I2456 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.79 BPSL1080 Hypothetical protein [41,54] Bp1026b_I2928 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.40 BPSL0602 Hypothetical protein [41,54] Bp1026b_II0885 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.71 BPSS0805 Hypothetical protein [41,54] Bp1026b_II2498 GGDEF/EAL domainBurkholderia pseudomallei 1026b 99.83 BPSS2318 Hypothetical protein [41,54] Bcam1160 putative c-di-GMPBurkholderia cenocepacia 86.75 BPSL1080 Hypothetical protein [51,54] Bcam1349 CRP/FNR family transcriptional regulatorBurkholderia cenocepacia J2315 79.07 BPSL0617 Hypothetical protein [45,54,96,98] CRP/FNR superfamily Burkholderia pseudomallei K96243 NA BPSL0616 Hypothetical Protein [45] QS BpsI autoinducer synthaseBurkholderia pseudomallei K96243 ,KHW, H11 100 BPSS0885 BPSS1570 N-acyl-homoserine lactone synthase [54,66] BpsR autoinducer binding transcriptional regulatorBurkholderia pseudomallei K96243 ,KHW, H11 99.86 BPSS0887 N-acyl-homoserine lactone dependent regulatory protein [54,66] PA0996 (pqsA )Pseudomonas aeruginosa PAO1 30.36 BPSS0481 HhqA [54,73-75,136] PA0997 (pqsB )Pseudomonas aeruginosa PAO1 38.32 BPSS0482 HhqB [54,73-75,136] PA0998 (pqsC )Pseudomonas aeruginosa PAO1 38.59 BPSS0483 HhqC [54,73-75,136] PA0999 (pqsD )Pseudomonas aeruginosa PAO1 53.68 BPSS0484 HhqD [54,73-75,136] PA1000 (pqsE )Pseudomonas aeruginosa PAO1 30.36 BPSS0485 HhqE [54,73-75,136] *NA- Not applicable.
-
Table 2 . Genes/proteins involved in the contribution of extracellular polymeric matrix (EPS) components in
B. pseudomallei biofilms..EPS components Gene/gene cluster reported to be involved in EPS biosynthesis (Annotation/Description) Species/isolate Sequence identity to BP K96243 (% of identity) Burkholderia pseudomallei K96243 identifier codeProtein Description of Burkholderia pseudomallei K96243Reference Exopolysaccharide Bcam1330 (putative exopolysaccharide export protein)Burkholderia cenocepacia J2315 79.10 BPSL2780 Capsular polysaccharide transport protein [54,97] Bcam1331 (putative tyrosine kinase protein)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1332 (hypothetical protein)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1333 (putative exopolysaccharide acyltransferase)Burkholderia cenocepacia J2315 73.68 BPSL3087 Acyltransferase [54,97] Bcam1334 (hypothetical protein)Burkholderia cenocepacia J2315 70.37 BPSL0610 Hypothetical protein [54,97] Bcam1335 (glycosyltransferase)Burkholderia cenocepacia J2315 71.77 BPSL0604 Glycosyltransferase [54,97] Bcam1336 (putative exopolysaccharide transporter)Burkholderia cenocepacia J2315 74.91 BPSL0603 polysaccharide biosynthesis protein [54,97] Bcam1337 (glycosyltransferase)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1338 (glycosyltransferase)Burkholderia cenocepacia J2315 - - - [54,97] Bcam1339 (hypothetical protein)Burkholderia cenocepacia J2315 73.68 BPSL1233 Lipoprotein [54,97] Bcam1340 (mannose-1-gyanylyltransferase)Burkholderia cenocepacia J2315 83.60 BPSL0605 Mannose-1-phosphate guanylyltransferase ( manC )[45,54,97] Bcam1340 (mannose-1-gyanylyltransferase)Burkholderia cenocepacia J2315 74.61 BPSS1835 LPS biosynthesis mannose-1-phosphate guanylyltransferase ( BceA )[54,97] Bcam1341 (hypothetical protein)Burkholderia cenocepacia J2315 77.67 BPSL0606 Hypothetical protein [54,97] - Burkholderia pseudomallei K96243 NA BPSL0618 putative sugar transferase [45] - Burkholderia