전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35: 1710-1715.
    CrossRef
  2. Deschênes J-S, Boudreau A, Tremblay R. 2015. Mixotrophic production of microalgae in pilot-scale photobioreactors:practicability and process considerations. Algal Res. 10: 80-86.
    CrossRef
  3. Ji M-K, Abou-Shanab RAI, Kim S-H, Salama E-S, Lee S-H, Kabra AN, et al. 2013. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol. Eng. 58: 142-148.
    CrossRef
  4. Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66: 204-213.
    CrossRef
  5. Tang C-C, Zuo W, Tian Y, Sun N, Wang Z-W, Zhang J. 2016. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors. Bioresour. Technol. 222: 156-164.
    Pubmed CrossRef
  6. Ji MK, Yun HS, Park YT, Kabra AN, Oh IH, Choi J. 2015. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J. Environ. Manag. 159: 115-120.
    Pubmed CrossRef
  7. Ceron Garcia MC, Camacho FG, Miron AS, Sevilla JMF, Chisti Y, Grima EM. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694.
  8. Ji MK, Kim HC, Sapireddy VR, Yun HS, Abou-Shanab RA, Choi J, et al. 2013. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biotechnol. 97: 2701-2710.
    Pubmed CrossRef
  9. Ling J , Nip S, C heok W L, d e Toledo R A, S him H. 2 0 14. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour. Technol. 173: 132-139.
    Pubmed CrossRef
  10. Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35: 1710-1715.
    CrossRef
  11. Amaro HM, Guedes AC, Malcata FX. 2011. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 88: 3402-3410.
    CrossRef
  12. Gonçalves AL, Simões M, Pires JCM. 2014. The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Convers. Manag. 85: 530-536.
    CrossRef
  13. Bhatnagar A, Chinnasamy S, Singh M, Das KC. 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88: 3425-3431.
    CrossRef
  14. Lin TS, Wu JY. 2015. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour. Technol. 184: 100-107.
    Pubmed CrossRef
  15. Das P , Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 102: 3883-3887.
    Pubmed CrossRef
  16. Mahapatra DM, Chanakya HN, Ramachandra TV. 2014. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour. Technol. 168: 142-150.
    Pubmed CrossRef
  17. Kim HW, Vannela R, Zhou C, Harto C, Rittmann BE. 2010. Photoautotrophic nutrient utilization and limitation during semi-continuous growth of Synechocystis sp. PCC6803. Biotechnol. Bioeng. 106: 553-563.
    Pubmed CrossRef
  18. Montgomery DC. 2017. Design and Analysis of Experiments. John Wiley & Sons, New York.
  19. Burton FL, Stensel HD, Tchobanoglous G. 2014. Wastewater engineering: treatment and Resource Recovery. McGraw-Hill, New York.
  20. Yeh K-L, Chang J-S, Chen W-M. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng. Life Sci. 10: 201-208.
    CrossRef
  21. Kumar K, Dasgupta CN, Das D. 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol. 167: 358-366.
    Pubmed CrossRef
  22. Derringer G. 1980. Simultaneous optimization of several response variables. J. Qual. Technol. 12: 214-219.
  23. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH. 2014. Standard Methods for the Examination of Water and Wastewater, 2014. American Public Health Association, Washington, DC.
  24. Kim H-W, Park S, Rittmann BE. 2015. Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environ. Eng. Res. 20: 347-355.
    CrossRef
  25. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs 9: 1607.
    Pubmed PMC CrossRef
  26. Herrero A, Muro-Pastor AM, Flores E. 2001. Nitrogen control in cyanobacteria. J. Bacteriol. 183: 411-425.
    Pubmed PMC CrossRef
  27. Cerón García MC, Sánchez Mirón A, Fernández Sevilla JM, Molina Grima E, García Camacho F. 2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum. Process Biochem. 40: 297-305.
    CrossRef
  28. Madigan MT, Clark DP, Stahl D, Martinko JM. 2010. Brock Biology of Microorganisms, 13th Ed. Benjamin Cummings, San Francisco, CA.
  29. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AdR. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91: 102-111.
    CrossRef
  30. Kim S, Park JE, Cho YB, Hwang SJ. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144: 8-13.
    Pubmed CrossRef
  31. Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol. 116: 307-313.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(11): 2010-2018

Published online November 28, 2017 https://doi.org/10.4014/jmb.1707.07007

Copyright © The Korean Society for Microbiology and Biotechnology.

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

Tae-Hun Lee 1, Jae Kyung Jang 2 and Hyun-Woo Kim 1*

1Department of Environmental Engineering and Soil Environment Research Center, Chonbuk National University, Jeonju 54896, Republic of Korea, 2Energy and Environmental Engineering Division, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54875, Republic of Korea

Received: July 6, 2017; Accepted: September 2, 2017

Abstract

Mixotrophic microalgal growth gives a great premise for wastewater treatment based on
photoautotrophic nutrient utilization and heterotrophic organic removal while producing
renewable biomass. There remains a need for a control strategy to enrich them in a
photobioreactor. This study performed a series of batch experiments using a mixotroph,
Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a
statistical design of the experiment. Using a central composite design, this study evaluated
how temperature and light irradiance are associated with CO2 capture and organic carbon
respiration through biomass production and ammonia removal kinetics. By conducting
regressions on the experimental data, response surfaces were created to suggest proper ranges
of temperature and light irradiance that mixotrophs can beneficially use as two types of
energy sources. The results identified that efficient mixotrophic metabolism of Chlorella
sorokiniana for organics and inorganics occurs at the temperature of 30-40°C and diurnal light
condition of 150-200 μmol E·m2·s-1. The optimal specific growth rate and ammonia removal
rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test
verified that the organic removal rate was 105 mg COD·l-1·d-1. These results support the
development of a viable option for sustainable treatment and effluent quality management of
problematic livestock wastewater.

