전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Li LW, Dixon JE. 2000. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol. 12: 75-84.
    Pubmed CrossRef
  2. Dudits D. 2004. Protein phosphorylation as key control mechanism in plant cell division. Acta Physiol. Plant. 26: 4.
  3. Leung KT, Li KKH, Sun SSM, Chan PKS, Ooi VEC, Chiu LCM. 2008. Activation of the JNK pathway promotes phosphorylation and degradation of Bim(EL) - a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 29: 544-551.
    Pubmed CrossRef
  4. Sharma K, D’Souza RCJ, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thrbased signaling. Cell Rep. 8: 1583-1594.
    Pubmed CrossRef
  5. Byrum CA, Walton KD, Robertson AJ, Carbonneau S, Thomason RT, Coffman JA, McClay DR. 2006. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions. Dev. Biol. 300: 194-218.
    Pubmed PMC CrossRef
  6. Macho AP, Lozano-Duran R, Zipfel C. 2015. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends Plant Sci. 20: 269-272.
    Pubmed CrossRef
  7. Derrien A, Druey K. 2000. Importance of tyrosine phosphorylation of RGS16 in the inhibition of G-proteincoupled MAP kinase stimulation. J. Allergy Clin. Immun. 105: S172-S173.
    CrossRef
  8. Morimura T, Ogawa M. 2009. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res. 1304: 26-37.
    Pubmed CrossRef
  9. Jung KJ, Lee EK, Yu BP, Chung HY. 2009. Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappa B signaling in the inflammatory process and aging. Free Radic. Biol. Med. 47:983-991.
    Pubmed CrossRef
  10. Ten Eyck LF, Taylor SS, Kornev AP. 2008. Conserved spatial patterns across the protein kinase family. Biochim. Biophys. Acta 1784: 238-243.
    Pubmed CrossRef
  11. Lin JS, Lu CW, Huang CJ, Wu PF, Robinson D, Kung HJ, et al. 1998. Protein-tyrosine kinase and protein-serine/threonine kinase expression in human gastric cancer cell lines. J. Biomed. Sci. 5: 101-110.
    Pubmed CrossRef
  12. Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. 2013. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 346: 11-19.
    Pubmed CrossRef
  13. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. 2 004. P rotein t yrosine ph osphatases i n the human genome. Cell 117: 699-711.
    Pubmed CrossRef
  14. Musharraf A, Markschies N, Imhof D, Englert C. 2006. Structural requirements of substrates for the PTP domain of Eya proteins. J. Pept. Sci. 12: 174-174.
  15. Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049.
    Pubmed CrossRef
  16. Hudaky P, Perczel A. 2005. Toward direct determination of conformations of protein building units from multidimensional NMR experiments. VI. Chemical shift analysis of his to gain 3D structure and protonation state information. J. Comput. Chem. 26: 1307-1317.
    Pubmed CrossRef
  17. Demers JP, Chevelkov V, Lange A. 2011. Progress in correlation spectroscopy at ultra-fast magic-angle spinning:basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl. Magn. Reson. 40: 101-113.
    Pubmed CrossRef
  18. Zhu J, Cheng LP, Fang Q, Zhou ZH, Honig B. 2010. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J. Mol. Biol. 397: 835-851.
    Pubmed PMC CrossRef
  19. Seo JH, Lee GS, Kim J, Cho BK, Joo K, Lee J, Kim BG. 2009. Automatic protein structure prediction system enabling rapid and accurate model building for enzyme screening. Enzyme Microb. Technol. 45: 218-225.
    CrossRef
  20. Tsai CJ, Ma B, Sham YY, Kumar S, Wolfson HJ, Nussinov R. 2001. A hierarchial, building-block-based computational scheme for protein structure prediction. IBM J. Res. Dev. 45: 513-523.
    CrossRef
  21. Ul-Haq Z, Saeed M, Halim SA, Khan W. 2015. 3D structure prediction of human beta 1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing. PLoS One 10: e0122223.
    Pubmed PMC CrossRef
  22. Danishuddin M, Khan A, Faheem M, Kalaiarasan P, Baig MH, Subbarao N, Khan AU. 2014. Structure-based screening of inhibitors against KPC-2: designing potential drug candidates against multidrug-resistant bacteria. J. Biomol. Struct. Dyn. 32: 741-750.
    Pubmed CrossRef
  23. Kesharwani RK, Singh DV, Misra K. 2013. Computationbased virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. J. Vector Dis. 50: 93-102.
  24. Somvanshi P, Seth PK. 2009. Targeting the peptide deformylase of Salmonella enterica for virtual screening and structure based drug designing. New Biotechnol. 25: S366.
    CrossRef
  25. Balajee R, Dhanarajan MS. 2009. Mining the information for structure based drug designing by relational database management notion. E. J. Chem. 6: 1047-1054.
    CrossRef
  26. Ding HY, Zhang Y, Xu C, Hou DX, Li J, Zhang YJ, et al. 2014. Norathyriol reverses obesity- and high-fat-dietinduced insulin resistance in mice through inhibition of PTP1B. Diabetologia 57: 2145-2154.
    Pubmed CrossRef
  27. Vercauteren M, Gomez E, Hooft R, Bombrun A, Mulder P, Thuillez C, Richard V. 2008. PTP1B: a new target for the treatment of the endothelial dysfunction in obesity and diabetes. J. Hypertens. 26: S367.
  28. Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. 2015. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod. 78: 34-42.
    Pubmed CrossRef
  29. Tonks N K, M uth uswamy S K. 2 007. A b rake becomes an accelerator: PTP1B - a new therapeutic target for breast cancer. Cancer Cell 11: 214-216.
    Pubmed CrossRef
  30. Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A. 2008. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180: 957-971.
    Pubmed PMC CrossRef
  31. Oishi K, Tartaglia M, Lieb ME, Pick L, Gelb BD. 2004. Noonan syndrome-causative gain-of-function mutations in PTPN11 result in wing abnormalities and embryonic lethality in Drosophila. Pediatr. Res. 55: 270a.
  32. Zhang XC, Lavoie G, Fort L, Huttlin EL, Tcherkezian J, Galan JA, et al. 2013. Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Mol. Cell. Biol. 33: 1657-1670.
    Pubmed PMC CrossRef
  33. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, et al. 2004. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64: 8816-8820.
    Pubmed CrossRef
  34. Cazzaniga G, Martinelli S, den Boer ML, Corral L, Spinelli M, Basso G, et al. 2004. PTPN11 and RAS gene mutation pattern identifies an unique feature of upregulated RAS function in infant ALL. Blood 104: 996.
  35. Gui Q, Zhang X, Xu L, Cheng HQ, Ke YH. 2013. Disruption of Shp2 tyrosine phosphatase promotes Hes1/Stat3 complex in intestinal epithelia, contributing to enhanced self-renewal capacity and impaired differentiation in the crypt niche. FASEB J. 27: S1159.1.
  36. Kontaridis. 2008. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117: 1423-1435.
  37. Bard-Chapeau EA, Li SW, Ding J, Zhang SS, Zhu HH, Princen F, et al. 2 011. P tpn11/Sh p2 a cts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19:629-639.
    Pubmed PMC CrossRef
  38. Song YS, Lee HJ, Prosselkov P, Itohara S, Kim E. 2013. Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses. J. Cell Sci. 126: 4926-4938.
    Pubmed CrossRef
  39. Takahashi H, Craig AM. 2013. Protein tyrosine phosphatases PTP delta, PTP sigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36: 522-534.
    Pubmed PMC CrossRef
  40. Faux C, Hawadle M, Nixon J, Wallace A, Lee S, Murray S, Stoker A . 2007. P TP s igma b inds a nd d eph osphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta 1773: 1689-1700.