pseudomallei K96243 NA BPSL0619 putative polysaccharide biosynthesis/export protein [45] - Burkholderia pseudomallei K96243 NA BPSL0620 glycosyl transferase group 1 protein [45] - Burkholderia pseudomallei K96243 NA BPSS1649 sugar-binding protein [45] - Burkholderia pseudomallei K96243 NA BPSS1978 EPS transport-related membrane protein kinase [45] Bp 1026b_I2907- Bp1026b_I2927 becA-R Burkholderia pseudomallei 1026b NA BPSL0603-BPSL0620 Exopolysaccharide gene cluster [96] Bp1026b-I0648 wbiA Burkholderia pseudomallei 1026b 99.1 BPSL2671 Glycosyltransferase family protein [54,96] Bp1026b-I0649 wbiA Burkholderia pseudomallei 1026b 100 BPSL2670 UDP-glucose-4-epimerase [54,96] bps IBurkholderia pseudomallei K96243 NA BPSS0885 acyl homoserine lactone (AHL) [93] rpo SBurkholderia pseudomallei K96243 NA BPSL1505 RNA polymerase sigma factor [93] - Burkholderia pseudomallei K96243 NA BPSL1366 polyphosphate kinase [93] wcbK Burkholderia pseudomallei K96243 NA BPSL2729 UTP glucose-1-phosphate [93] eDNA Bcal1585 (histone like protein) (hupb) Burkholderia cenocepacia J2315 76.98 BPSL0004 DNA-binding protein HU-alpha [54,122] Bcal3530 (histone like protein) (hupA) Burkholderia cenocepacia J2315 93.45 BPSL0004 DNA-binding protein HU-alpha [54,122] Bcal1487 (integration host factor alpha) Burkholderia cenocepacia J2315 88.04 BPSL1939 integration host factor alpha [54,122] Bcal2949 (integration host factor beta) Burkholderia cenocepacia J2315 89.56 BPSL2514 integration host factor beta [54,122] BPSL1887 (transcriptional regulatory protein) Burkholderia pseudomallei K96243 NA BPSL1887 sigma-54 related transcriptional regulatory protein [110] Proteins - Burkholderia pseudomallei K96243 NA BPSS0093 outer membrane usher protein [45] - Burkholderia pseudomallei K96243 NA BPSL1800 outer membrane usher protein [45] bceF Burkholderia pseudomallei K96243 NA BPSS1830 Tyrosine kinase [54] AK34_RS27645 (Alginate lyase) Burkholderia dolosa AU0158 85.42 BPSL3363 Hypothetical protein [54] - Burkholderia pseudomallei K96243 NA BPSL0782 Type 4 Pili 1 [130] - Burkholderia pseudomallei K96243 NA BPSL1821 Type 4 Pili 2 [130] - Burkholderia pseudomallei K96243 NA BPSL1899 Type 4 Pili 3 [130] - Burkholderia pseudomallei K96243 NA BPSL2752 Type 4 Pili 4 [130] - Burkholderia pseudomallei K96243 NA BPSL2756 Type 4 Pili 4 [130] - Burkholderia pseudomallei K96243 NA BPSL3008 Type 4 Pili 5 [130] - Burkholderia pseudomallei K96243 NA BPSL3170 Type 4 Pili 6 [130] - Burkholderia pseudomallei K96243 NA BPSS1593 Type 4 Pili 7 [130] - Burkholderia pseudomallei K96243 NA BPSS1595 Type 4 Pili 7 [130] - Burkholderia pseudomallei K96243 NA BPSS2185 Type 4 Pili 8 [130] - Burkholderia pseudomallei K96243 NA BPSS2186 Type 4 Pili 8 [130] *NA-Not applicable.
References
- Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J. 2021. Hijacking of the Host's Immune Surveillance Radars by
Burkholderia pseudomallei .Front. Immunol. 12 : 718719. - Wiersinga WJ, Virk HS, Torres AG,
et al . 2018. Melioidosis.Nat. Rev. Dis. Primers 4 : 17108. - Yip C-H, Ghazali A-K, Nathan S. 2020.
Burkholderia pseudomallei pathogenesis and survival in different niches.Biochem. Soc. Trans. 48 : 569-579. - Panomket P, Wongsana P, Wanram S, Wongratanacheewin S. 2017.
Burkholderia pseudomallei biofilm plays a key role in chronic inflammation in C57BL/6 mice.Southeast Asian J. Trop. Med. Public Health 48 : 73-82. - Duangurai T, Indrawattana N, Pumirat P. 2018.
