전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Howitz KT, B itterman KJ, C ohen HY, L amming DW, L avu S, Wood JG, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196.
    Pubmed CrossRef
  2. de Lemos ML. 2001. Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann. Pharmacother. 35: 11118-11121.
    Pubmed CrossRef
  3. Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI. 2007. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKCα. Nutr. Cancer 58: 1222-1229.
    Pubmed CrossRef
  4. Sharma RA, G escher A J, S teward WP. 2 005. C urcumin: the story so far. Eur. J. Cancer 41: 1955-1968.
    Pubmed CrossRef
  5. Aggarwal BB, Sung B. 2008. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharm. Sci. 30: 85-94.
    Pubmed CrossRef
  6. Wilken R, Veena MS, Wang MB, Srivatsan ES. 2011. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12.
    Pubmed PMC CrossRef
  7. Jayaprakasha GK, Rao LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724.
    CrossRef
  8. Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. 2005. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104:879-890.
    Pubmed CrossRef
  9. Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. 2008. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol. 14: 2003-2009.
    Pubmed PMC CrossRef
  10. Mishra S, Palanivelu K. 2008. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann. Indian Acad. Neurol. 11: 13-19.
    Pubmed PMC CrossRef
  11. Venigalla M, Gyengesi E, Münch G. 2015. Curcumin and apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res. 10: 1181-1185.
    Pubmed PMC CrossRef
  12. Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. 2013. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 19: 20472069.
    CrossRef
  13. Youssef KM, El-Sherbeny MA, El-Shafie FS, Farag HA, AlDeeb OA, Awadalla SA. 2004. Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch. Pharm. 337: 42-54.
    Pubmed CrossRef
  14. Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110.
    Pubmed CrossRef
  15. Flores-Sanchez IJ, Verpoorte R. 2009. Plant polyketide synthase: a fascinating group of enzymes. Plant Physiol. Biochem. 47: 167-174.
    Pubmed CrossRef
  16. Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J. Biol. Chem. 282: 37702-37709.
    Pubmed CrossRef
  17. Katsuyama Y, Kita T, Funa N, Horinouchi S. 2009. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J. Biol. Chem. 284: 11160-11170.
    Pubmed PMC CrossRef
  18. Wang J, Guleria S, Koffas MA, Yan Y. 2016. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37: 97-104.
    Pubmed CrossRef
  19. An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
    CrossRef
  20. Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204.
    Pubmed CrossRef
  21. Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate:coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366.
    CrossRef
  22. Kim S-K, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn J-H. 2009. Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa. J. Korean Soc. Appl. Biol. Chem. 52: 315-320.
    CrossRef
  23. Kim M K, J eong W , Kang J , C hong Y . 2011. Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorg. Med. Chem. 19: 3793-3800.
    Pubmed CrossRef
  24. Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65: 1157-1564.
    Pubmed CrossRef
  25. Berner M, Krug D, Gihlmaier C, Vente A, Müller R, Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 2666-2673.
    Pubmed PMC CrossRef
  26. Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400.
    Pubmed CrossRef
  27. Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol. 61: 51-69.
    Pubmed CrossRef
  28. Lütke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110.
    Pubmed CrossRef
  29. Patnaik R, Liao JC. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60: 3903-3908.
    Pubmed PMC
  30. Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. 2015. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol. J. 10: 599-609.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(5): 975-982

Published online May 28, 2017 https://doi.org/10.4014/jmb.1701.01030

Copyright © The Korean Society for Microbiology and Biotechnology.

Production of Curcuminoids in Engineered Escherichia coli

Eun Ji Kim 1, Mi Na Cha 1, Bog-Gyu Kim 2 and Joong-Hoon Ahn 1*

1Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea, 2Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea

Received: January 13, 2017; Accepted: March 9, 2017

Abstract

Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa,
possesses diverse pharmacological properties, including anti-inflammatory, antioxidant,
antiproliferative, and antiangiogenic activities. Two curcuminoids (dicinnamoylmethane and
bisdemethoxycurcumin) were synthesized from glucose in Escherichia coli. PAL (phenylalanine
ammonia lyase) or TAL (tyrosine ammonia lyase), along with Os4CL (p-coumaroyl-CoA ligase)
and CUS (curcumin synthase) genes, were introduced into E. coli, and each strain produced
dicinnamoylmethane or bisdemethoxycurcumin, respectively. In order to increase the
production of curcuminoids in E. coli, the shikimic acid biosynthesis pathway, which increases
the substrates for curcuminoid biosynthesis, was engineered. Using the engineered strains, the
production of bisdemethoxycurcumin increased from 0.32 to 4.63 mg/l, and that of
dicinnamoylmethane from 1.24 to 6.95 mg/l.

