전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. 2008. Surviving Sepsis Campaign:International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36: 296-327.
    Pubmed CrossRef
  2. Angus DC, Van der Poll, T. 2013. Severe sepsis and septic shock. N. Engl. J. Med. 369: 840-851.
    Pubmed CrossRef
  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29: 1303-1310.
    Pubmed CrossRef
  4. Boedicker JQ, Li L, Kline TR, Ismagilov RF. 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plugbased microfluidics. Lab. Chip 8: 1265-1272.
    Pubmed PMC CrossRef
  5. Kaufman D, Fairchild KD. 2004. Clinical microbiologv of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 17: 638-643.
    Pubmed PMC CrossRef
  6. Lee A, Mirrett S, Reller Barth L, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J. Clin. Microbiol. 47: 3546-3548.
    Pubmed PMC CrossRef
  7. Lazcka O , Del Campo FJ, M unoz F X. 2 0 07. P athogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217.
    Pubmed CrossRef
  8. Su L, Jia W, Hou C, Yu L. 2011. Microbial biosensors: a review. Biosens. Bioelectron. 26: 1788-1799.
    Pubmed CrossRef
  9. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249: 505-510.
    Pubmed CrossRef
  10. Ellington AD, S zostak JW. 1 990. In v itro s election of RNA molecules that bind specific ligands. Nature 346: 818-822.
    Pubmed CrossRef
  11. Ferreira IM, De Souza Lacerda CM, De Faria SL, Corrêa CR, De Andrade ASR. 2014. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl. Biochem. Biotechnol. 174: 2548-2556.
    Pubmed CrossRef
  12. Schleifer KH, Kandler O. 1972. Peptidoglycan. Types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
    Pubmed PMC
  13. Marton S, Cleto F, Krieger MA, Cardoso J. 2016. Isolation of an aptamer that binds specifically to E. coli. PLoS One 11:e0153637.
    Pubmed PMC CrossRef
  14. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2ΔCT method. Methods 25: 402-408.
    Pubmed CrossRef
  15. Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 26: 3175-3182.
    Pubmed CrossRef
  16. Amaya E, Caceres M, Fang H, Ramirez AT, Palmgren AC, Nord CE. 2009. Extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit in Leon, Nicaragua. Int. J. Antimicrob. Agents 33: 386-387.
    Pubmed CrossRef
  17. Gray J, Arvelo W, McCracken J, Lopez B, Lessa FC, Kitchel B, et al. 2012. An outbreak of Klebsiella pneumoniae late-onset sepsis in a neonatal intensive care unit in Guatemala. Am. J. Infect. Control 40: 516-520.
    Pubmed CrossRef
  18. Zakariya BP, Vishnu Bhat B, Harish BN, Arun Babu T, Joseph NM. 2012. Risk factors and outcome of Klebsiella pneumoniae sepsis among newborns. Curr. Pediatr. Res. 16: 115-118.
  19. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. 2005. Pseudomonas aeruginosa bloodstream infection:importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 49: 1306-1311.
    Pubmed PMC CrossRef
  20. Richards MJ, Edwards JR, Culver DH, Gayne RP. 1999. Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance System. Crit. Care Med. 27: 887-892.
    Pubmed CrossRef
  21. Lahmer T, Messer M, Schnappauf C, Schmidt A, Schmid RM, Huber W. 2014. Acinetobacter baumannii sepsis is fatal in medical intensive care unit patients: six cases and review of literature. Anaesth. Intensive Care 42: 541-684.
  22. Patrick M, Kettera M, Guentzela N, Schafferb B, Herzigb M, Wub X, et al. 2014. Severe Acinetobacter baumannii sepsis is associated with elevation of Pentraxin 3. Infect. Immun. 82:3910-3918.
    Pubmed PMC CrossRef
  23. De Pedro M, Cava F. 2015. Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 6: 449.
    Pubmed PMC CrossRef
  24. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W. 2008. Cellspecific internalization study of an aptamer from whole cell selection. Chem. Eur. J. 14: 1769-1775.
    Pubmed CrossRef
  25. Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700.
    Pubmed PMC CrossRef
  26. Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. 32: 287-306.
    Pubmed CrossRef
  27. Bayer ME. 1991. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol 107: 268-280.
    CrossRef
  28. Keefe AD, Pai S, Ellington A. 2010. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9: 537-550.
    Pubmed CrossRef
  29. Lee JF, Stovall GM, Ellington AD. 2006. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10: 282-289.
    Pubmed CrossRef
  30. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. 2013. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3: 1863.
    Pubmed PMC CrossRef
  31. Song S, Wang L, Li J, Zhao J, Fan C. 2008. Aptamer-based biosensors. Trends Anal. Chem. 27: 108-117.
    CrossRef