Burkholderia pseudomallei adaptation for survival in stressful conditions.Biomed Res. Int. 2018 : 3039106. - Willcocks SJ, Cia F, Francisco AF, Wren BW. 2020. Revisiting aminocoumarins for the treatment of melioidosis.
Int. J. Antimicrob. Agents 56 : 106002. - Schwarz S, Van Dijck P. 2017. Trehalose metabolism: A sweet spot for
Burkholderia pseudomallei virulence.Virulence 8 : 5-7. - Limmathurotsakul D, Paeyao A, Wongratanacheewin S, Saiprom N, Takpho N, Thaipadungpanit J,
et al . 2014. Role ofBurkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis.Clin. Microbiol. Infect. 20 : O854-O856. - Ghosh R, Barman S, Mandal NC. 2019. Phosphate deficiency induced biofilm formation of
Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate.Sci. Rep. 9 : 5477. - Vestby LK, Grønseth T, Simm R, Nesse LL. 2020. Bacterial biofilm and its role in the pathogenesis of disease.
Antibiotics 9 : 59. - Flemming H-C. 2016. EPS-Then and now.
Microorganisms 4 : 41. - Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y. 2018. In vitro biofilm formation by
Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance.Int. J. Gen. Med. 11 : 25-32. - Yan J, Bassler BL. 2019. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms.
Cell Host Microbe 26 : 15-21. - Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q. 2020. The exopolysaccharide-eDNA interaction modulates 3D architecture of
Bacillus subtilis biofilm.BMC Microbiol. 20 : 115. - Tolker-Nielsen T. 2015. Biofilm Development.
Microbiol. Spectr. 3 : 51-66. - Mcferrin A, Engineering C, Building JEB, Texas A. 2010. Insights on
Escherichia coli biofilm formation and inhibition from wholetranscriptome profiling thomas.Environ. Microbiol. 11 : 1-15. - Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era.
Cold Spring Harb. Perspect. Med. 3 : a010306. - Duangurai T, Indrawattana N, Pumirat P. 2018.
Burkholderia pseudomallei adaptation for survival in stressful conditions.Biomed Res. Int. 2018 : 3039106. - Kunyanee C, Kamjumphol W, Taweechaisupapong S, Kanthawong S, Wongwajana S, Wongratanacheewin S,
et al . 2016.Burkholderia pseudomallei biofilm promotes adhesion, internalization and stimulates proinflammatory cytokines in human epithelial A549 cells.PLoS One 11 : e0160741. - Castelo-Branco DSCM, Riello GB, Vasconcelos DC, Guedes GMM, Serpa R, Bandeira TJPG,
et al . 2016. Farnesol increases the susceptibility ofBurkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis.J. Appl. Microbiol. 120 : 600-606. - Sirijant N, Sermswan RW, Wongratanacheewin S. 2016.
Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps.J. Med. Microbiol. 65 : 1296-1306. - Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. 2010. Growing
Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance.PLoS One 5 : e9196. - Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. 2016. Environmental factors that shape biofilm formation.
Biosci. Biotechnol. Biochem. 80 : 7-12. - Lin Chua S, Liu Y, Li Y, Ting HJ, Kohli GS, Cai Z,
et al . 2017. Reduced intracellular c-di-GMP content increases expression of quorum sensing-regulated genes inPseudomonas aeruginosa .Front. Cell. Infect. Microbiol. 7 : 451. - Ramli NSK, Eng Guan C, Nathan S, Vadivelu J. 2012. The effect of environmental conditions on biofilm formation of
Burkholderia pseudomallei clinical isolates.PLoS One 7 : e44104. - Paksanont S, Sintiprungrat K, Yimthin T, Pumirat P, Peacock SJ, Chantratita N. 2018. Effect of temperature on
Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments.Sci. Rep. 8 : 9196. - Anutrakunchai C, Bolscher JGM, Krom BP, Kanthawong S, Chareonsudjai S, Taweechaisupapong S. 2018. Impact of nutritional stress on drug susceptibility and biofilm structures of
Burkholderia pseudomallei andBurkholderia thailandensis grown in static and microfluidic systems.PLoS One 13 : e0194946. - Zhou G, Yuan J, Gao H. 2015. Regulation of biofilm formation by BpfA, BpfD, and BpfG in
Shewanella oneidensis .Front. Microbiol. 6 : 790. - Kim B, Park J-S, Choi H-Y, Yoon SS, Kim W-G. 2018. Terrein is an inhibitor of quorum sensing and c-di-GMP in
Pseudomonas aeruginosa : a connection between quorum sensing and c-di-GMP.Sci. Rep. 8 : 8617. - Opoku-Temeng C, Sintim HO. 2017. Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. In: c-di-GMP Signaling: Methods and Protocols. Sauer K (Ed.), Springer New York, New York, NY, pp. 419-430 (2017).
- Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. 2014. Regulation of biofilm formation in
Pseudomonas andBurkholderia species.Environ. Microbiol. 16 : 1961-1981. - Jones CJ, Utada A, Davis KR,
et al . 2015. c-di-GMP Regulates motile to sessile transition by modulating MshA Pili Biogenesis and near-surface motility behavior inVibrio cholerae .PLoS Pathog. 11 : e1005068. - Mangalea MR, Plumley BA, Borlee BR. 2017. Nitrate sensing and metabolism inhibit biofilm formation in the opportunistic pathogen
Burkholderia pseudomallei by reducing the intracellular concentration of c-di-GMP.Front. Microbiol. 8 : 1353. - Tseng BS, Majerczyk CD, Passos da Silva D, Chandler JR, Peter Greenberg E, Parsek MR. 2016. Quorum sensing influences
Burkholderia thailandensis biofilm development and matrix production.J. Bacteriol. 198 : 2643-2650. - Van Acker H, Crabbé A, Jurėnas D, Ostyn L, Sass A, Daled S,
et al . 2019. The role of small proteins inBurkholderia cenocepacia J2315 biofilm formation, persistence and intracellular growth.Biofilm. 1 : 100001. - Chen L-H, Köseoğlu VK, Güvener ZT, Myers-Morales T, Reed JM, D'Orazio SEF,
et al . 2014. Cyclic di-GMP-dependent Signaling pathways in the pathogenic firmicuteListeria monocytogenes .PLoS Pathog. 10 : e1004301. - Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: Second messenger extraordinaire.
Nat. Rev. Microbiol. 15 : 271-284. - Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria.
Nat. Rev. Microbiol. 14 : 576-588. - Jiang Y, Geng M, Bai L. 2020. Targeting biofilms therapy: Current research strategies and development hurdles.
Microorganisms 8 : 1222. - Bellich B, Jou IA, Caterino M, Rizzo R, Ravenscroft N, Fazli M,
et al . 2020.Burkholderia cenocepacia H111 produces a waterinsoluble exopolysaccharide in biofilm: Structural determination and molecular modelling.Int. J. Mol. Sci. 21 : 1702. - Plumley BA, Martin KH, Borlee GI, Marlenee NL, Burtnick MN, Brett PJ,
et al . 2017. Thermoregulation of biofilm formation inBurkholderia pseudomallei is disrupted by mutation of a putative diguanylate cyclase.J. Bacteriol. 199 : e00780-16. - Lee HS, Gu F, Ching SM, Lam Y, Chua KL. 2010. CdpA is a
Burkholderia pseudomallei cyclic di-GMP phosphodiesterase involved in autoaggregation, flagellum synthesis, motility, biofilm formation, cell invasion, and cytotoxicity.Infect. Immun. 78 : 1832-1840. - Vitale A, Paszti S, Takahashi K, Toyofuku M, Pessi G, Eberl L. 2020. Mapping of the denitrification pathway in
Burkholderia thailandensis by genome-wide mutant profiling.J. Bacteriol. 202 : e00304-20. - Mangalea MR, Borlee BR. 2022. The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in
Burkholderia pseudomallei .Sci. Rep. 12 : 203. - Chin C-Y, Hara Y, Ghazali A-K, Yap S-J, Kong C, Wong Y-C,
et al . 2015. Global transcriptional analysis ofBurkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence.BMC Genomics 16 : 471. - Zhang Y, Guo J, Zhang N, Yuan W, Lin Z, Huang W. 2019. Characterization and analysis of a novel diguanylate cyclase PA0847 from
Pseudomonas aeruginosa PAO1.Infect. Drug Resist. 12 : 655-665. - Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.
