전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Kawaguchi A, Inoue K, Inoue Y. 2014. Biological control of bacterial spot on peach by nonpathogenic Xanthomonas campestris strains AZ98101 and AZ98106. J. Gen. Plant Pathol. 80: 158-163.
    CrossRef
  2. Stefani E. 2010. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J. Plant Pathol. 92: S1.99-S1.103.
  3. Wallis FM, Truter SJ. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307-310.
    CrossRef
  4. Genin S, Boucher C. 2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol. 42: 107-134.
    Pubmed CrossRef
  5. Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87.
    Pubmed CrossRef
  6. Vu TT, Kim J-C, Choi YH, Choi GJ, Jang KS, Choi TH, et al. 2013. Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis. 97: 1593-1598.
    CrossRef
  7. Yoon MY, Cha BG, Kim J-C. 2013. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 29: 1-9.
    Pubmed PMC CrossRef
  8. Le Dang Q, Shin TS, Park MS, Choi YH, Choi GJ, Jang KS, et al. 2014. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J. Agric. Food Chem. 62: 3363-3370.
    Pubmed CrossRef
  9. Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, et al. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 62: 488-493.
    Pubmed CrossRef
  10. Austin DF, Huáman Z. 1996. A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 29: 501-502.
    CrossRef
  11. Miller RE, Rausher MD, Manos PS. 1999. Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst. Bot. 24: 209-227.
    CrossRef
  12. Kim KH, Ha SK, Choi SU, Kim SY, Lee KR. 2011. Bioactive phenolic constituents from the seeds of Pharbitis nil. Chem. Pharm. Bull. 59: 1425-1429.
    CrossRef
  13. Corona-Castañeda B, Pereda-Miranda R. 2012. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria. Planta Med. 78:128-131.
    Pubmed CrossRef
  14. Kawasaki T, Okabe H, Nakatsuka I. 1971. Studies on resin glycosides. I. Reinvestigation of the components of pharbitin, a resin glycoside of the seeds of Pharbitis nil Choisy. Chem. Pharm. Bull. 19: 2394-2403.
    CrossRef
  15. Kim KH, Choi SU, Lee KR. 2009. Diterpene glycosides from the seeds of Pharbitis nil. J. Nat. Prod. 72: 1121-1127.
    Pubmed CrossRef
  16. Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad DT, et al. 2003. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62: 1073-1079.
    CrossRef
  17. MacLeod JK, Ward A. 1997. Structural investigation of resin glycosides from Ipomoea lonchophylla. J. Nat. Prod. 60: 467-471.
    Pubmed CrossRef
  18. Bensky D, Gamble A. 1993. Chinese Herbasl Medicine, Revised Ed. Materia Media, Eastland Press, Seattle.
  19. Eich E. 2008. Solanaceae and Convolvulaceae: Secondary Metabolites, Springer Verlag, Berlin Heidelberg.
    CrossRef
  20. Okabe H, Kawasaki T. 1970. Structures of pharbitic acids C and D. Tetrahedron Lett. 36: 3123-3126.
    CrossRef
  21. Lee TH, Choi JJ, Kim DH, Choi S, Lee KR, Son M, et al. 2008. Gastroprokinetic effects of DA-9701, a new prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber. Phytomedicine 15: 836-843.
    Pubmed CrossRef
  22. Kim KH, Choi SU, Son MW, Lee KR. 2010. Two new phenolic amides from the seeds of Pharbitis nil. Chem. Pharm. Bull. 58: 1532-1535.
    CrossRef
  23. Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S-I, et al. 1998. Two hevein homologs isolated from the seeds of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta 1382: 80-90.
    CrossRef
  24. Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, et al. 2002. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol. Biol. 50: 441-452.
    Pubmed CrossRef
  25. Ko SG, Koh SH, Jun CY, Nam CG, Bae HS, Shin MK. 2004. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells. Biol. Pharm. Bull. 27: 1604-1610.
    Pubmed CrossRef
  26. Hao B, Liu GL, Hu XG, Wang GX. 2012. Bioassay-guided isolation and identification of active compounds from Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Vet. Parasitol. 187: 452-458.
    Pubmed CrossRef
  27. Lee HJ, Jo EJ, Kim NH, Chae Y, Lee S-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17: 326-333.
    CrossRef
  28. Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hort. Sci. 38: 275−282.
    CrossRef
  29. Ono M, Takigawa A, Mineno T, Yoshimitu H, Nohara T, Ikeda T, et al. 2010. Acylated glycosides of hydroxyl fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol. J. Nat. Prod. 73: 1846-1852.
    Pubmed CrossRef
  30. Ono M, Noda N, Kawasaki T, Miyahara K. 1990. Resin glycosides. VII. Reinvestigation of the component organic and glycosidic acids of pharbitin, the crude ether-insoluble resin glycoside (“convolvulin”) of Pharbitidis Semen (seeds of Pharbitis nil). Chem. Pharm. Bull. 38: 1892-1897.
    CrossRef
  31. Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B. 2012. Evaluation of Xanthomonas arboricola pv. pruni inoculation techniques to screen for bacterial spot resistance in peach and apricot. J. Plant Pathol. 94: S1.91-S1.96.
  32. Winstead NN, Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42: 628-634.
  33. Bieber LW, da Silva Filho AA, Corrêa Lima RMO, de Andrade Chiappeta A, do Nascimento SC, de Souza IA, et al. 1986. Anticancer and antimicrobial glycosides from Ipomoea bahiensis. Phytochemistry 25: 1077-1081.
    CrossRef
  34. Reynolds WF, Yu M, Enriquez RG, Gonzalez H, Leon I, Magos G, et al. 1995. Isolation and characterization of cytotoxic and antibacterial tetrasaccharide glycosides from Ipomoea stans. J. Nat. Prod. 58: 1730-1734.
    Pubmed CrossRef
  35. Pereda-Miranda R, Mata R, Anaya AL, Wickramaratne DBM, Pezzuto JM, Kinghorn AD. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod. 56: 571-582.
    Pubmed CrossRef
  36. Okabe H, Koshito N, Tanaka K, Kawasaki T. 1971. Studies on resin glycosides. II. Unhomogeneity of “pharbitic acid” and isolation and partial structures of pharbitic acids C and D, the major constituents of “pharbitic acid”. Chem. Pharm. Bull. 19: 2394-2403.
    CrossRef
  37. Pontes N de C, Kronka AZ, Moraes MFH, Nascimento AS, Fujinawa MF. 2011. Incorporation of neem leaves into soil to control bacterial wilt of tomato. J. Plant Pathol. 93: 741-744.
  38. Yuan G-Q, Li Q-Q, Qin J, Ye Y-F, Lin W. 2012. Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant Dis. 96: 1143-1147.
    CrossRef
  39. Deberdt P, Perrin B, Coranson-Beaudu R, Duyck P-F, Wicker E. 2012. Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Dis. 96: 687-692.
    CrossRef
  40. Pradhanang PM, Momol MT, Olson SM, Jones JB. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427.
    CrossRef
  41. Ji P, Momol MT, Olson SM, Pradhanang PM, Jones JB. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89: 497-500.
    CrossRef
  42. Lee YH, Choi CW, Kim SH, Yun JG, Chang SW, Kim YS, et al. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39.
    CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(10): 1763-1772