    Pubmed CrossRef
  41. Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM. 2011. Postsynaptic TrkC and presynaptic PTP sigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69: 287-303.
    Pubmed PMC CrossRef
  42. Horvat-Broecker A, Reinhard J, Illes S, Paech T, Zoidl G, Harroch S, et al. 2008. Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina. Neuroscience 152: 618-645.
    Pubmed CrossRef
  43. Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML. 2010. Receptor tyrosine phosphatase sigma (RPTP sigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell. Signal. 22: 1626-1633.
    Pubmed CrossRef
  44. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, et al. 2015. Modulation of the proteoglycan receptor PTP sigma promotes recovery after spinal cord injury. Nature 518: 404-408.
    Pubmed PMC CrossRef
  45. Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, et al. 2 003. D ual p h osph orylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol. 5: 545-551.
    Pubmed CrossRef
  46. Davezac N, Ducommun B, Baldin V. 2000. Involvment of CDC25 phosphatases in growth control. Pathol. Biol. 48:182-189.
  47. Draetta G, Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M. 2002. CDC25 phosphatases and checkpoint controls. Eur. J. Cancer 38: S116.
    CrossRef
  48. Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin LW. 2001. Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer’s disease. Neuroscience 105: 639-650.
    CrossRef
  49. Astuti P, Pike T, Widberg C, Payne E, Harding A, Hancock J, Gabrielli B. 2009. MAPK pathway activation delays G(2)/M progression by destabilizing Cdc25B. J. Biol. Chem. 284: 33781-33788.
    Pubmed PMC CrossRef
  50. Geetha N, Mihaly J, Stockenhuber A, Blasi F, Uhrin P, Binder BR, et al. 2011. Signal integration and coincidence detection in the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) cascade:concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via downregulation of dual specificity phosphatases (DUSP1 and -6). J. Biol. Chem. 286: 25663-25674.
    Pubmed PMC CrossRef
  51. Khor GH, Froemming GRA, Zain RB, Abraham MT, Omar E, Tan SK, et al. 2013. DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int. J. Med. Sci. 10: 1727-1739.
    Pubmed PMC CrossRef
  52. Moncho-Amor V, de Caceres II, Bandres E, MartinezPoveda B, Orgaz JL, Sanchez-Perez I, et al. 2011. DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30: 668-678.
    Pubmed CrossRef
  53. Amor VM, de Caceres I, Bandres E, Orgaz JL, SanchezPerez I, Cuenca BJ, et al. 2008. Identification of DUSP1/MKP1 mediated pathways in lung cancer progression. EJC Suppl. 6: 69-70.
  54. Innocenti F, Sette M, Forte E, Lo Surdo P, Cerretani M, Altamura S, et al. 2004. PRL-3, a phosphatase implied in cancer metastasis: structure and function. Protein Sci. 13:127.
  55. Al-Aidaroos AQO, Zeng Q. 2010. PRL-3 phosphatase and cancer metastasis. J. Cell. Biochem. 111: 1087-1098.
    Pubmed CrossRef
  56. Zh ang J, X iao Z, L ai D , Sun J , He C , Chu Z, et al. 2012. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br. J. Cancer 107: 352-359.
  57. Tamagawa H, Oshima T, Yoshihara K, Watanabe T, Numata M, Yamamoto N, et al. 2012. The expression of the phosphatase regenerating liver 3 gene is associated with outcome in patients with colorectal cancer. Hepatogastroenterology 59: 2122-2126.
    CrossRef
  58. Hinds PW. 2 008. T oo much of a good t h ing: t h e Prl-3 in p53’s oyster. Mol. Cell 30: 260-261.
    Pubmed CrossRef
  59. Kim KA, Song JS, Jee JG, Sheen MR, Lee C, Lee TG, et al. 2004. Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett. 565: 181-187.
    Pubmed CrossRef
  60. Bardelli A, Sah a S, S ager J A, Romans KE, X in B Z, Markowitz SD, et al. 2003. PRL-3 expression in metastatic cancers. Clin. Cancer Res. 9: 5607-5615.
    Pubmed
  61. Monteiro-Cardoso VF, Oliveira MM, Melo T, Domingues MRM, Moreira PI, Ferreiro E, et al. 2015. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 43: 1375-1392.
    Pubmed
  62. Claypool SM, Koehler CM. 2012. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37:32-41.
    Pubmed PMC CrossRef
  63. Chicco AJ, Sparagna GC. 2007. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am. J. Physiol. Cell Physiol. 292: C33-C44.
    Pubmed CrossRef
  64. Niemi NM, Lanning NJ, Westrate LM, MacKeigan JP. 2013. Downregulation of the mitochondrial phosphatase PTPMT1 is sufficient to promote cancer cell death. PLoS One 8:e53803.
    Pubmed PMC CrossRef
  65. El-Kouhen K, Tremblay ML. 2011. PTPMT1: connecting cardiolipin biosynthesis to mitochondrial function. Cell Metab. 13: 615-617.
    Pubmed CrossRef
  66. Xiao JY, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE. 2011. Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc. Natl. Acad. Sci. USA 108: 11860-11865.
    Pubmed PMC CrossRef
  67. Park H, Kim SY, Kyung A, Yoon TS, Ryu SE, Jeong DG. 2012. Structure-based virtual screening approach to the discovery of novel PTPMT1 phosphatase inhibitors. Bioorg. Med. Chem. Lett. 22: 1271-1275.
    Pubmed CrossRef
  68. Nath AK, Ryu JH, J in YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT. 2015. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 10: 694-701.
    Pubmed PMC CrossRef
  69. Wang W, Liu LJ, Song X, Mo Y, Komma C, Bellamy HD, et al. 2011. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J. Cell. Biochem. 112: 2062-2071.
    Pubmed PMC CrossRef
  70. Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, et al. 2014. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Int. J. Biochem. Cell. Biol. 57: 84-95.
    Pubmed CrossRef
  71. Yang J, Niu TQ, Zhang AH, Mishra AK, Zhao ZZJ, Zhou GW. 2002. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. J. Cell. Biochem. 84: 47-55.
    Pubmed CrossRef
  72. Ren LG, Chen XW, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. 2011. Substrate specificity of protein tyrosine phosphatases 1B, RPTP alpha, SHP-1, and SHP-2. Biochemistry 50: 2339-2356.
    Pubmed PMC CrossRef
  73. Peti W, Page R. 2015. Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorgan. Med. Chem. 23: 2781-2785.
    Pubmed PMC CrossRef
  74. Asthagiri D, Liu TQ, Noodleman L, Van Etten RL, Bashfordt D. 2004. On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase. J. Am. Chem. Soc. 126: 12677-12684.
    Pubmed CrossRef
  75. Gruninger RJ, Selinger LB, Mosimann SC. 2008. Effect of ionic strength and oxidation on the P-loop conformation of the protein tyrosine phosphatase-like phytase, PhyAsr. FEBS J. 275: 3783-3792.
    Pubmed CrossRef
  76. van Montfort RLM, Congreve M, Tisi D, Carr R, Jhoti H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773-777.
    Pubmed CrossRef
  77. Ch en Y Y, C hu HM, Pan KT, Teng CH, Wang D L, W ang AHJ, et al. 2008. Cysteine S-nitrosylation protects proteintyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 283: 35265-35272.
    Pubmed PMC CrossRef
  78. Ozkaral B, Ozkan A, Alakent B, Ozkirimli E. 2010. Dynamic analysis of phosphatase 1B WPD loop. Biophys. J. 98: 440a.
    CrossRef
  79. Critton DA, Tautz L, Page R. 2011. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. J. Mol. Biol. 405: 619-629.
    Pubmed PMC CrossRef
  80. Brandao TAS, Johnson SJ, Hengge AC. 2012. The molecular details of WPD-loop movement differ in the proteintyrosine phosphatases YopH and PTP1B. Arch. Biochem. Biophys. 525: 53-59.