Microbiol. Mol. Biol. Rev. 77 : 1-52. - Orr MW, Donaldson GP, Severin GB,
et al . 2015. Oligoribonuclease is the primary degradative enzyme for pGpG inPseudomonas aeruginosa that is required for cyclic-di-GMP turnover.Proc. Natl. Acad. Sci. USA 112 : E5048-E5057. - Ha D-G, O'Toole GA. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a
Pseudomonas aeruginosa review.Microbiol. Spectr. 3 : MB-0003-2014. - Nicastro GG, Kaihami GH, Pulschen AA,
et al . 2020. c-di-GMP-related phenotypes are modulated by the interaction between a diguanylate cyclase and a polar hub protein.Sci. Rep. 10 : 3077. - Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M,
et al . 2019. Key players and individualists of Cyclic-di-GMP signaling inBurkholderia cenocepacia .Front. Microbiol. 10 : 3286. - Borlee GI, Mangalea MR, Martin KH, Plumley BA, Golon SJ, Borlee BR. 2022. Disruption of c-di-GMP signaling networks unlocks cryptic expression of secondary metabolites during biofilm growth in
Burkholderia pseudomallei .Appl. Environ. Microbiol. 88 : e02431-21. - Wang Z, Xie X, Shang D, Xie L, Hua Y, Song L,
et al . 2022. A c-di-GMP signaling cascade controls motility, biofilm formation, and virulence inBurkholderia thailandensis .Appl. Environ. Microbiol. 88 : e02529-21. - Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FSL. 2008. The
Burkholderia genome database: facilitating flexible queries and comparative analyses.Bioinformatics 24 : 2803-2804. - Galperin MY, Nikolskaya AN, Koonin EV. 2001. Novel domains of the prokaryotic two-component signal transduction systems.
FEMS Microbiol. Lett. 203 : 11-21. - Whiteley CG, Lee D-J. 2015. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development.
Biotechnol. Adv. 33 : 124-141. - Hengge R, Galperin MY, Ghigo J-M, Gomelsky M, Green J, Hughes KT,
et al . 2016. Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins ofEscherichia coli .J. Bacteriol. 198 : 7-11. - Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: Its role in virulence and possibilities for its control.
Cold Spring Harb. Perspect. Med. 2 : 1-25. - Reen FJ, Gutiérrez-Barranquero JA, Parages ML. 2018. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition.
Appl. Microbiol. Biotechnol. 102 : 2063-2073. - Zhao X, Yu Z, Ding T. 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria.
Microorganisms 8 : 425. - Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T. 2009. Use of quorum sensing inhibitors to interfere with biofilm formation and development in
Burkholderia multivorans andBurkholderia cenocepacia .Res. Microbiol. 160 : 144-151. - Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents.
Curr. Pharm. Des. 21 : 5-11. - Ulrich RL, Ulrich RL. 2004. Quorum quenching: Enzymatic disruption of
N -acylhomoserine lactone-mediated bacterial communication inBurkholderia thailandensis .Appl. Environ. Microbiol. 70 : 6173-6180. - Tan W-S, Law JW-F, Letchumanan V, Chan K-G. 2019. Decoding the mystery of how bacteria "talk": Among Gram-negative microorganisms.
Prog. Microbes Mol. Biol. 2 . DOI: https://doi.org/10.36877/pmmb.a0000038. - Klaus JR, Deay J, Neuenswander B,
et al . 2018. Malleilactone is aBurkholderia pseudomallei virulence factor regulated by antibiotics and quorum sensing.J. Bacteriol. 200 : e00008-18. - Gamage AM, Shui G, Wenk MR, Chua KL. 2011. N-Octanoylhomoserine lactone signalling mediated by the BpsI-BpsR quorum sensing system plays a major role in biofilm formation of
Burkholderia pseudomallei .Microbiology 157 : 1176-1186. - Kumari A, Pasini P, Daunert S. 2008. Detection of bacterial quorum sensing
N -acyl homoserine lactones in clinical samples.Anal. Bioanal. Chem. 391 : 1619-1627. - Mangwani N, Kumari S, Das S. 2015. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium
Pseudomonas aeruginosa N6P6.Appl. Microbiol. Biotechnol. 99 : 10283-10297. - Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. 2017. The RhlR quorum-sensing receptor controls
Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer.PLoS Pathog. 13 : 1-25. - Song Y, Xie C, Ong Y-M, Gan Y-H, Chua K-L. 2005. The BpsIR quorum-sensing system of
Burkholderia pseudomallei .J. Bacteriol. 187 : 785-790. - Mott T, Panchal RG, Rajamani S. 2017. Quorum sensing in
Burkholderia pseudomallei and otherBurkholderia species.Curr. Trop. Med. Rep. 4 : 199-207. - Lazar Adler NR, Dean RE, Saint RJ, Stevens MP, Prior JL, Atkins TP,
et al . 2013. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation ofBurkholderia pseudomallei .PLoS One 8 : e79461. - Coulon PML, Zlosnik JEA, Déziel E. 2021. Presence of the Hmq system and production of 4-Hydroxy-3-Methyl-2-Alkylquinolines are heterogeneously distributed between
Burkholderia cepacia complex species and more prevalent among environmental than clinical isolates.Microbiol. Spectr. 9 : e00127-21. - Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. 2011. Quinolones: from antibiotics to autoinducers.