Published online October 28, 2017 https://doi.org/10.4014/jmb.1706.06008

Copyright © The Korean Society for Microbiology and Biotechnology.

Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria

Hoa Thi Nguyen 1, Nan Hee Yu 1, Ae Ran Park 1, Hae Woong Park 2, In Seon Kim 1 and Jin-Cheol Kim 1*

1Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea, 1R&D Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea

Received: June 5, 2017; Accepted: August 28, 2017

Abstract

This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds
and investigate their antibacterial activity against various plant pathogenic bacteria. The
methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola
pv. pruni (Xap) with a minimum inhibition concentration (MIC) value of 250 μg/ml. Among
the three solvent layers obtained from the methanol extract of P. nil seeds, only the butanol
layer displayed the activity with an MIC value of 125 μg/ml against Xap. An antibacterial
fraction was obtained from P. nil seeds by repeated column chromatography and identified as
pharbitin, a crude resin glycoside, by instrumental analysis. The antibacterial activity of
pharbitin was tested in vitro against 14 phytopathogenic bacteria, and it was found to inhibit
Ralstonia solanacearum and four Xanthomonas species. The minimum inhibitory concentration
values against the five bacteria were 125–500 μg/ml for the n-butanol layer and 31.25–125 μg/ml
for pharbitin. In a detached peach leaf assay, it effectively suppressed the development of
bacterial leaf spot, with a control value of 87.5% at 500 μg/ml. In addition, pharbitin strongly
reduced the development of bacterial wilt on tomato seedlings by 97.4% at 250 μg/ml, 7 days
after inoculation. These findings suggest that the crude extract of P. nil seeds can be used as an
alternative biopesticide for the control of plant diseases caused by R. solanacearum and
Xanthomonas spp. This is the first report on the antibacterial activity of pharbitin against
phytopathogenic bacteria.