    Pubmed PMC CrossRef
  81. Sheriff S, Beno BR, Zhai WX, Kostich WA, McDonnell PA, Kish K, et al. 2011. Small molecule receptor protein tyrosine phosphatase gamma (RPTP gamma) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. J. Med. Chem. 54:6548-6562.
    Pubmed CrossRef
  82. Tailor P, Gilman J, Williams S, Mustelin T. 1999. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Eur. J. Biochem. 262: 277-282.
    Pubmed CrossRef
  83. Dong O, Heul AV, Welsh MJ, Randak CO. 2012. The conserved Q-loop glutamine 1291 interacts with Ap(5)A. Pediatr. Pulm. 47: 240.
  84. Ananthaswamy N, Rutledge R, Sauna ZE, Ambudkar SV, Dine E, Nelson E, et al. 2010. The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. Biochemistry 49: 4440-4449.
    Pubmed PMC CrossRef
  85. Wei R R, Rich ardson J P. 2 001. M utational c h anges of conserved residues in the Q-loop region of transcription factor Rho greatly reduce secondary site RNA-binding. J. Mol. Biol. 314: 1007-1015.
    Pubmed CrossRef
  86. Martell KJ, Angelotti T, Ullrich A. 1998. The “VH1-like” dual-specificity protein tyrosine phosphatases. Mol. Cells 8:2-11.
    Pubmed
  87. Sharma B, Kaushik N, Upadhyay A, Tripathi S, Singh K, Pandey VN. 2003. A positively charged side chain at position 154 on the beta 8-alpha E loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res. 31: 5167-5174.
    Pubmed PMC CrossRef
  88. Feng Y, Hadjikyriacou A, Clarke SG. 2014. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7) the importance of acidic residues in the double E loop. J. Biol. Chem. 289: 32604-32616.
    Pubmed PMC CrossRef
  89. Singh M, Satoh K. 2003. Site-specific mutations localized in the D-E loop of the D1 protein of photosystem II affect phototolerance in Synechocystis sp. PCC 6803 containing psbAII gene. Ind. J. Biochem. Bio. 40: 108-113.
  90. Saito H. 2004. Structure and function of protein tyrosine phosphatases. J. Pharmacol. Sci. 94: 14.
  91. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. 2010. Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr. Pharm. Design 16: 1843-1862.
    Pubmed PMC CrossRef
  92. DeGnore JP, Konig S, Barrett WC, Chock PB, Fales HM. 1998. Identification of the oxidation states of the active site cysteine in a recombinant protein tyrosine phosphatase by electrospray mass spectrometry using on-line desalting. Rapid Commun. Mass Spectrom. 12: 1457-1462.
    CrossRef
  93. Tonks NK. 1998. From structure to function of protein tyrosine phosphatases. Naunyn Schmiedebergs Arch. Pharmacol. 358: R377.
  94. Lee H, Yi JS, Lawan A, Min K, Bennett AM. 2015. Mining the function of protein tyrosine phosphatases in health and disease. Semin. Cell Dev. Biol. 37: 66-72.
    Pubmed PMC CrossRef
  95. Zhang ZY. 1998. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33: 1-52.
    Pubmed CrossRef
  96. Stockman BJ. 1998. NMR spectroscopy as a tool for structure-based drug design. Prog. Nucl. Magn. Reson. Spectrosc. 33: 109-151.
    CrossRef
  97. Stafford JA. 2003. Use of high-throughput nanovolume crystallization in structure-based drug design. Abstr. Pap. Am. Chem. Soc. 226: U460-U461.
  98. Sotriffer C, Klebe G. 2002. Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farmaco 57: 243-251.
    CrossRef
  99. Park H, Chien PN, Ryu SE. 2012. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. Bioorg. Med. Chem. Lett. 22: 6333-6337.
    Pubmed CrossRef
  100. Sarvagalla S, Cheung CHA, Tsai JY, Hsieh HP, Coumar MS. 2016. Disruption of protein-protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target survivin. RSC Adv. 6: 31947-31959.
    CrossRef
  101. Proschak E, Rupp M, Derksen S, Schneider G. 2008. Shapelets: possibilities and limitations of shape-based virtual screening. J. Comput. Chem. 29: 108-114.
    Pubmed CrossRef
  102. Guerreiro PS, Estacio SG, Antunes F, Fernandes AS, Pinh eiro P F, C osta JG, et al. 2016. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem. Biol. Drug Design 88: 915-925.
    Pubmed CrossRef
  103. Hou XB, Li KS, Yu X, Sun JP, Fang H. 2015. Protein flexibility in docking-based virtual screening: discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures. J. Chem. Inf. Model. 55:1973-1983.
    Pubmed CrossRef
  104. Zhang ZY. 2002. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42: 209-234.
    Pubmed CrossRef
  105. de Beer TAP, Berka K, Thornton JM, Laskowski RA. 2014. PDBsum additions. Nucleic Acids Res. 42: D292-D296.
    Pubmed PMC CrossRef
  106. Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K. 2007. Ramachandran plot on the web (2.0). Protein Pept. Lett. 14:669-671.
    CrossRef
  107. Ye Z, Kadolph C, Strenn R, Wall D, McPherson E, Lin S. 2016. WHATIF: an open-source desktop application for extraction and management of the incidental findings from next-generation sequencing variant data. Comput. Biol. Med. 68: 165-169.
    Pubmed PMC CrossRef
  108. Zhang YM, Zhang DF, Tian HZ, Jiao Y, Shi ZH, Ran T, et al. 2016. Identification of covalent binding sites targeting cysteines based on computational approaches. Mol. Pharm. 13: 3106-3118.
    Pubmed CrossRef
  109. Tonks NK. 2013. Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280: 346-378.
    Pubmed PMC CrossRef
  110. Seco J, Luque FJ, Barril X. 2009. Binding site detection and druggability index from first principles. J. Med. Chem. 52:2363-2371.
    Pubmed CrossRef
  111. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. 2006. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34:W116-W118.
    Pubmed PMC CrossRef
  112. Huang BD. 2009. MetaPocket: a meta approach to improve protein ligand binding site prediction. Omics 13: 325-330.
    Pubmed CrossRef
  113. Laurie ATR, Jackson RM. 2005. Q-SiteFinder: an energybased method for the prediction of protein-ligand binding sites. Bioinformatics 21: 1908-1916.
    Pubmed CrossRef
  114. Nogara PA, Saraiva RD, Bueno DC, Lissner LJ, Dalla Corte CL, Braga MM, et al. 2015. Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and zinc databank. Biomed. Res. Int. 2015: 870389.
    Pubmed PMC CrossRef
  115. Irwin JJ, Sh oichet B K. 2 005. Z INC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45: 177-182.
    Pubmed PMC CrossRef
  116. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34: D668-D672.
    Pubmed PMC CrossRef
  117. Congreve M, Carr R, Murray C, Jhoti H. 2003. A rule of three for fragment-based lead discovery? Drug Discov. Today 8: 876-877.
    CrossRef
  118. Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, et al. 2005. Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett. 15:2503-2507.
    Pubmed CrossRef
  119. Lim-Wilby M, Srinivasan J, Koska J, Krammer A, Venkatachalam CM, Waldman M. 2004. Automated de novo design with LUDI, minimizer, QSAR, and scoring functions: development and validation of autoLUDI. Abstr. Pap. Am. Chem. Soc. 228: U509.
  120. Yuan YX, Pei JF, Lai LH. 2011. LigBuilder 2: a practical de novo drug design approach. J. Chem. Inf. Model. 51: 10831091.