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(4): 838-843

Published online April 28, 2017 https://doi.org/10.4014/jmb.1611.11004

Copyright © The Korean Society for Microbiology and Biotechnology.

High Efficiency Binding Aptamers for a Wide Range of Bacterial Sepsis Agents

Ana Claudia Graziani 1, Maria Isabel Stets 1, Ana Luisa Kalb Lopes 1, Pedro Henrique Caires Schluga 1, Soledad Marton 1, Ieda Ferreira Mendes 2, Antero Silva Ribeiro de Andrade 2, Marco Aurélio Krieger 1 and Josiane Cardoso 1*

1Instituto de Biologia Molecular do Paraná, Department of Research and Development, Curitiba, Paraná, Brazil, 2Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Minas Gerais, Brazil

Received: November 2, 2016; Accepted: January 20, 2017

Abstract

Sepsis is a major health problem worldwide, with an extremely high rate of morbidity and
mortality, partly due to delayed diagnosis during early disease. Currently, sepsis diagnosis
requires bacterial culturing of blood samples over several days, whereas PCR-based molecular
diagnosis methods are faster but lack sensitivity. The use of biosensors containing nucleic acid
aptamers that bind targets with high affinity and specificity could accelerate sepsis diagnosis.
Previously, we used the systematic evolution of ligands by exponential enrichment technique
to develop the aptamers Antibac1 and Antibac2, targeting the ubiquitous bacterial
peptidoglycan. Here, we show that these aptamers bind to four gram-positive and seven
gram-negative bacterial sepsis agents with high binding efficiency. Thus, these aptamers could
be used in combination as biological recognition elements in the development of biosensors
that are an alternative to rapid bacteria detection, since they could provide culture and
amplification-free tests for rapid clinical sepsis diagnosis.

Keywords: Anti-peptidoglycan aptamers, bacterial sepsis agents, qPCR assays, biosensor

