전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. 2010. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J. Ethnopharmacol. 129: 238-243.
    Pubmed CrossRef
  2. Sih CJ, Ravikumar P, Huang FC, Buckner C, Whitlock JH. 1976. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J. Am. Chem. Soc. 98: 5412-5413.
    CrossRef
  3. Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51: 508-515.
    Pubmed CrossRef
  4. Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol. 10: 115.
    Pubmed PMC CrossRef
  5. Lee SY, Kwon HK, Lee SM. 2011. SHINBARO, a new herbal medicine with multifunctional mechanism for joint disease:first therapeutic application for the treatment of osteoarthritis. Arch. Pharm. Res. 34: 1773-1777.
    Pubmed CrossRef
  6. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440-447.
    Pubmed PMC CrossRef
  7. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. 2012. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7: 50-57.
    Pubmed CrossRef
  8. Hemmati S, Schmidt TJ, Fuss E. 2007. (+)-Pinoresinol/(-)lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581:603-610.
    Pubmed CrossRef
  9. Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo R, et al. 2006. Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301.
    Pubmed CrossRef
  10. Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372-1377.
    Pubmed CrossRef
  11. Wang PC, Ran XH, Luo HR, Ma QY, Liu YQ, Zhou J, et al. 2013. Phenolic compounds from the roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 24: 1544-1548.
    CrossRef
  12. Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H. 2012. Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17:15013-15021.
    Pubmed PMC CrossRef
  13. Liu WJ, Wang LB. 2010. The lignans from Daphne giraldii Nitsche. Chinese J. Med. Chem. 4: 014.
  14. Dong X, Yang C, Xu G, Cao S, Fu J, Lin L, et al. 2016. Chemical constituents from Daphne giraldii Nitsche and their contents simultaneous determination by HPLC. Evid. Based Complement. Alternat. Med. 2016: 9492368.
    Pubmed PMC CrossRef
  15. Wang JL, Liu EW, Zhang Y, Wang T, Han LF, Gao XM. 2012. Validation of a HPLC-tandem MS/MS method for pharmacokinetics study of (+)-pinoresinol-di-β-D-glucopyranoside from Eucommia ulmoides Oliv extract in rats’ plasma. J. Ethnopharmacol. 139: 337-342.
    Pubmed CrossRef
  16. Liu E, Han L, Wang J, He W, Shang H, Gao X, et al. 2012. Eucommia ulmoides bark protects against renal injury in cadmium-challenged rats. J. Med. Food 15: 307-314.
    Pubmed CrossRef
  17. Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, et al. 2013. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem. Biodivers. 10: 1322-1327.
    Pubmed CrossRef
  18. Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. 2002. Two novel antifungal peptides distinct with a fivedisulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521: 87-90.
    CrossRef
  19. Vermes B, Seligmann O, Wagner H. 1991. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono- and bis-glucosides. Phytochemistry 30:3087-3089.
    CrossRef
  20. Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264. 7 macrophage cells. J. Enzyme Inhib. Med. Chem. 27: 875-879.
    Pubmed CrossRef
  21. Munin A, Edwards-Lévy F. 2011. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3: 793-829.
    Pubmed PMC CrossRef
  22. Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, et al. 2012. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5: 1.
    Pubmed PMC CrossRef
  23. Kao TT, Lin CC, Shia KS. 2015. The total synthesis of retrojusticidin B, justicidin E, and helioxanthin. J. Org. Chem. 80: 6708-6714.
    Pubmed CrossRef
  24. Shi J, Liu C, Liu L, Yang B, Zhang Y. 2012. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 93: 1475-1483.
    Pubmed CrossRef
  25. Zhang Y, Shi J, Gao Z, Yangwu R, Jiang H, Che J, et al. 2015. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 99: 4629-4643.
    Pubmed CrossRef
  26. Zhang Y, Shi J, Gao Z, Che J, Shao D, Liu Y. 2016. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean. J. Sci. Food Agric. 96: 4015-4025.
    Pubmed CrossRef
  27. Wang W, Shi J, Yang B. 2008. Optimization of conditions for production of pinoresinol diglucosideby a strain of Phoma sp. Trans. Chin. Soc. Agric. Eng. 24: 287-290.
  28. Liu G, Xiao X, Jiang H, Mei C, Ding Y. 2013. Detection of pH variable in solid-state fermentation process by FT-NIR spectroscopy and BP-Adaboost. Jiangsu Daxue Xuebao 34:574-578.
  29. Wang L, Meselhy MR, Li Y, QIN G-W, Hattori M. 2000. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48: 1606-1610.
    Pubmed CrossRef
  30. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, et al. 2001. In vitro metabolism of plant lignans:new precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49: 3178-3186.
    Pubmed CrossRef
  31. Xie LH, Ahn EM, Akao T, Abdel-Hafez AAM, Nakamura N, Hattori M. 2003. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull. 51: 378-384.
    Pubmed CrossRef
  32. Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168.
    Pubmed CrossRef
  33. Grishko VV, Tarasova EV, Ivshina IB. 2013. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 48: 1640-1644.
    CrossRef
  34. Fan L, Dong Y, Xu T, Zhang H, Chen Q. 2013. Gastrodin production from p-2-hydroxybenzyl alcohol through biotransformation by cultured cells of Aspergillus foetidus and Penicillium cyclopium. Appl. Biochem. Biotechnol. 170: 138-148.
    Pubmed CrossRef
  35. Mikhailova R, Sapunova L, Lobanok A, Yasenko M, Shishko ZF. 2000. Isoelectrophoretic characterization of extracellular polygalacturonases of various Aspergillus alliaceus strains. Microbiology 69: 162-166.
    CrossRef
  36. Fan Y, Yu Y, Jia X, Chen X, Shen Y. 2013. Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour. Technol. 131: 13-20.
    Pubmed CrossRef
  37. Satake H, Ono E, Murata J. 2013. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J. Agric. Food Chem. 61: 11721-11729.
    Pubmed CrossRef
  38. Yang Y, Jin Z, Jin Q, Dong M. 2015. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya grandis. Microbiology 84: 710-716.
    CrossRef
  39. Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18.
    CrossRef
  40. Li Y, Peng X, Chen H. 2013. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 116: 493-498.
    Pubmed CrossRef
  41. Pandey A, Selvakumar P, Soccol CR, Nigam P. 1999. Solidstate fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
  42. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549.
    CrossRef
  43. Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752-1761.
    Pubmed CrossRef
  44. Liu C, Shi J, Zhou X, Yang B, Dou X. 2011. Isolation, identification and growth conditions of endophytic fungi of Eucommia ulmoides Oliv. for production of PDG. J. Northwest A. F. Univ. 39: 203-209.
  45. Feng S, Gan Z, Zhai X, Fu P, Sun W. 2006. Content comparison of pinoresinol diglucoside in original and reborn bark of Eucommia ulmoides. J. Chin. Med. Mater. 29: 792-794.
  46. Yao LN, Su YF, Yin ZY, Qin N, Li TX, Si CL, et al. 2010. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64: 571-575.
    CrossRef
  47. Golubev W, Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev N. 2008. Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77: 171-175.
    CrossRef
  48. Cantrell C, Schrader K, Mamonov L, Sitpaeva G, Kustova T, Dunbar C, et al. 2005. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 53: 7741-7748.
    Pubmed CrossRef
  49. Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation:media effect and tissue-dependent variation. PLoS One 7: e46785.
    Pubmed PMC CrossRef
  50. Zhang Y, Shi J, Liu L, Gao Z, Che J, Shao D, Liu Y. 2015. Bioconversion of pinoresinol diglucoside and pinoresinol from substrates in the phenylpropanoid pathway by resting cells of Phomopsis sp. XP-8. PLoS One 10: e0137066.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(8): 1428-1440