Keywords: Bisdemethoxycurcumin, dicinnamoylmethane, metabolic engineering

References

  1. Howitz KT, B itterman KJ, C ohen HY, L amming DW, L avu S, Wood JG, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196.
    Pubmed CrossRef
  2. de Lemos ML. 2001. Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann. Pharmacother. 35: 11118-11121.
    Pubmed CrossRef
  3. Tonetti DA, Zhang Y, Zhao H, Lim SB, Constantinou AI. 2007. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKCα. Nutr. Cancer 58: 1222-1229.
    Pubmed CrossRef
  4. Sharma RA, G escher A J, S teward WP. 2 005. C urcumin: the story so far. Eur. J. Cancer 41: 1955-1968.
    Pubmed CrossRef
  5. Aggarwal BB, Sung B. 2008. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharm. Sci. 30: 85-94.
    Pubmed CrossRef
  6. Wilken R, Veena MS, Wang MB, Srivatsan ES. 2011. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12.
    Pubmed KoreaMed CrossRef
  7. Jayaprakasha GK, Rao LJ, Sakariah KK. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724.
    CrossRef
  8. Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. 2005. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104:879-890.
    Pubmed CrossRef
  9. Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. 2008. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol. 14: 2003-2009.
    Pubmed KoreaMed CrossRef
  10. Mishra S, Palanivelu K. 2008. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann. Indian Acad. Neurol. 11: 13-19.
    Pubmed KoreaMed CrossRef
  11. Venigalla M, Gyengesi E, Münch G. 2015. Curcumin and apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res. 10: 1181-1185.
    Pubmed KoreaMed CrossRef
  12. Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. 2013. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr. Pharm. Des. 19: 20472069.
    CrossRef
  13. Youssef KM, El-Sherbeny MA, El-Shafie FS, Farag HA, AlDeeb OA, Awadalla SA. 2004. Synthesis of curcumin analogues as potential antioxidant, cancer chemopreventive agents. Arch. Pharm. 337: 42-54.
    Pubmed CrossRef
  14. Austin MB, Noel JP. 2003. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20: 79-110.
    Pubmed CrossRef
  15. Flores-Sanchez IJ, Verpoorte R. 2009. Plant polyketide synthase: a fascinating group of enzymes. Plant Physiol. Biochem. 47: 167-174.
    Pubmed CrossRef
  16. Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S. 2007. In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa. J. Biol. Chem. 282: 37702-37709.
    Pubmed CrossRef
  17. Katsuyama Y, Kita T, Funa N, Horinouchi S. 2009. Curcuminoid biosynthesis by two type III polyketide synthases in the herb Curcuma longa. J. Biol. Chem. 284: 11160-11170.
    Pubmed KoreaMed CrossRef
  18. Wang J, Guleria S, Koffas MA, Yan Y. 2016. Microbial production of value-added nutraceuticals. Curr. Opin. Biotechnol. 37: 97-104.
    Pubmed CrossRef
  19. An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
    CrossRef
  20. Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204.
    Pubmed CrossRef
  21. Lee YJ, Jeon Y, Lee JS, Kim BG, Lee CH, Ahn J-H. 2007. Enzymatic synthesis of phenolic CoAs using 4-coumarate:coenzyme A ligase (4CL) from rice. Bull. Korean Chem. Soc. 28: 365-366.
    CrossRef
  22. Kim S-K, Kim DH, Kim BG, Jeon YM, Hong BS, Ahn J-H. 2009. Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa. J. Korean Soc. Appl. Biol. Chem. 52: 315-320.
    CrossRef
  23. Kim M K, J eong W , Kang J , C hong Y . 2011. Significant enhancement in radical-scavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon. Bioorg. Med. Chem. 19: 3793-3800.
    Pubmed CrossRef
  24. Cochrane FC, Davin LB, Lewis NG. 2004. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65: 1157-1564.
    Pubmed CrossRef
  25. Berner M, Krug D, Gihlmaier C, Vente A, Müller R, Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 2666-2673.
    Pubmed KoreaMed CrossRef
  26. Santos CNS, Koffas M, Stephanopoulos G. 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392-400.
    Pubmed CrossRef
  27. Sariaslani FS. 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol. 61: 51-69.
    Pubmed CrossRef
  28. Lütke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110.
    Pubmed CrossRef
  29. Patnaik R, Liao JC. 1994. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl. Environ. Microbiol. 60: 3903-3908.
    Pubmed KoreaMed
  30. Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. 2015. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol. J. 10: 599-609.
    Pubmed CrossRef