    Pubmed CrossRef
  121. Bajusz D, Ferenczy GG, Keseru GM. 2015. Property-based characterization of kinase-like ligand space for library design and virtual screening. Medchemcomm 6: 1898-1904.
    CrossRef
  122. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. 2002. Automated docking to multiple target structures:Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46: 34-40.
    Pubmed CrossRef
  123. Cheney DL, Langley DR, Mueller L. 2004. Protein ensemble-based lead docking: a comparison of FLO, GLIDE, GOLD and ICM in cross docking scenarios. Abstr. Pap. Am. Chem. Soc. 227: U1029.
  124. Park H, Bhattarai BR, Ham SW, Cho H. 2009. Structurebased virtual screening approach to identify novel classes of PTP1B inhibitors. Eur. J. Med. Chem. 44: 3280-3284.
    Pubmed CrossRef
  125. Barradas D, Fernandez-Recio J. 2015. A comprehensive analysis of scoring functions for protein-protein docking. Protein Sci. 24: 250-251.
  126. Hsieh JH, Yin SY, Wang XS, Liu SB, Dokholyan NV, Tropsha A. 2010. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of virtual screening. J. Chem. Inf. Model. 52: 16-28.
    Pubmed PMC CrossRef
  127. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV. 2008. MedusaScore: an accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model. 48:1656-1662.
    Pubmed PMC CrossRef
  128. Li GB, Yang LL, Wang WJ, Li LL, Yang SY. 2013. ID-Score:a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 53: 592-600.
    Pubmed CrossRef
  129. Geng YX, Zhang LY, Sun YS, Zhang Y, Yang N, Wu JW. 2016. Research on ant colony algorithm optimization neural network weights blind equalization algorithm. Int. J. Secur. Appl. 10: 95-104.
    CrossRef
  130. Korb O, Stutzle T, Exner TE. 2009. Empirical scoring functions for advanced protein-ligand docking with plants. J. Chem. Inf. Model. 49: 84-96.
    Pubmed CrossRef
  131. Lizunov AY, Gonchar AL, Zaitseva NI, Zosimov VV. 2015. Accounting for intraligand interactions in flexible ligand docking with a PMF-based scoring function. J. Chem. Inf. Model. 55: 2121-2137.
    Pubmed CrossRef
  132. Kruger D M, G arzon JI, Ch acon P , Gohlke H. 2 014. DrugScore(PPI) knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One 9: e89466.
    Pubmed PMC CrossRef
  133. Ashtawy H M, M ah apatra N R. 2 015. Mach ine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinform. 16 Suppl 6: S3.
  134. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. 2015. Machine-learning scoring functions to improve structurebased binding affinity prediction and virtual screening. WIREs Comput. Mol. Sci. 5: 405-424.
    Pubmed PMC CrossRef
  135. Zhang W, Li RB, Shin R, Wang YM, Padmalayam I, Zhai L, Krishna NR. 2013. Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMAST calculations. Chemmedchem 8: 1629-1633.
    Pubmed PMC
  136. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, et al. 2001. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21: 7117-7136.
    Pubmed PMC CrossRef
  137. Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA. 2014. A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc. Natl. Acad. Sci. USA 111: 18590-18595.
    Pubmed PMC CrossRef
  138. Lee JY, Jung KW, Woo ER, Kim Y. 2008. Docking study of biflavonoids, allosteric inhibitors of protein tyrosine phosphatase 1B. Bull. Korean Chem. Soc. 29: 1479-1484.
    CrossRef
  139. Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, Erlanson DA. 2005. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44: 7704-7712.
    Pubmed CrossRef
  140. Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML, Saragovi HU. 2014. Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol. Pharmacol. 85: 553-563.
    Pubmed CrossRef
  141. Zinker B, Xie N, Clampit J, Nguyen P, Wilcox D, Jacobson P, et al. 2001. Anti-diabetic effects of protein tyrosine phosphatase 1B (PTP1B) antisense treatment in a rodent model of diabetes: potential therapeutic benefit. Diabetes 50: A332.
  142. Ostensen CG, Sandberg-Nordqvist AC, Chen J, Hallbrink M, Rotin D, Langel U, Efendic S. 2002. Overexpression of protein-tyrosine phosphatase PTP sigma is linked to impaired glucose-induced insulin secretion in hereditary diabetic Goto-Kakizaki rats. Biochem. Biophys. Res. Commun. 291: 945-950.
    Pubmed CrossRef
  143. Lauriol J, Jaffre F, Kontaridis MI. 2015. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin. Cell Dev. Biol. 37: 73-81.
    Pubmed PMC CrossRef
  144. Hashimoto Y, Kohri K, Tsai MJ. 2003. Overexpression of Cdc25B, an androgen-receptor coactivator, in human prostate cancer. J. Urol. 169: 84-85.
  145. Wang Z , Cai SR, He YL, Z h an WH, Z hang CH, Wu H , et al. 2009. Elevated PRL-3 expression was more frequently detected in the large primary gastric cancer and exhibits a poor prognostic impact on the patients. J. Cancer Res. Clin. Oncol. 135: 1041-1046.
    Pubmed CrossRef
  146. Krishnan N, Koveal D, Miller DH, Xue B , Aksh inthala SD, Kragelj J, et al. 2014. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10:558-566.
    Pubmed PMC CrossRef
  147. Chen LW, Sung SS, Yip MLR, Lawrence HR, Ren Y, Guida WC, et al. 2006. Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70: 562-570.
    Pubmed CrossRef
  148. Chio CM, Lim CS, Bishop AC. 2015. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry 54: 497-504.
    Pubmed PMC CrossRef
  149. Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, et al. 2012. Identification of small molecule inhibitors of PTPs through an integrative virtual and biochemical approach. PLoS One 7: e50217.
    Pubmed PMC CrossRef
  150. Lazo J S, A slan DC, S outh wick EC, Cooley K A, D ucruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049.
    Pubmed CrossRef
  151. Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS. 2005. The benzo[c] phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogenactivated protein kinase phosphatase-1. J. Biol. Chem. 280:19078-19086.
    Pubmed CrossRef
  152. Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS, et al. 2006. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg. Med. Chem. Lett. 16: 2996-2999.
    Pubmed CrossRef
  153. Doughty-Shenton D, Joseph JD, Zhang J, Pagliarini DJ, Kim Y, Lu DH, et al. 2010. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J. Pharmacol. Exp. Ther. 333: 584-592.
    Pubmed PMC CrossRef
  154. Musumeci L, Kuijpers MJ, Gilio K, Hego A, Theatre E, Maurissen L, et al. 2015. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation 131: 656-668.
    Pubmed PMC CrossRef
  155. Molina G, Vogt A, Bakan A, Dai WX, de Oliveira PQ, Znosko W, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5: 680-687.
    Pubmed PMC CrossRef
  156. Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA, Veale CA, Chapdelaine MJ. 2001. Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J. Med. Chem. 44: 1777-1793.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2017; 27(5): 878-895

Published online May 28, 2017 https://doi.org/10.4014/jmb.1701.01079

Copyright © The Korean Society for Microbiology and Biotechnology.

Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions

Harikrishna Reddy R 1, Hackyoung Kim 1, Seungbin Cha 1, Bongsoo Lee 2 and Young Jun Kim 1*

1Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea, 2School of Energy Systems Engineering, Chungang University, Seoul 06974, Republic of Korea

Received: February 2, 2017; Accepted: February 16, 2017

Abstract

Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable
for about 30% of key biological activities, such as cell cycle progression, migration, and
division. It is synergistically balanced by kinases and phosphatases, and any deviation from
this balance leads to disease conditions. Pathway or biological activity-based abnormalities in
phosphorylation and the type of involved phosphatase influence the outcome, and cause
diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein
tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation
and catalyze several biological functions. Abnormal PTP activities are reported to result in
several human diseases. Consequently, there is an increased demand for potential PTP
inhibitory small molecules. Several strategies in structure-based drug designing techniques for
potential inhibitory small molecules of PTPs have been explored along with traditional drug
designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this
review, we discuss druggable PTPs and structure-based virtual screening efforts for successful
PTP inhibitor design.