FEMS Microbiol. Rev. 35 : 247-274. - Vial L, Lépine F, Milot S, Groleau M-C, Dekimpe V, Woods DE,
et al . 2008.Burkholderia pseudomallei ,B. thailandensis , andB. ambifaria produce 4-Hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation.J. Bacteriol. 190 : 5339-5352. - Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. 2016.
Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence.Res. Microbiol. 167 : 159-167. - Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y,
et al . 2008. A novel DSF-like signal fromBurkholderia cenocepacia interferes withCandida albicans morphological transition.ISME J. 2 : 27-36. - Deng Y, Boon C, Eberl L, Zhang L-H. 2009. Differential modulation of
Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase.J. Bacteriol. 191 : 7270-7278. - Yang C, Cui C, Ye Q, Kan J, Fu S, Song S,
et al . 2017.Burkholderia cenocepacia integrates cis-2-dodecenoic acid and cyclic dimeric guanosine monophosphate signals to control virulence.Proc. Natl. Acad. Sci. USA 114 : 13006-13011. - Deng Y, Schmid N, Wang C, Wang J, Pessi G, Wu D,
et al . 2012. Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover.Proc. Natl. Acad. Sci. USA 109 : 15479-15484. - Deng Y, Lim A, Wang J, Zhou T, Chen S, Lee J,
et al . 2013. Cis-2-dodecenoic acid quorum sensing system modulatesN -acyl homoserine lactone production through RpfR and cyclic di-GMP turnover inBurkholderia cenocepacia .BMC Microbiol. 13 : 148. - Cui C, Yang C, Song S,
et al . 2018. A novel two-component system modulates quorum sensing and pathogenicity inBurkholderia cenocepacia .Mol. Microbiol. 108 : 32-44. - Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS,
et al . 2019. Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF.PLoS Biol. 17 : e3000123. - Wang M, Li X, Song S, Cui C, Zhang L-H, Deng Y. 2022. The
cis -2-dodecenoic acid (BDSF) quorum sensing system inBurkholderia cenocepacia .Appl. Environ. Microbiol. 88 : e02342-21. - Sass A, Kiekens S, Coenye T. 2017. Identification of small RNAs abundant in
Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism.Sci. Rep. 7 : 15665. - Pita T, Feliciano JR, Leitão JH. 2018. Small noncoding regulatory RNAs from
Pseudomonas aeruginosa andBurkholderia cepacia complex.Int. J. Mol. Sci. 19 : 3759. - Kiekens S, Sass A, Van Nieuwerburgh F, Deforce D, Coenye T. 2018. The small RNA ncS35 regulates growth in
Burkholderia cenocepacia J2315.mSphere 3 : e00579-17. - Rossi F, De Philippis R. 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats.