Published online August 28, 2017 https://doi.org/10.4014/jmb.1703.03056

Copyright © The Korean Society for Microbiology and Biotechnology.

Bioconversion of Pinoresinol Diglucoside from Glucose Using Resting and Freeze-Dried Phomopsis sp. XP-8 Cells

Zhenhong Gao 1, Muhammad Shahid Riaz Rajoka 2, Jing Zhu 2, Zhiwei Zhang 3, Yan Zhang 1, Jinxin Che 1, Xiaoguang Xu 2 and Junling Shi 2*

College of Food Science and Engineering, Northwest A & F University, Yangling, P.R. China, 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi , P.R. China , 2College of Food Science and Engineering, Qingdao Agriculture University, Qingdao, Shandong Province 266109, P.R. China

Received: March 24, 2017; Accepted: June 13, 2017

Abstract

Phomopsis sp. XP-8 (an endophytic fungus) was previously found to produce pinoresinol
diglucoside (PDG), a major antihypertensive compound of Tu-Chung (the bark of Eucommia
ulmoides Oliv.), which is widely used in Chinese traditional medicines. In the present study,
two bioconversion systems were developed for the production of PDG in Tris-HCl buffer
containing glucose and Phomopsis sp. XP-8 cells (both resting and freeze-dried). When other
factors remained unchanged, the bioconversion time, glucose concentration, cell ages, cell
dosage, pH, temperature, and stirring speed influenced PDG production in a similar and
decreasing manner after an initial increase with increasing levels for each factor. Considering
the simultaneous change of various factors, the optimal conditions for PDG production were
established as 70 g/l cells (8-day-old), 14 g/l glucose, 28°C, pH 7.5, and 180 rpm for systems
employing resting cells, and 3.87 g/l cells, 14.67 g/l glucose, 28°C, pH 7.5, and 180 rpm for
systems employing freeze-dried cells. The systems employing freeze-dried cells showed lower
peak PDG production (110.28 μg/l), but at a much shorter time (12.65 h) compared with
resting cells (23.62 mg/l, 91.5 h). The specific PDG production levels were 1.92 and 24 μg per
gram cells per gram glucose for freeze-dried cells and resting cells, respectively. Both systems
indicated a new and potentially efficient way to produce PDG independent of microbial cell
growth.

Keywords: Bioconversion, pinoresinol diglucoside, resting cells, freeze-dried cells, Phomopsis sp.