Keywords: Allosteric targeting, cancers, diabetes, drug designing, molecular docking, protein tyrosine phosphatases

References

  1. Li LW, Dixon JE. 2000. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol. 12: 75-84.
    Pubmed CrossRef
  2. Dudits D. 2004. Protein phosphorylation as key control mechanism in plant cell division. Acta Physiol. Plant. 26: 4.
  3. Leung KT, Li KKH, Sun SSM, Chan PKS, Ooi VEC, Chiu LCM. 2008. Activation of the JNK pathway promotes phosphorylation and degradation of Bim(EL) - a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 29: 544-551.
    Pubmed CrossRef
  4. Sharma K, D’Souza RCJ, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thrbased signaling. Cell Rep. 8: 1583-1594.
    Pubmed CrossRef
  5. Byrum CA, Walton KD, Robertson AJ, Carbonneau S, Thomason RT, Coffman JA, McClay DR. 2006. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions. Dev. Biol. 300: 194-218.
    Pubmed KoreaMed CrossRef
  6. Macho AP, Lozano-Duran R, Zipfel C. 2015. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends Plant Sci. 20: 269-272.
    Pubmed CrossRef
  7. Derrien A, Druey K. 2000. Importance of tyrosine phosphorylation of RGS16 in the inhibition of G-proteincoupled MAP kinase stimulation. J. Allergy Clin. Immun. 105: S172-S173.
    CrossRef
  8. Morimura T, Ogawa M. 2009. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res. 1304: 26-37.
    Pubmed CrossRef
  9. Jung KJ, Lee EK, Yu BP, Chung HY. 2009. Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappa B signaling in the inflammatory process and aging. Free Radic. Biol. Med. 47:983-991.
    Pubmed CrossRef
  10. Ten Eyck LF, Taylor SS, Kornev AP. 2008. Conserved spatial patterns across the protein kinase family. Biochim. Biophys. Acta 1784: 238-243.
    Pubmed CrossRef
  11. Lin JS, Lu CW, Huang CJ, Wu PF, Robinson D, Kung HJ, et al. 1998. Protein-tyrosine kinase and protein-serine/threonine kinase expression in human gastric cancer cell lines. J. Biomed. Sci. 5: 101-110.
    Pubmed CrossRef
  12. Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. 2013. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 346: 11-19.
    Pubmed CrossRef
  13. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. 2 004. P rotein t yrosine ph osphatases i n the human genome. Cell 117: 699-711.
    Pubmed CrossRef
  14. Musharraf A, Markschies N, Imhof D, Englert C. 2006. Structural requirements of substrates for the PTP domain of Eya proteins. J. Pept. Sci. 12: 174-174.
  15. Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049.
    Pubmed CrossRef
  16. Hudaky P, Perczel A. 2005. Toward direct determination of conformations of protein building units from multidimensional NMR experiments. VI. Chemical shift analysis of his to gain 3D structure and protonation state information. J. Comput. Chem. 26: 1307-1317.
    Pubmed CrossRef
  17. Demers JP, Chevelkov V, Lange A. 2011. Progress in correlation spectroscopy at ultra-fast magic-angle spinning:basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl. Magn. Reson. 40: 101-113.
    Pubmed CrossRef
  18. Zhu J, Cheng LP, Fang Q, Zhou ZH, Honig B. 2010. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J. Mol. Biol. 397: 835-851.
    Pubmed KoreaMed CrossRef
  19. Seo JH, Lee GS, Kim J, Cho BK, Joo K, Lee J, Kim BG. 2009. Automatic protein structure prediction system enabling rapid and accurate model building for enzyme screening. Enzyme Microb. Technol. 45: 218-225.
    CrossRef
  20. Tsai CJ, Ma B, Sham YY, Kumar S, Wolfson HJ, Nussinov R. 2001. A hierarchial, building-block-based computational scheme for protein structure prediction. IBM J. Res. Dev. 45: 513-523.
    CrossRef
  21. Ul-Haq Z, Saeed M, Halim SA, Khan W. 2015. 3D structure prediction of human beta 1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing. PLoS One 10: e0122223.
    Pubmed KoreaMed CrossRef
  22. Danishuddin M, Khan A, Faheem M, Kalaiarasan P, Baig MH, Subbarao N, Khan AU. 2014. Structure-based screening of inhibitors against KPC-2: designing potential drug candidates against multidrug-resistant bacteria. J. Biomol. Struct. Dyn. 32: 741-750.
    Pubmed CrossRef
  23. Kesharwani RK, Singh DV, Misra K. 2013. Computationbased virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. J. Vector Dis. 50: 93-102.
  24. Somvanshi P, Seth PK. 2009. Targeting the peptide deformylase of Salmonella enterica for virtual screening and structure based drug designing. New Biotechnol. 25: S366.
    CrossRef
  25. Balajee R, Dhanarajan MS. 2009. Mining the information for structure based drug designing by relational database management notion. E. J. Chem. 6: 1047-1054.
    CrossRef
  26. Ding HY, Zhang Y, Xu C, Hou DX, Li J, Zhang YJ, et al. 2014. Norathyriol reverses obesity- and high-fat-dietinduced insulin resistance in mice through inhibition of PTP1B. Diabetologia 57: 2145-2154.
    Pubmed CrossRef
  27. Vercauteren M, Gomez E, Hooft R, Bombrun A, Mulder P, Thuillez C, Richard V. 2008. PTP1B: a new target for the treatment of the endothelial dysfunction in obesity and diabetes. J. Hypertens. 26: S367.
  28. Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. 2015. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod. 78: 34-42.
    Pubmed CrossRef
  29. Tonks N K, M uth uswamy S K. 2 007. A b rake becomes an accelerator: PTP1B - a new therapeutic target for breast cancer. Cancer Cell 11: 214-216.
    Pubmed CrossRef
  30. Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A. 2008. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180: 957-971.
    Pubmed KoreaMed CrossRef
  31. Oishi K, Tartaglia M, Lieb ME, Pick L, Gelb BD. 2004. Noonan syndrome-causative gain-of-function mutations in PTPN11 result in wing abnormalities and embryonic lethality in Drosophila. Pediatr. Res. 55: 270a.
  32. Zhang XC, Lavoie G, Fort L, Huttlin EL, Tcherkezian J, Galan JA, et al. 2013. Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Mol. Cell. Biol. 33: 1657-1670.
    Pubmed KoreaMed CrossRef
  33. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, et al. 2004. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64: 8816-8820.
    Pubmed CrossRef
  34. Cazzaniga G, Martinelli S, den Boer ML, Corral L, Spinelli M, Basso G, et al. 2004. PTPN11 and RAS gene mutation pattern identifies an unique feature of upregulated RAS function in infant ALL. Blood 104: 996.
  35. Gui Q, Zhang X, Xu L, Cheng HQ, Ke YH. 2013. Disruption of Shp2 tyrosine phosphatase promotes Hes1/Stat3 complex in intestinal epithelia, contributing to enhanced self-renewal capacity and impaired differentiation in the crypt niche. FASEB J. 27: S1159.1.
  36. Kontaridis. 2008. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117: 1423-1435.
  37. Bard-Chapeau EA, Li SW, Ding J, Zhang SS, Zhu HH, Princen F, et al. 2 011. P tpn11/Sh p2 a cts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19:629-639.
