Articles Service
Minireview
Deciphering Diversity Indices for a Better Understanding of Microbial Communities
1Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea, 2National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea, 3Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Youngin 17104, Republic of Korea, 4Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
J. Microbiol. Biotechnol. 2017; 27(12): 2089-2093
Published December 28, 2017 https://doi.org/10.4014/jmb.1709.09027
Copyright © The Korean Society for Microbiology and Biotechnology.
Abstract
Keywords
References
- Berg RD. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435.
- Manson JM, Rauch M, Gilmore MS. 2008. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol. 635: 15-28.
- Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, et al. 2003. A genomic view of the humanBacteroides thetaiotaomicron symbiosis. Science 299: 2074-2076.
- Sonnenburg JL, Angenent LT, Gordon JI. 2004. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immun. 5: 569-573.
- Kim HB, Isaacson RE. 2015. The pig gut microbial diversity:understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 177: 242-251.
- Isaacson R, Kim HB. 2012. The intestinal microbiome of the pig. Anim. Health Res. Rev. 13: 100-109.
- Schmalenberger A, Schwieger F, Tebbe CC. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl. Environ. Microbiol. 67: 3557-3563.
- Chakravorty S, Helb D, Burday M, Connell N, Alland D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69: 330-339.
- Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. 2 006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103: 12115-12120.
- Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, et al. 2007. Microbial population structures in the deep marine biosphere. Science 318: 97-100.
- Highlander SK. 2012. High throughput sequencing methods for microbiome profiling: application to food animal systems. Anim. Health Res. Rev. 13: 40-53.
- Sanschagrin S, Yergeau E. 2014. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J. Vis. Exp. DOI: 10.3791/51709.
- Schloss PD, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501-1506.
- Schloss PD, Handelsman J. 2006. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl. Environ. Microbiol. 72: 6773-6779.
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.
- Chao A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270.
- Chao A, Bunge J. 2002. Estimating the number of species in a stochastic abundance model. Biometrics 58: 531-539.
- Chao A, Chazdon RL, Colwell RK, Shen TJ. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62: 361-371.
- Hughes JB, Bohannan BJM. 2004. Application of ecological diversity statistics in microbial ecology. Mol. Microb. Ecol. Manual 7.01: 1321-1344.
- Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. 2013. Robust estimation of microbial diversity in theory and in practice. ISME J. 7: 1092-1101.
- Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF. 2011. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86: 42-51.
- Magurran A. 2004. Measuring Biological Diversity. Blackwell Science Ltd, Oxford, United Kingdom.
- Simpson EH. 1949. Measurement of diversity. Nature 163: 688.
- Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ. 2001. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67: 4399-4406.
- Sanders HL. 1969. Benthic marine diversity and the stability-time hypothesis. Brookhaven Symp. Biol. 22: 71-81.
- Efron B, Tibshirani R. 1993. An Introduction to the Bootsrap. Chapman & Hall, New York.
- Shen TJ, Chao A, Ling C. 2003. Predicting the number of new species in further taxonomic sampling. Ecology 84: 798-804.
- Chao A, Lee S. 1992. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87: 210-217.
- Chao A, Ma M, Yang M. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80: 193-201.
- Sornplang P, Piyadeatsoontorn S. 2016. Probiotic isolates from unconventional sources: a review. J. Anim. Sci. Technol. 58: 26.
Related articles in JMB
Article
Minireview
J. Microbiol. Biotechnol. 2017; 27(12): 2089-2093
Published online December 28, 2017 https://doi.org/10.4014/jmb.1709.09027
Copyright © The Korean Society for Microbiology and Biotechnology.
Deciphering Diversity Indices for a Better Understanding of Microbial Communities
Bo-Ra Kim 1, Jiwon Shin 1, Robin B. Guevarra 1, Jun Hyung Lee 1, Doo Wan Kim 2, Kuk-Hwan Seol 2, Ju-Hoon Lee 3, Hyeun Bum Kim 1* and Richard E. Isaacson 4
1Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea, 2National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea, 3Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Youngin 17104, Republic of Korea, 4Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
Abstract
The past decades have been a golden era during which great tasks were accomplished in the
field of microbiology, including food microbiology. In the past, culture-dependent methods
have been the primary choice to investigate bacterial diversity. However, using cultureindependent
high-throughput sequencing of 16S rRNA genes has greatly facilitated studies
exploring the microbial compositions and dynamics associated with health and diseases.