Keywords: Antibacterial activity, Pharbitis nil seeds, pharbitin, bacterial leaf spot, tomato wilt

References

  1. Kawaguchi A, Inoue K, Inoue Y. 2014. Biological control of bacterial spot on peach by nonpathogenic Xanthomonas campestris strains AZ98101 and AZ98106. J. Gen. Plant Pathol. 80: 158-163.
    CrossRef
  2. Stefani E. 2010. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J. Plant Pathol. 92: S1.99-S1.103.
  3. Wallis FM, Truter SJ. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307-310.
    CrossRef
  4. Genin S, Boucher C. 2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol. 42: 107-134.
    Pubmed CrossRef
  5. Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87.
    Pubmed CrossRef
  6. Vu TT, Kim J-C, Choi YH, Choi GJ, Jang KS, Choi TH, et al. 2013. Effect of gallotannins derived from Sedum takesimense on tomato bacterial wilt. Plant Dis. 97: 1593-1598.
    CrossRef
  7. Yoon MY, Cha BG, Kim J-C. 2013. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 29: 1-9.
    Pubmed KoreaMed CrossRef
  8. Le Dang Q, Shin TS, Park MS, Choi YH, Choi GJ, Jang KS, et al. 2014. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J. Agric. Food Chem. 62: 3363-3370.
    Pubmed CrossRef
  9. Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, et al. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 62: 488-493.
    Pubmed CrossRef
  10. Austin DF, Huáman Z. 1996. A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 29: 501-502.
    CrossRef
  11. Miller RE, Rausher MD, Manos PS. 1999. Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst. Bot. 24: 209-227.
    CrossRef
  12. Kim KH, Ha SK, Choi SU, Kim SY, Lee KR. 2011. Bioactive phenolic constituents from the seeds of Pharbitis nil. Chem. Pharm. Bull. 59: 1425-1429.
    CrossRef
  13. Corona-Castañeda B, Pereda-Miranda R. 2012. Morning glory resin glycosides as modulators of antibiotic activity in multidrug-resistant gram-negative bacteria. Planta Med. 78:128-131.
    Pubmed CrossRef
  14. Kawasaki T, Okabe H, Nakatsuka I. 1971. Studies on resin glycosides. I. Reinvestigation of the components of pharbitin, a resin glycoside of the seeds of Pharbitis nil Choisy. Chem. Pharm. Bull. 19: 2394-2403.
    CrossRef
  15. Kim KH, Choi SU, Lee KR. 2009. Diterpene glycosides from the seeds of Pharbitis nil. J. Nat. Prod. 72: 1121-1127.
    Pubmed CrossRef
  16. Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad DT, et al. 2003. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. Phytochemistry 62: 1073-1079.
    CrossRef
  17. MacLeod JK, Ward A. 1997. Structural investigation of resin glycosides from Ipomoea lonchophylla. J. Nat. Prod. 60: 467-471.
    Pubmed CrossRef
  18. Bensky D, Gamble A. 1993. Chinese Herbasl Medicine, Revised Ed. Materia Media, Eastland Press, Seattle.
  19. Eich E. 2008. Solanaceae and Convolvulaceae: Secondary Metabolites, Springer Verlag, Berlin Heidelberg.
    CrossRef
  20. Okabe H, Kawasaki T. 1970. Structures of pharbitic acids C and D. Tetrahedron Lett. 36: 3123-3126.
    CrossRef
  21. Lee TH, Choi JJ, Kim DH, Choi S, Lee KR, Son M, et al. 2008. Gastroprokinetic effects of DA-9701, a new prokinetic agent formulated with Pharbitis Semen and Corydalis Tuber. Phytomedicine 15: 836-843.
    Pubmed CrossRef
  22. Kim KH, Choi SU, Son MW, Lee KR. 2010. Two new phenolic amides from the seeds of Pharbitis nil. Chem. Pharm. Bull. 58: 1532-1535.
    CrossRef
  23. Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S-I, et al. 1998. Two hevein homologs isolated from the seeds of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta 1382: 80-90.
    CrossRef