    Pubmed KoreaMed CrossRef
  38. Song YS, Lee HJ, Prosselkov P, Itohara S, Kim E. 2013. Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses. J. Cell Sci. 126: 4926-4938.
    Pubmed CrossRef
  39. Takahashi H, Craig AM. 2013. Protein tyrosine phosphatases PTP delta, PTP sigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36: 522-534.
    Pubmed KoreaMed CrossRef
  40. Faux C, Hawadle M, Nixon J, Wallace A, Lee S, Murray S, Stoker A . 2007. P TP s igma b inds a nd d eph osphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta 1773: 1689-1700.
    Pubmed CrossRef
  41. Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM. 2011. Postsynaptic TrkC and presynaptic PTP sigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69: 287-303.
    Pubmed KoreaMed CrossRef
  42. Horvat-Broecker A, Reinhard J, Illes S, Paech T, Zoidl G, Harroch S, et al. 2008. Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina. Neuroscience 152: 618-645.
    Pubmed CrossRef
  43. Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML. 2010. Receptor tyrosine phosphatase sigma (RPTP sigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell. Signal. 22: 1626-1633.
    Pubmed CrossRef
  44. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, et al. 2015. Modulation of the proteoglycan receptor PTP sigma promotes recovery after spinal cord injury. Nature 518: 404-408.
    Pubmed KoreaMed CrossRef
  45. Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, et al. 2 003. D ual p h osph orylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol. 5: 545-551.
    Pubmed CrossRef
  46. Davezac N, Ducommun B, Baldin V. 2000. Involvment of CDC25 phosphatases in growth control. Pathol. Biol. 48:182-189.
  47. Draetta G, Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M. 2002. CDC25 phosphatases and checkpoint controls. Eur. J. Cancer 38: S116.
    CrossRef
  48. Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin LW. 2001. Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer’s disease. Neuroscience 105: 639-650.
    CrossRef
  49. Astuti P, Pike T, Widberg C, Payne E, Harding A, Hancock J, Gabrielli B. 2009. MAPK pathway activation delays G(2)/M progression by destabilizing Cdc25B. J. Biol. Chem. 284: 33781-33788.
    Pubmed KoreaMed CrossRef
  50. Geetha N, Mihaly J, Stockenhuber A, Blasi F, Uhrin P, Binder BR, et al. 2011. Signal integration and coincidence detection in the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) cascade:concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via downregulation of dual specificity phosphatases (DUSP1 and -6). J. Biol. Chem. 286: 25663-25674.
    Pubmed KoreaMed CrossRef
  51. Khor GH, Froemming GRA, Zain RB, Abraham MT, Omar E, Tan SK, et al. 2013. DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int. J. Med. Sci. 10: 1727-1739.
    Pubmed KoreaMed CrossRef
  52. Moncho-Amor V, de Caceres II, Bandres E, MartinezPoveda B, Orgaz JL, Sanchez-Perez I, et al. 2011. DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30: 668-678.
    Pubmed CrossRef
  53. Amor VM, de Caceres I, Bandres E, Orgaz JL, SanchezPerez I, Cuenca BJ, et al. 2008. Identification of DUSP1/MKP1 mediated pathways in lung cancer progression. EJC Suppl. 6: 69-70.
  54. Innocenti F, Sette M, Forte E, Lo Surdo P, Cerretani M, Altamura S, et al. 2004. PRL-3, a phosphatase implied in cancer metastasis: structure and function. Protein Sci. 13:127.
  55. Al-Aidaroos AQO, Zeng Q. 2010. PRL-3 phosphatase and cancer metastasis. J. Cell. Biochem. 111: 1087-1098.
    Pubmed CrossRef
  56. Zh ang J, X iao Z, L ai D , Sun J , He C , Chu Z, et al. 2012. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br. J. Cancer 107: 352-359.
  57. Tamagawa H, Oshima T, Yoshihara K, Watanabe T, Numata M, Yamamoto N, et al. 2012. The expression of the phosphatase regenerating liver 3 gene is associated with outcome in patients with colorectal cancer. Hepatogastroenterology 59: 2122-2126.
    CrossRef
  58. Hinds PW. 2 008. T oo much of a good t h ing: t h e Prl-3 in p53’s oyster. Mol. Cell 30: 260-261.
    Pubmed CrossRef
  59. Kim KA, Song JS, Jee JG, Sheen MR, Lee C, Lee TG, et al. 2004. Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett. 565: 181-187.
    Pubmed CrossRef
  60. Bardelli A, Sah a S, S ager J A, Romans KE, X in B Z, Markowitz SD, et al. 2003. PRL-3 expression in metastatic cancers. Clin. Cancer Res. 9: 5607-5615.
    Pubmed
  61. Monteiro-Cardoso VF, Oliveira MM, Melo T, Domingues MRM, Moreira PI, Ferreiro E, et al. 2015. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 43: 1375-1392.
    Pubmed
  62. Claypool SM, Koehler CM. 2012. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37:32-41.
    Pubmed KoreaMed CrossRef
  63. Chicco AJ, Sparagna GC. 2007. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am. J. Physiol. Cell Physiol. 292: C33-C44.
    Pubmed CrossRef
  64. Niemi NM, Lanning NJ, Westrate LM, MacKeigan JP. 2013. Downregulation of the mitochondrial phosphatase PTPMT1 is sufficient to promote cancer cell death. PLoS One 8:e53803.
    Pubmed KoreaMed CrossRef
  65. El-Kouhen K, Tremblay ML. 2011. PTPMT1: connecting cardiolipin biosynthesis to mitochondrial function. Cell Metab. 13: 615-617.
    Pubmed CrossRef
  66. Xiao JY, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE. 2011. Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc. Natl. Acad. Sci. USA 108: 11860-11865.
    Pubmed KoreaMed CrossRef
  67. Park H, Kim SY, Kyung A, Yoon TS, Ryu SE, Jeong DG. 2012. Structure-based virtual screening approach to the discovery of novel PTPMT1 phosphatase inhibitors. Bioorg. Med. Chem. Lett. 22: 1271-1275.
    Pubmed CrossRef
  68. Nath AK, Ryu JH, J in YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT. 2015. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 10: 694-701.
    Pubmed KoreaMed CrossRef
  69. Wang W, Liu LJ, Song X, Mo Y, Komma C, Bellamy HD, et al. 2011. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J. Cell. Biochem. 112: 2062-2071.
    Pubmed KoreaMed CrossRef
  70. Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, et al. 2014. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Int. J. Biochem. Cell. Biol. 57: 84-95.
    Pubmed CrossRef
  71. Yang J, Niu TQ, Zhang AH, Mishra AK, Zhao ZZJ, Zhou GW. 2002. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. J. Cell. Biochem. 84: 47-55.
    Pubmed CrossRef
  72. Ren LG, Chen XW, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. 2011. Substrate specificity of protein tyrosine phosphatases 1B, RPTP alpha, SHP-1, and SHP-2. Biochemistry 50: 2339-2356.
    Pubmed KoreaMed CrossRef
  73. Peti W, Page R. 2015. Strategies to make protein serine/threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorgan. Med. Chem. 23: 2781-2785.
    Pubmed KoreaMed CrossRef
  74. Asthagiri D, Liu TQ, Noodleman L, Van Etten RL, Bashfordt D. 2004. On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase. J. Am. Chem. Soc. 126: 12677-12684.
    Pubmed CrossRef
  75. Gruninger RJ, Selinger LB, Mosimann SC. 2008. Effect of ionic strength and oxidation on the P-loop conformation of the protein tyrosine phosphatase-like phytase, PhyAsr. FEBS J. 275: 3783-3792.
    Pubmed CrossRef
  76. van Montfort RLM, Congreve M, Tisi D, Carr R, Jhoti H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773-777.