Life 5 : 1218-1238. - Cuzzi B, Herasimenka Y, Silipo A, Lanzetta R, Liut G, Rizzo R,
et al . 2014. Versatility of theBurkholderia cepacia complex for the biosynthesis of exopolysaccharides: A comparative structural investigation.PLoS One 9 : e94372. - Ciofu O, Tolker-Nielsen T. 2019. Tolerance and resistance of
Pseudomonas aeruginosa biofilms to antimicrobial agents-howP. aeruginosa can escape antibiotics.Front. Microbiol. 10 : 913. - Mangalea MR, Borlee GI, Borlee BR. 2017. The current status of extracellular polymeric substances produced by
Burkholderia pseudomallei .Curr. Trop. Med. Reports 4 : 117-126. - Nimtz M, Wray V, Domke T, Brenneke B, Häussler S, Steinmetz I. 1997. Structure of an acidic exopolysaccharide of
Burkholderia pseudomallei .Eur. J. Biochem. 250 : 608-616. - Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. 2015. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in
Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains.Microbiol. Immunol. 59 : 653-663. - Laroussarie A, Barycza B, Andriamboavonjy H, Tamigney Kenfack M, Blériot Y, Gauthier C. 2015. Synthesis of the tetrasaccharide repeating unit of the β-Kdo-containing exopolysaccharide from
Burkholderia pseudomallei andB. cepacia complex.J. Org. Chem. 80 : 10386-10396. - Park J, Lee D, Kim M-S, Kim DY, Shin DH. 2015. A preliminary X-ray study of 3-deoxy-d-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI) from
Burkholderia pseudomallei .Acta Crystallogr. Sect. F Struct. Biol. Commun. 71 : 790-793. - Borlee GI, Plumley BA, Martin KH, Somprasong N, Mangalea MR, Islam MN,
et al . 2017. Genome-scale analysis of the genes that contribute toBurkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster.PLoS Negl. Trop. Dis. 11 : e0005689. - Fazli M, McCarthy Y, Givskov M, Ryan RP, Tolker‐Nielsen T. 2013. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in
Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349.Microbiologyopen 2 : 105-122. - Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M,
et al . 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogenBurkholderia cenocepacia .Mol. Microbiol. 82 : 327-341. - Poulin MB, Kuperman LL. 2021. Regulation of biofilm exopolysaccharide production by cyclic di-guanosine monophosphate.
Front. Microbiol. 12 : 2506. - Chiang W-C, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, Givskov M,
et al . 2013. Extracellular DNA shields against aminoglycosides inPseudomonas aeruginosa biofilms.Antimicrob. Agents Chemother. 57 : 2352-2361. - Kavanaugh JS, Flack CE, Lister J, Ricker EB, Ibberson CB, Jenul C,
et al . 2019. Identification of extracellular DNA-binding proteins in the biofilm matrix.mBio 10 : e01137-19. - Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P,
et al . 2020. Proteomic studies of the biofilm matrix including outer membrane vesicles ofBurkholderia multivorans c1576, a strain of clinical importance for cystic fibrosis.Microorganisms 8 : 1826. - Panlilio H, Rice CV. 2021. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms.
Biotechnol. Bioeng. 118 : 2129-2141. - Wongkaewkhiaw S, Kanthawong S, Bolscher JGM, Nazmi K, Taweechaisupapong S, Krom BP. 2020. DNase-mediated eDNA removal enhances D-LL-31 activity against biofilms of bacteria isolated from chronic rhinosinusitis patients.
Biofouling 36 : 1117-1128. - Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. 2017. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities.
Front. Microbiol. 8 : 1390. - Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. 2013. Life after death: The critical role of extracellular DNA in microbial biofilms.
Lett. Appl. Microbiol. 57 : 467-475. - Das T, Sehar S, Manefield M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development.
Environ. Microbiol. Rep. 5 : 778-786. - Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S,
et al . 2007. Role of autolysin-mediated DNA release in biofilm formation ofStaphylococcus epidermidis .Microbiology 153 : 2083-2092. - Petrova OE, Schurr JR, Schurr MJ, Sauer K. 2011. The novel
Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA.Mol. Microbiol. 81 : 767-783. - Austin CR, Goodyear AW, Bartek IL, Stewart A, Sutherland MD, Silva EB,
et al . 2015. ABurkholderia pseudomallei colony variant necessary for gastric colonization.mBio. 6 : e02462--14. - Okaro U, Mou S, DeShazer D. 2021. Production and molecular composition of Burkholderia pseudomallei and Burkholderia thailandensis biofilms. Authorea.
- Alwis PA, Treerat P, Gong L, Lucas DD, Allwood EM, Prescott M,
et al . 2020. Disruption of theBurkholderia pseudomallei twocomponent signal transduction system BbeR-BbeS leads to increased extracellular DNA secretion and altered biofilm formation.Vet. Microbiol. 242 : 108603. - Pakkulnan R, Anutrakunchai C, Kanthawong S, Taweechaisupapong S, Chareonsudjai P, Chareonsudjai S. 2019. Extracellular DNA facilitates bacterial adhesion during
Burkholderia pseudomallei biofilm formation.PLoS One 14 : e0213288. - Sena-Vélez M, Redondo C, Graham JH, Cubero J. 2016. Presence of extracellular DNA during biofilm formation by
Xnthomonas citri subsp. citri strains with different host range.PLoS One 11 : e0156695. - Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms.