These culture-independent DNA-based studies generate large-scale data sets that describe the
microbial composition of a certain niche. Consequently, understanding microbial diversity
becomes of greater importance when investigating the composition, function, and dynamics of
the microbiota associated with health and diseases. Even though there is no general agreement
on which diversity index is the best to use, diversity indices have been used to compare the
diversity among samples and between treatments with controls. Tools such as the Shannon-
Weaver index and Simpson index can be used to describe population diversity in samples. The
purpose of this review is to explain the principles of diversity indices, such as Shannon-
Weaver and Simpson, to aid general microbiologists in better understanding bacterial
communities. In this review, important questions concerning microbial diversity are
addressed. Information from this review should facilitate evidence-based strategies to explore
microbial communities.
Keywords: Microbiota, microbial diversity, microbial ecology, diversity index
References
- Berg RD. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435.
- Manson JM, Rauch M, Gilmore MS. 2008. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol. 635: 15-28.
- Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, et al. 2003. A genomic view of the humanBacteroides thetaiotaomicron symbiosis. Science 299: 2074-2076.
- Sonnenburg JL, Angenent LT, Gordon JI. 2004. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immun. 5: 569-573.
- Kim HB, Isaacson RE. 2015. The pig gut microbial diversity:understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 177: 242-251.
- Isaacson R, Kim HB. 2012. The intestinal microbiome of the pig. Anim. Health Res. Rev. 13: 100-109.
- Schmalenberger A, Schwieger F, Tebbe CC. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl. Environ. Microbiol. 67: 3557-3563.
- Chakravorty S, Helb D, Burday M, Connell N, Alland D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69: 330-339.
- Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. 2 006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103: 12115-12120.
- Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, et al. 2007. Microbial population structures in the deep marine biosphere. Science 318: 97-100.
- Highlander SK. 2012. High throughput sequencing methods for microbiome profiling: application to food animal systems. Anim. Health Res. Rev. 13: 40-53.
- Sanschagrin S, Yergeau E. 2014. Next-generation sequencing of 16S ribosomal RNA gene amplicons. J. Vis. Exp. DOI: 10.3791/51709.
- Schloss PD, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501-1506.
- Schloss PD, Handelsman J. 2006. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl. Environ. Microbiol. 72: 6773-6779.
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.
- Chao A. 1984. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270.
- Chao A, Bunge J. 2002. Estimating the number of species in a stochastic abundance model. Biometrics 58: 531-539.
- Chao A, Chazdon RL, Colwell RK, Shen TJ. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62: 361-371.
- Hughes JB, Bohannan BJM. 2004. Application of ecological diversity statistics in microbial ecology. Mol. Microb. Ecol. Manual 7.01: 1321-1344.
- Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. 2013. Robust estimation of microbial diversity in theory and in practice. ISME J. 7: 1092-1101.
- Lemos LN, Fulthorpe RR, Triplett EW, Roesch LF. 2011. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86: 42-51.
- Magurran A. 2004. Measuring Biological Diversity. Blackwell Science Ltd, Oxford, United Kingdom.
- Simpson EH. 1949. Measurement of diversity. Nature 163: 688.
- Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ. 2001. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67: 4399-4406.
- Sanders HL. 1969. Benthic marine diversity and the stability-time hypothesis. Brookhaven Symp. Biol. 22: 71-81.
- Efron B, Tibshirani R. 1993. An Introduction to the Bootsrap. Chapman & Hall, New York.
- Shen TJ, Chao A, Ling C. 2003. Predicting the number of new species in further taxonomic sampling. Ecology 84: 798-804.
- Chao A, Lee S. 1992. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87: 210-217.
- Chao A, Ma M, Yang M. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 80: 193-201.
- Sornplang P, Piyadeatsoontorn S. 2016. Probiotic isolates from unconventional sources: a review. J. Anim. Sci. Technol. 58: 26.