    Pubmed CrossRef
  77. Ch en Y Y, C hu HM, Pan KT, Teng CH, Wang D L, W ang AHJ, et al. 2008. Cysteine S-nitrosylation protects proteintyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 283: 35265-35272.
    Pubmed KoreaMed CrossRef
  78. Ozkaral B, Ozkan A, Alakent B, Ozkirimli E. 2010. Dynamic analysis of phosphatase 1B WPD loop. Biophys. J. 98: 440a.
    CrossRef
  79. Critton DA, Tautz L, Page R. 2011. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. J. Mol. Biol. 405: 619-629.
    Pubmed KoreaMed CrossRef
  80. Brandao TAS, Johnson SJ, Hengge AC. 2012. The molecular details of WPD-loop movement differ in the proteintyrosine phosphatases YopH and PTP1B. Arch. Biochem. Biophys. 525: 53-59.
    Pubmed KoreaMed CrossRef
  81. Sheriff S, Beno BR, Zhai WX, Kostich WA, McDonnell PA, Kish K, et al. 2011. Small molecule receptor protein tyrosine phosphatase gamma (RPTP gamma) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. J. Med. Chem. 54:6548-6562.
    Pubmed CrossRef
  82. Tailor P, Gilman J, Williams S, Mustelin T. 1999. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Eur. J. Biochem. 262: 277-282.
    Pubmed CrossRef
  83. Dong O, Heul AV, Welsh MJ, Randak CO. 2012. The conserved Q-loop glutamine 1291 interacts with Ap(5)A. Pediatr. Pulm. 47: 240.
  84. Ananthaswamy N, Rutledge R, Sauna ZE, Ambudkar SV, Dine E, Nelson E, et al. 2010. The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. Biochemistry 49: 4440-4449.
    Pubmed KoreaMed CrossRef
  85. Wei R R, Rich ardson J P. 2 001. M utational c h anges of conserved residues in the Q-loop region of transcription factor Rho greatly reduce secondary site RNA-binding. J. Mol. Biol. 314: 1007-1015.
    Pubmed CrossRef
  86. Martell KJ, Angelotti T, Ullrich A. 1998. The “VH1-like” dual-specificity protein tyrosine phosphatases. Mol. Cells 8:2-11.
    Pubmed
  87. Sharma B, Kaushik N, Upadhyay A, Tripathi S, Singh K, Pandey VN. 2003. A positively charged side chain at position 154 on the beta 8-alpha E loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res. 31: 5167-5174.
    Pubmed KoreaMed CrossRef
  88. Feng Y, Hadjikyriacou A, Clarke SG. 2014. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7) the importance of acidic residues in the double E loop. J. Biol. Chem. 289: 32604-32616.
    Pubmed KoreaMed CrossRef
  89. Singh M, Satoh K. 2003. Site-specific mutations localized in the D-E loop of the D1 protein of photosystem II affect phototolerance in Synechocystis sp. PCC 6803 containing psbAII gene. Ind. J. Biochem. Bio. 40: 108-113.
  90. Saito H. 2004. Structure and function of protein tyrosine phosphatases. J. Pharmacol. Sci. 94: 14.
  91. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. 2010. Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr. Pharm. Design 16: 1843-1862.
    Pubmed KoreaMed CrossRef
  92. DeGnore JP, Konig S, Barrett WC, Chock PB, Fales HM. 1998. Identification of the oxidation states of the active site cysteine in a recombinant protein tyrosine phosphatase by electrospray mass spectrometry using on-line desalting. Rapid Commun. Mass Spectrom. 12: 1457-1462.
    CrossRef
  93. Tonks NK. 1998. From structure to function of protein tyrosine phosphatases. Naunyn Schmiedebergs Arch. Pharmacol. 358: R377.
  94. Lee H, Yi JS, Lawan A, Min K, Bennett AM. 2015. Mining the function of protein tyrosine phosphatases in health and disease. Semin. Cell Dev. Biol. 37: 66-72.
    Pubmed KoreaMed CrossRef
  95. Zhang ZY. 1998. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33: 1-52.
    Pubmed CrossRef
  96. Stockman BJ. 1998. NMR spectroscopy as a tool for structure-based drug design. Prog. Nucl. Magn. Reson. Spectrosc. 33: 109-151.
    CrossRef
  97. Stafford JA. 2003. Use of high-throughput nanovolume crystallization in structure-based drug design. Abstr. Pap. Am. Chem. Soc. 226: U460-U461.
  98. Sotriffer C, Klebe G. 2002. Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farmaco 57: 243-251.
    CrossRef
  99. Park H, Chien PN, Ryu SE. 2012. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. Bioorg. Med. Chem. Lett. 22: 6333-6337.
    Pubmed CrossRef
  100. Sarvagalla S, Cheung CHA, Tsai JY, Hsieh HP, Coumar MS. 2016. Disruption of protein-protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target survivin. RSC Adv. 6: 31947-31959.
    CrossRef
  101. Proschak E, Rupp M, Derksen S, Schneider G. 2008. Shapelets: possibilities and limitations of shape-based virtual screening. J. Comput. Chem. 29: 108-114.
    Pubmed CrossRef
  102. Guerreiro PS, Estacio SG, Antunes F, Fernandes AS, Pinh eiro P F, C osta JG, et al. 2016. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem. Biol. Drug Design 88: 915-925.
    Pubmed CrossRef
  103. Hou XB, Li KS, Yu X, Sun JP, Fang H. 2015. Protein flexibility in docking-based virtual screening: discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures. J. Chem. Inf. Model. 55:1973-1983.
    Pubmed CrossRef
  104. Zhang ZY. 2002. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42: 209-234.
    Pubmed CrossRef
  105. de Beer TAP, Berka K, Thornton JM, Laskowski RA. 2014. PDBsum additions. Nucleic Acids Res. 42: D292-D296.
    Pubmed KoreaMed CrossRef
  106. Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K. 2007. Ramachandran plot on the web (2.0). Protein Pept. Lett. 14:669-671.
    CrossRef
  107. Ye Z, Kadolph C, Strenn R, Wall D, McPherson E, Lin S. 2016. WHATIF: an open-source desktop application for extraction and management of the incidental findings from next-generation sequencing variant data. Comput. Biol. Med. 68: 165-169.
    Pubmed KoreaMed CrossRef
  108. Zhang YM, Zhang DF, Tian HZ, Jiao Y, Shi ZH, Ran T, et al. 2016. Identification of covalent binding sites targeting cysteines based on computational approaches. Mol. Pharm. 13: 3106-3118.
    Pubmed CrossRef
  109. Tonks NK. 2013. Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280: 346-378.
    Pubmed KoreaMed CrossRef
  110. Seco J, Luque FJ, Barril X. 2009. Binding site detection and druggability index from first principles. J. Med. Chem. 52:2363-2371.
    Pubmed CrossRef
  111. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. 2006. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34:W116-W118.
    Pubmed KoreaMed CrossRef
  112. Huang BD. 2009. MetaPocket: a meta approach to improve protein ligand binding site prediction. Omics 13: 325-330.
    Pubmed CrossRef
  113. Laurie ATR, Jackson RM. 2005. Q-SiteFinder: an energybased method for the prediction of protein-ligand binding sites. Bioinformatics 21: 1908-1916.
    Pubmed CrossRef
  114. Nogara PA, Saraiva RD, Bueno DC, Lissner LJ, Dalla Corte CL, Braga MM, et al. 2015. Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and zinc databank. Biomed. Res. Int. 2015: 870389.
    Pubmed KoreaMed CrossRef
  115. Irwin JJ, Sh oichet B K. 2 005. Z INC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45: 177-182.
    Pubmed KoreaMed CrossRef
  116. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34: D668-D672.