Crit. Rev. Microbiol. 41 : 341-352. - Lappann M, Claus H, Van Alen T, Harmsen M, Elias J, Molin S,
et al . 2010. A dual role of extracellular DNA during biofilm formation ofNeisseria meningitidis .Mol. Microbiol. 75 : 1355-1371. - Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S,
et al . 2020. The biofilm matrix scaffold ofPseudomonas species contains non-canonically base paired extracellular DNA and RNA.bioRxiv. doi: https://doi.org/10.1101/527267. - Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, Foo YH,
et al . 2021. The biofilm matrix scaffold ofPeudomonas aeruginosa contains G-quadruplex extracellular DNA structures.NPJ Biofilms Microbiomes 7 : 27. - Goodman SD, Obergfell KP, Jurcisek JA, Novotny LA, Downey JS, Ayala EA,
et al . 2011. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins.Mucosal Immunol. 4 : 625-637. - Devaraj A, Buzzo JR, Mashburn-Warren L,
et al . 2019. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates.Proc. Natl. Acad. Sci. USA 116 : 25068 LP-25077. - Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. 2017. Nontypeable haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery.
Proc. Natl. Acad. Sci. USA 114 : E6632-E6641. - Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. 2013. Structural stability of
Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein.PLoS One 8 : e67629. - Novotny LA, Goodman SD, Bakaletz LO. 2020. Targeting a bacterial DNABII protein with a chimeric peptide immunogen or humanised monoclonal antibody to prevent or treat recalcitrant biofilm-mediated infections.
EBioMedicine 59 : 102867. - Fong JNC, Yildiz FH. 2015. Biofilm matrix proteins.
Microbiol. Spectr. 3 : 10.1128/microbiolspec.MB-0004-2014. - Flemming H-CC, Wingender J. 2010. The biofilm matrix.
Nat. Rev. Microbiol. 8 : 623-633. - Ferreira AS, Silva IN, Oliveira VH, Becker JD, Givskov M, Ryan RP,
et al . 2013. Comparative transcriptomic analysis of theBurkholderia cepacia tyrosine kinasebceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence.Appl. Environ. Microbiol. 79 : 3009-3020. - Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L,
et al . 2020. Characterization of different alginate lyases for dissolvingPseudomonas aeruginosa biofilms.Sci. Rep. 10 : 9390. - Wu S, Baum MM, Kerwin J, Guerrero D, Webster S, Schaudinn C,
et al . 2014. Biofilm-specific extracellular matrix proteins of nontypeableHaemophilus influenzae .Pathog. Dis. 72 : 143-160. - Berne C, Ducret A, Hardy GG, Brun YV. 2015. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria [Internet]. In: Microbial Biofilms, John Wiley & Sons, Ltd, pp. 163-199.
- Essex-Lopresti AE, Boddey JA, Thomas R,
et al . 2005. A type IV Pilin, PilA, contributes to Adherence ofBurkholderia pseudomallei and virulence in vivo.Infect. Immun. 73 : 1260-1264. - Okaro U, Mou S, Lenkoue G, Williams JA, Bonagofski A, Larson P,
et al . 2022. A type IVB pilin influences twitching motility and in vitro adhesion to epithelial cells inBurkholderia pseudomallei .Microbiology 168 : 001150. - Jan AT. 2017. Outer Membrane Vesicles (OMVs) of Gram-negative bacteria: A perspective update.
Front. Microbiol. 8 : 1053. - Wang W, Chanda W, Zhong M. 2015. The relationship between biofilm and outer membrane vesicles: a novel therapy overview.
FEMS Microbiol. Lett. 362 : fnv117. - Kulp A, Kuehn MJ. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles.
Annu. Rev. Microbiol. 64 : 163-184. - Kumar B, Sorensen JL, Cardona ST. 2018. A c-di-GMP-modulating protein regulates swimming motility of
Burkholderia cenocepacia in response to arginine and glutamate.Front. Cell. Infect. Microbiol. 8 : 56. - Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. 2016. Enhanced annotations and features for comparing thousands of
Pseudomonas genomes in thePseudomonas genome database.Nucleic Acids Res. 44 : D646-53. - Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O,
et al . 2022. Search and sequence analysis tools services from EMBL-EBI in 2022.Nucleic Acids Res. 50 : W276-W279. - Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 42 : W320-W324.