  24. Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, et al. 2002. Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol. Biol. 50: 441-452.
    Pubmed CrossRef
  25. Ko SG, Koh SH, Jun CY, Nam CG, Bae HS, Shin MK. 2004. Induction of apoptosis by Saussurea lappa and Pharbitis nil on AGS gastric cancer cells. Biol. Pharm. Bull. 27: 1604-1610.
    Pubmed CrossRef
  26. Hao B, Liu GL, Hu XG, Wang GX. 2012. Bioassay-guided isolation and identification of active compounds from Semen pharbitidis against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Vet. Parasitol. 187: 452-458.
    Pubmed CrossRef
  27. Lee HJ, Jo EJ, Kim NH, Chae Y, Lee S-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17: 326-333.
    CrossRef
  28. Koh YJ, Kim GH, Jung JS, Lee YS, Hur JS. 2010. Outbreak of bacterial canker on Hort16A (Actinidia chinensis Planchon) caused by Pseudomonas syringae pv. actinidiae in Korea. N. Z. J. Crop Hort. Sci. 38: 275−282.
    CrossRef
  29. Ono M, Takigawa A, Mineno T, Yoshimitu H, Nohara T, Ikeda T, et al. 2010. Acylated glycosides of hydroxyl fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol. J. Nat. Prod. 73: 1846-1852.
    Pubmed CrossRef
  30. Ono M, Noda N, Kawasaki T, Miyahara K. 1990. Resin glycosides. VII. Reinvestigation of the component organic and glycosidic acids of pharbitin, the crude ether-insoluble resin glycoside (“convolvulin”) of Pharbitidis Semen (seeds of Pharbitis nil). Chem. Pharm. Bull. 38: 1892-1897.
    CrossRef
  31. Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B. 2012. Evaluation of Xanthomonas arboricola pv. pruni inoculation techniques to screen for bacterial spot resistance in peach and apricot. J. Plant Pathol. 94: S1.91-S1.96.
  32. Winstead NN, Kelman A. 1952. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology 42: 628-634.
  33. Bieber LW, da Silva Filho AA, Corrêa Lima RMO, de Andrade Chiappeta A, do Nascimento SC, de Souza IA, et al. 1986. Anticancer and antimicrobial glycosides from Ipomoea bahiensis. Phytochemistry 25: 1077-1081.
    CrossRef
  34. Reynolds WF, Yu M, Enriquez RG, Gonzalez H, Leon I, Magos G, et al. 1995. Isolation and characterization of cytotoxic and antibacterial tetrasaccharide glycosides from Ipomoea stans. J. Nat. Prod. 58: 1730-1734.
    Pubmed CrossRef
  35. Pereda-Miranda R, Mata R, Anaya AL, Wickramaratne DBM, Pezzuto JM, Kinghorn AD. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor. J. Nat. Prod. 56: 571-582.
    Pubmed CrossRef
  36. Okabe H, Koshito N, Tanaka K, Kawasaki T. 1971. Studies on resin glycosides. II. Unhomogeneity of “pharbitic acid” and isolation and partial structures of pharbitic acids C and D, the major constituents of “pharbitic acid”. Chem. Pharm. Bull. 19: 2394-2403.
    CrossRef
  37. Pontes N de C, Kronka AZ, Moraes MFH, Nascimento AS, Fujinawa MF. 2011. Incorporation of neem leaves into soil to control bacterial wilt of tomato. J. Plant Pathol. 93: 741-744.
  38. Yuan G-Q, Li Q-Q, Qin J, Ye Y-F, Lin W. 2012. Isolation of methyl gallate from Toxicodendron sylvestre and its effect on tomato bacterial wilt. Plant Dis. 96: 1143-1147.
    CrossRef
  39. Deberdt P, Perrin B, Coranson-Beaudu R, Duyck P-F, Wicker E. 2012. Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Dis. 96: 687-692.
    CrossRef
  40. Pradhanang PM, Momol MT, Olson SM, Jones JB. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87: 423-427.
    CrossRef
  41. Ji P, Momol MT, Olson SM, Pradhanang PM, Jones JB. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 89: 497-500.
    CrossRef
  42. Lee YH, Choi CW, Kim SH, Yun JG, Chang SW, Kim YS, et al. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28: 32-39.
    CrossRef