References

  1. Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. 2010. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J. Ethnopharmacol. 129: 238-243.
    Pubmed CrossRef
  2. Sih CJ, Ravikumar P, Huang FC, Buckner C, Whitlock JH. 1976. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J. Am. Chem. Soc. 98: 5412-5413.
    CrossRef
  3. Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51: 508-515.
    Pubmed CrossRef
  4. Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol. 10: 115.
    Pubmed KoreaMed CrossRef
  5. Lee SY, Kwon HK, Lee SM. 2011. SHINBARO, a new herbal medicine with multifunctional mechanism for joint disease:first therapeutic application for the treatment of osteoarthritis. Arch. Pharm. Res. 34: 1773-1777.
    Pubmed CrossRef
  6. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440-447.
    Pubmed KoreaMed CrossRef
  7. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. 2012. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7: 50-57.
    Pubmed CrossRef
  8. Hemmati S, Schmidt TJ, Fuss E. 2007. (+)-Pinoresinol/(-)lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581:603-610.
    Pubmed CrossRef
  9. Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo R, et al. 2006. Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301.
    Pubmed CrossRef
  10. Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372-1377.
    Pubmed CrossRef
  11. Wang PC, Ran XH, Luo HR, Ma QY, Liu YQ, Zhou J, et al. 2013. Phenolic compounds from the roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 24: 1544-1548.
    CrossRef
  12. Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H. 2012. Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17:15013-15021.
    Pubmed KoreaMed CrossRef
  13. Liu WJ, Wang LB. 2010. The lignans from Daphne giraldii Nitsche. Chinese J. Med. Chem. 4: 014.
  14. Dong X, Yang C, Xu G, Cao S, Fu J, Lin L, et al. 2016. Chemical constituents from Daphne giraldii Nitsche and their contents simultaneous determination by HPLC. Evid. Based Complement. Alternat. Med. 2016: 9492368.
    Pubmed KoreaMed CrossRef
  15. Wang JL, Liu EW, Zhang Y, Wang T, Han LF, Gao XM. 2012. Validation of a HPLC-tandem MS/MS method for pharmacokinetics study of (+)-pinoresinol-di-β-D-glucopyranoside from Eucommia ulmoides Oliv extract in rats’ plasma. J. Ethnopharmacol. 139: 337-342.
    Pubmed CrossRef
  16. Liu E, Han L, Wang J, He W, Shang H, Gao X, et al. 2012. Eucommia ulmoides bark protects against renal injury in cadmium-challenged rats. J. Med. Food 15: 307-314.
    Pubmed CrossRef
  17. Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, et al. 2013. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem. Biodivers. 10: 1322-1327.
    Pubmed CrossRef
  18. Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. 2002. Two novel antifungal peptides distinct with a fivedisulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521: 87-90.
    CrossRef
  19. Vermes B, Seligmann O, Wagner H. 1991. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono- and bis-glucosides. Phytochemistry 30:3087-3089.
    CrossRef
  20. Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264. 7 macrophage cells. J. Enzyme Inhib. Med. Chem. 27: 875-879.
    Pubmed CrossRef
  21. Munin A, Edwards-Lévy F. 2011. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3: 793-829.
    Pubmed KoreaMed CrossRef
  22. Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, et al. 2012. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5: 1.
    Pubmed KoreaMed CrossRef
  23. Kao TT, Lin CC, Shia KS. 2015. The total synthesis of retrojusticidin B, justicidin E, and helioxanthin. J. Org. Chem. 80: 6708-6714.
    Pubmed CrossRef
  24. Shi J, Liu C, Liu L, Yang B, Zhang Y. 2012. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 93: 1475-1483.
    Pubmed CrossRef
  25. Zhang Y, Shi J, Gao Z, Yangwu R, Jiang H, Che J, et al. 2015. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 99: 4629-4643.