    Pubmed KoreaMed CrossRef
  117. Congreve M, Carr R, Murray C, Jhoti H. 2003. A rule of three for fragment-based lead discovery? Drug Discov. Today 8: 876-877.
    CrossRef
  118. Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, et al. 2005. Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett. 15:2503-2507.
    Pubmed CrossRef
  119. Lim-Wilby M, Srinivasan J, Koska J, Krammer A, Venkatachalam CM, Waldman M. 2004. Automated de novo design with LUDI, minimizer, QSAR, and scoring functions: development and validation of autoLUDI. Abstr. Pap. Am. Chem. Soc. 228: U509.
  120. Yuan YX, Pei JF, Lai LH. 2011. LigBuilder 2: a practical de novo drug design approach. J. Chem. Inf. Model. 51: 10831091.
    Pubmed CrossRef
  121. Bajusz D, Ferenczy GG, Keseru GM. 2015. Property-based characterization of kinase-like ligand space for library design and virtual screening. Medchemcomm 6: 1898-1904.
    CrossRef
  122. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. 2002. Automated docking to multiple target structures:Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46: 34-40.
    Pubmed CrossRef
  123. Cheney DL, Langley DR, Mueller L. 2004. Protein ensemble-based lead docking: a comparison of FLO, GLIDE, GOLD and ICM in cross docking scenarios. Abstr. Pap. Am. Chem. Soc. 227: U1029.
  124. Park H, Bhattarai BR, Ham SW, Cho H. 2009. Structurebased virtual screening approach to identify novel classes of PTP1B inhibitors. Eur. J. Med. Chem. 44: 3280-3284.
    Pubmed CrossRef
  125. Barradas D, Fernandez-Recio J. 2015. A comprehensive analysis of scoring functions for protein-protein docking. Protein Sci. 24: 250-251.
  126. Hsieh JH, Yin SY, Wang XS, Liu SB, Dokholyan NV, Tropsha A. 2010. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of virtual screening. J. Chem. Inf. Model. 52: 16-28.
    Pubmed KoreaMed CrossRef
  127. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV. 2008. MedusaScore: an accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model. 48:1656-1662.
    Pubmed KoreaMed CrossRef
  128. Li GB, Yang LL, Wang WJ, Li LL, Yang SY. 2013. ID-Score:a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 53: 592-600.
    Pubmed CrossRef
  129. Geng YX, Zhang LY, Sun YS, Zhang Y, Yang N, Wu JW. 2016. Research on ant colony algorithm optimization neural network weights blind equalization algorithm. Int. J. Secur. Appl. 10: 95-104.
    CrossRef
  130. Korb O, Stutzle T, Exner TE. 2009. Empirical scoring functions for advanced protein-ligand docking with plants. J. Chem. Inf. Model. 49: 84-96.
    Pubmed CrossRef
  131. Lizunov AY, Gonchar AL, Zaitseva NI, Zosimov VV. 2015. Accounting for intraligand interactions in flexible ligand docking with a PMF-based scoring function. J. Chem. Inf. Model. 55: 2121-2137.
    Pubmed CrossRef
  132. Kruger D M, G arzon JI, Ch acon P , Gohlke H. 2 014. DrugScore(PPI) knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One 9: e89466.
    Pubmed KoreaMed CrossRef
  133. Ashtawy H M, M ah apatra N R. 2 015. Mach ine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinform. 16 Suppl 6: S3.
  134. Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. 2015. Machine-learning scoring functions to improve structurebased binding affinity prediction and virtual screening. WIREs Comput. Mol. Sci. 5: 405-424.
    Pubmed KoreaMed CrossRef
  135. Zhang W, Li RB, Shin R, Wang YM, Padmalayam I, Zhai L, Krishna NR. 2013. Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMAST calculations. Chemmedchem 8: 1629-1633.
    Pubmed KoreaMed
  136. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, et al. 2001. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21: 7117-7136.
    Pubmed KoreaMed CrossRef
  137. Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA. 2014. A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc. Natl. Acad. Sci. USA 111: 18590-18595.
    Pubmed KoreaMed CrossRef
  138. Lee JY, Jung KW, Woo ER, Kim Y. 2008. Docking study of biflavonoids, allosteric inhibitors of protein tyrosine phosphatase 1B. Bull. Korean Chem. Soc. 29: 1479-1484.
    CrossRef
  139. Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, Erlanson DA. 2005. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44: 7704-7712.
    Pubmed CrossRef
  140. Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML, Saragovi HU. 2014. Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol. Pharmacol. 85: 553-563.
    Pubmed CrossRef
  141. Zinker B, Xie N, Clampit J, Nguyen P, Wilcox D, Jacobson P, et al. 2001. Anti-diabetic effects of protein tyrosine phosphatase 1B (PTP1B) antisense treatment in a rodent model of diabetes: potential therapeutic benefit. Diabetes 50: A332.
  142. Ostensen CG, Sandberg-Nordqvist AC, Chen J, Hallbrink M, Rotin D, Langel U, Efendic S. 2002. Overexpression of protein-tyrosine phosphatase PTP sigma is linked to impaired glucose-induced insulin secretion in hereditary diabetic Goto-Kakizaki rats. Biochem. Biophys. Res. Commun. 291: 945-950.
    Pubmed CrossRef
  143. Lauriol J, Jaffre F, Kontaridis MI. 2015. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin. Cell Dev. Biol. 37: 73-81.
    Pubmed KoreaMed CrossRef
  144. Hashimoto Y, Kohri K, Tsai MJ. 2003. Overexpression of Cdc25B, an androgen-receptor coactivator, in human prostate cancer. J. Urol. 169: 84-85.
  145. Wang Z , Cai SR, He YL, Z h an WH, Z hang CH, Wu H , et al. 2009. Elevated PRL-3 expression was more frequently detected in the large primary gastric cancer and exhibits a poor prognostic impact on the patients. J. Cancer Res. Clin. Oncol. 135: 1041-1046.
    Pubmed CrossRef
  146. Krishnan N, Koveal D, Miller DH, Xue B , Aksh inthala SD, Kragelj J, et al. 2014. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10:558-566.
    Pubmed KoreaMed CrossRef
  147. Chen LW, Sung SS, Yip MLR, Lawrence HR, Ren Y, Guida WC, et al. 2006. Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70: 562-570.
    Pubmed CrossRef
  148. Chio CM, Lim CS, Bishop AC. 2015. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry 54: 497-504.
    Pubmed KoreaMed CrossRef
  149. Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, et al. 2012. Identification of small molecule inhibitors of PTPs through an integrative virtual and biochemical approach. PLoS One 7: e50217.
    Pubmed KoreaMed CrossRef
  150. Lazo J S, A slan DC, S outh wick EC, Cooley K A, D ucruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049.
    Pubmed CrossRef
  151. Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS. 2005. The benzo[c] phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogenactivated protein kinase phosphatase-1. J. Biol. Chem. 280:19078-19086.
    Pubmed CrossRef
  152. Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS, et al. 2006. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg. Med. Chem. Lett. 16: 2996-2999.
    Pubmed CrossRef
  153. Doughty-Shenton D, Joseph JD, Zhang J, Pagliarini DJ, Kim Y, Lu DH, et al. 2010. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J. Pharmacol. Exp. Ther. 333: 584-592.
    Pubmed KoreaMed CrossRef
  154. Musumeci L, Kuijpers MJ, Gilio K, Hego A, Theatre E, Maurissen L, et al. 2015. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation 131: 656-668.
    Pubmed KoreaMed CrossRef
  155. Molina G, Vogt A, Bakan A, Dai WX, de Oliveira PQ, Znosko W, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5: 680-687.
    Pubmed KoreaMed CrossRef
  156. Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA, Veale CA, Chapdelaine MJ. 2001. Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J. Med. Chem. 44: 1777-1793.
    Pubmed CrossRef