References

  1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. 2008. Surviving Sepsis Campaign:International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 36: 296-327.
    Pubmed CrossRef
  2. Angus DC, Van der Poll, T. 2013. Severe sepsis and septic shock. N. Engl. J. Med. 369: 840-851.
    Pubmed CrossRef
  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29: 1303-1310.
    Pubmed CrossRef
  4. Boedicker JQ, Li L, Kline TR, Ismagilov RF. 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plugbased microfluidics. Lab. Chip 8: 1265-1272.
    Pubmed KoreaMed CrossRef
  5. Kaufman D, Fairchild KD. 2004. Clinical microbiologv of bacterial and fungal sepsis in very-low-birth-weight infants. Clin. Microbiol. Rev. 17: 638-643.
    Pubmed KoreaMed CrossRef
  6. Lee A, Mirrett S, Reller Barth L, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J. Clin. Microbiol. 47: 3546-3548.
    Pubmed KoreaMed CrossRef
  7. Lazcka O , Del Campo FJ, M unoz F X. 2 0 07. P athogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217.
    Pubmed CrossRef
  8. Su L, Jia W, Hou C, Yu L. 2011. Microbial biosensors: a review. Biosens. Bioelectron. 26: 1788-1799.
    Pubmed CrossRef
  9. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249: 505-510.
    Pubmed CrossRef
  10. Ellington AD, S zostak JW. 1 990. In v itro s election of RNA molecules that bind specific ligands. Nature 346: 818-822.
    Pubmed CrossRef
  11. Ferreira IM, De Souza Lacerda CM, De Faria SL, Corrêa CR, De Andrade ASR. 2014. Selection of peptidoglycan-specific aptamers for bacterial cells identification. Appl. Biochem. Biotechnol. 174: 2548-2556.
    Pubmed CrossRef
  12. Schleifer KH, Kandler O. 1972. Peptidoglycan. Types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
    Pubmed KoreaMed
  13. Marton S, Cleto F, Krieger MA, Cardoso J. 2016. Isolation of an aptamer that binds specifically to E. coli. PLoS One 11:e0153637.
    Pubmed KoreaMed CrossRef
  14. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2ΔCT method. Methods 25: 402-408.
    Pubmed CrossRef
  15. Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 26: 3175-3182.
    Pubmed CrossRef
  16. Amaya E, Caceres M, Fang H, Ramirez AT, Palmgren AC, Nord CE. 2009. Extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit in Leon, Nicaragua. Int. J. Antimicrob. Agents 33: 386-387.
    Pubmed CrossRef
  17. Gray J, Arvelo W, McCracken J, Lopez B, Lessa FC, Kitchel B, et al. 2012. An outbreak of Klebsiella pneumoniae late-onset sepsis in a neonatal intensive care unit in Guatemala. Am. J. Infect. Control 40: 516-520.
    Pubmed CrossRef
  18. Zakariya BP, Vishnu Bhat B, Harish BN, Arun Babu T, Joseph NM. 2012. Risk factors and outcome of Klebsiella pneumoniae sepsis among newborns. Curr. Pediatr. Res. 16: 115-118.
  19. Micek ST, Lloyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Kollef MH. 2005. Pseudomonas aeruginosa bloodstream infection:importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 49: 1306-1311.
    Pubmed KoreaMed CrossRef
  20. Richards MJ, Edwards JR, Culver DH, Gayne RP. 1999. Nosocomial infections in medical intensive care units in the United States: National Nosocomial Infections Surveillance System. Crit. Care Med. 27: 887-892.
    Pubmed CrossRef
  21. Lahmer T, Messer M, Schnappauf C, Schmidt A, Schmid RM, Huber W. 2014. Acinetobacter baumannii sepsis is fatal in medical intensive care unit patients: six cases and review of literature. Anaesth. Intensive Care 42: 541-684.
  22. Patrick M, Kettera M, Guentzela N, Schafferb B, Herzigb M, Wub X, et al. 2014. Severe Acinetobacter baumannii sepsis is associated with elevation of Pentraxin 3. Infect. Immun. 82:3910-3918.
    Pubmed KoreaMed CrossRef
  23. De Pedro M, Cava F. 2015. Structural constraints and dynamics of bacterial cell wall architecture. Front. Microbiol. 6: 449.
    Pubmed KoreaMed CrossRef
  24. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W. 2008. Cellspecific internalization study of an aptamer from whole cell selection. Chem. Eur. J. 14: 1769-1775.
    Pubmed CrossRef
  25. Raetz CR, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700.
    Pubmed KoreaMed CrossRef
  26. Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol. 32: 287-306.
    Pubmed CrossRef
  27. Bayer ME. 1991. Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J. Struct. Biol 107: 268-280.
    CrossRef
  28. Keefe AD, Pai S, Ellington A. 2010. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9: 537-550.
    Pubmed CrossRef
  29. Lee JF, Stovall GM, Ellington AD. 2006. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10: 282-289.
    Pubmed CrossRef
  30. Chang YC, Yang CY, Sun RL, Cheng YF, Kao WC, Yang PC. 2013. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3: 1863.
    Pubmed KoreaMed CrossRef
  31. Song S, Wang L, Li J, Zhao J, Fan C. 2008. Aptamer-based biosensors. Trends Anal. Chem. 27: 108-117.
    CrossRef