    Pubmed CrossRef
  26. Zhang Y, Shi J, Gao Z, Che J, Shao D, Liu Y. 2016. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean. J. Sci. Food Agric. 96: 4015-4025.
    Pubmed CrossRef
  27. Wang W, Shi J, Yang B. 2008. Optimization of conditions for production of pinoresinol diglucosideby a strain of Phoma sp. Trans. Chin. Soc. Agric. Eng. 24: 287-290.
  28. Liu G, Xiao X, Jiang H, Mei C, Ding Y. 2013. Detection of pH variable in solid-state fermentation process by FT-NIR spectroscopy and BP-Adaboost. Jiangsu Daxue Xuebao 34:574-578.
  29. Wang L, Meselhy MR, Li Y, QIN G-W, Hattori M. 2000. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48: 1606-1610.
    Pubmed CrossRef
  30. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, et al. 2001. In vitro metabolism of plant lignans:new precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49: 3178-3186.
    Pubmed CrossRef
  31. Xie LH, Ahn EM, Akao T, Abdel-Hafez AAM, Nakamura N, Hattori M. 2003. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull. 51: 378-384.
    Pubmed CrossRef
  32. Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168.
    Pubmed CrossRef
  33. Grishko VV, Tarasova EV, Ivshina IB. 2013. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 48: 1640-1644.
    CrossRef
  34. Fan L, Dong Y, Xu T, Zhang H, Chen Q. 2013. Gastrodin production from p-2-hydroxybenzyl alcohol through biotransformation by cultured cells of Aspergillus foetidus and Penicillium cyclopium. Appl. Biochem. Biotechnol. 170: 138-148.
    Pubmed CrossRef
  35. Mikhailova R, Sapunova L, Lobanok A, Yasenko M, Shishko ZF. 2000. Isoelectrophoretic characterization of extracellular polygalacturonases of various Aspergillus alliaceus strains. Microbiology 69: 162-166.
    CrossRef
  36. Fan Y, Yu Y, Jia X, Chen X, Shen Y. 2013. Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour. Technol. 131: 13-20.
    Pubmed CrossRef
  37. Satake H, Ono E, Murata J. 2013. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J. Agric. Food Chem. 61: 11721-11729.
    Pubmed CrossRef
  38. Yang Y, Jin Z, Jin Q, Dong M. 2015. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya grandis. Microbiology 84: 710-716.
    CrossRef
  39. Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18.
    CrossRef
  40. Li Y, Peng X, Chen H. 2013. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 116: 493-498.
    Pubmed CrossRef
  41. Pandey A, Selvakumar P, Soccol CR, Nigam P. 1999. Solidstate fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
  42. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549.
    CrossRef
  43. Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752-1761.
    Pubmed CrossRef
  44. Liu C, Shi J, Zhou X, Yang B, Dou X. 2011. Isolation, identification and growth conditions of endophytic fungi of Eucommia ulmoides Oliv. for production of PDG. J. Northwest A. F. Univ. 39: 203-209.
  45. Feng S, Gan Z, Zhai X, Fu P, Sun W. 2006. Content comparison of pinoresinol diglucoside in original and reborn bark of Eucommia ulmoides. J. Chin. Med. Mater. 29: 792-794.
  46. Yao LN, Su YF, Yin ZY, Qin N, Li TX, Si CL, et al. 2010. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64: 571-575.
    CrossRef
  47. Golubev W, Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev N. 2008. Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77: 171-175.
    CrossRef
  48. Cantrell C, Schrader K, Mamonov L, Sitpaeva G, Kustova T, Dunbar C, et al. 2005. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 53: 7741-7748.
    Pubmed CrossRef
  49. Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation:media effect and tissue-dependent variation. PLoS One 7: e46785.
    Pubmed KoreaMed CrossRef
  50. Zhang Y, Shi J, Liu L, Gao Z, Che J, Shao D, Liu Y. 2015. Bioconversion of pinoresinol diglucoside and pinoresinol from substrates in the phenylpropanoid pathway by resting cells of Phomopsis sp. XP-8. PLoS One 10: e0137066.
    Pubmed KoreaMed CrossRef