Keywords: Chlorella sorokiniana, livestock wastewater, response surface methodology, specific growth rate, light irradiance

References

  1. Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35: 1710-1715.
    CrossRef
  2. Deschênes J-S, Boudreau A, Tremblay R. 2015. Mixotrophic production of microalgae in pilot-scale photobioreactors:practicability and process considerations. Algal Res. 10: 80-86.
    CrossRef
  3. Ji M-K, Abou-Shanab RAI, Kim S-H, Salama E-S, Lee S-H, Kabra AN, et al. 2013. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol. Eng. 58: 142-148.
    CrossRef
  4. Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66: 204-213.
    CrossRef
  5. Tang C-C, Zuo W, Tian Y, Sun N, Wang Z-W, Zhang J. 2016. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors. Bioresour. Technol. 222: 156-164.
    Pubmed CrossRef
  6. Ji MK, Yun HS, Park YT, Kabra AN, Oh IH, Choi J. 2015. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J. Environ. Manag. 159: 115-120.
    Pubmed CrossRef
  7. Ceron Garcia MC, Camacho FG, Miron AS, Sevilla JMF, Chisti Y, Grima EM. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694.
  8. Ji MK, Kim HC, Sapireddy VR, Yun HS, Abou-Shanab RA, Choi J, et al. 2013. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biotechnol. 97: 2701-2710.
    Pubmed CrossRef
  9. Ling J , Nip S, C heok W L, d e Toledo R A, S him H. 2 0 14. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour. Technol. 173: 132-139.
    Pubmed CrossRef
  10. Zhang H, Wang W, Li Y, Yang W, Shen G. 2011. Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35: 1710-1715.
    CrossRef
  11. Amaro HM, Guedes AC, Malcata FX. 2011. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 88: 3402-3410.
    CrossRef
  12. Gonçalves AL, Simões M, Pires JCM. 2014. The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Convers. Manag. 85: 530-536.
    CrossRef
  13. Bhatnagar A, Chinnasamy S, Singh M, Das KC. 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88: 3425-3431.
    CrossRef
  14. Lin TS, Wu JY. 2015. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresour. Technol. 184: 100-107.
    Pubmed CrossRef
  15. Das P , Lei W, Aziz SS, Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 102: 3883-3887.
    Pubmed CrossRef
  16. Mahapatra DM, Chanakya HN, Ramachandra TV. 2014. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour. Technol. 168: 142-150.
    Pubmed CrossRef
  17. Kim HW, Vannela R, Zhou C, Harto C, Rittmann BE. 2010. Photoautotrophic nutrient utilization and limitation during semi-continuous growth of Synechocystis sp. PCC6803. Biotechnol. Bioeng. 106: 553-563.
    Pubmed CrossRef
  18. Montgomery DC. 2017. Design and Analysis of Experiments. John Wiley & Sons, New York.
  19. Burton FL, Stensel HD, Tchobanoglous G. 2014. Wastewater engineering: treatment and Resource Recovery. McGraw-Hill, New York.
  20. Yeh K-L, Chang J-S, Chen W-M. 2010. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng. Life Sci. 10: 201-208.
    CrossRef
  21. Kumar K, Dasgupta CN, Das D. 2014. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour. Technol. 167: 358-366.
    Pubmed CrossRef
  22. Derringer G. 1980. Simultaneous optimization of several response variables. J. Qual. Technol. 12: 214-219.
  23. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH. 2014. Standard Methods for the Examination of Water and Wastewater, 2014. American Public Health Association, Washington, DC.
  24. Kim H-W, Park S, Rittmann BE. 2015. Multi-component kinetics for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environ. Eng. Res. 20: 347-355.
    CrossRef
  25. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs 9: 1607.
    Pubmed KoreaMed CrossRef
  26. Herrero A, Muro-Pastor AM, Flores E. 2001. Nitrogen control in cyanobacteria. J. Bacteriol. 183: 411-425.
    Pubmed KoreaMed CrossRef
  27. Cerón García MC, Sánchez Mirón A, Fernández Sevilla JM, Molina Grima E, García Camacho F. 2005. Mixotrophic growth of the microalga Phaeodactylum tricornutum. Process Biochem. 40: 297-305.
    CrossRef
  28. Madigan MT, Clark DP, Stahl D, Martinko JM. 2010. Brock Biology of Microorganisms, 13th Ed. Benjamin Cummings, San Francisco, CA.
  29. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AdR. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91: 102-111.
    CrossRef
  30. Kim S, Park JE, Cho YB, Hwang SJ. 2013. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour. Technol. 144: 8-13.
    Pubmed CrossRef
  31. Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol. 116: 307-313.
    Pubmed CrossRef