전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Minireview

References

  1. Cavicchioli R, Amils D, McGenity T. 2011. Life and applications of extremophiles. Environ. Microbiol. 13: 19031907.
    Pubmed CrossRef
  2. Deppe U, Richnow HH, Michaelis W, Antranikian G. 2005. Degradation of crude oil by an arctic microbial consortium. Extremophiles 9: 461-470.
    Pubmed CrossRef
  3. Navarro-González R, Iniguez E, de la Rosa J, McKay CR. 2009. Characterization of organics, microorganisms, desert soil, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions. Astrobiology 9: 703-711.
    Pubmed CrossRef
  4. Seitz KH, Studdert C, Sanchez J, de Castro R. 1997. Intracellular proteolytic activity of the haloalkaliphilic archaeon Natronococcus occultus. Effect of starvation. J. Basic Microbiol. 7: 313-322.
    CrossRef
  5. Cárdenas JP, Valdés J, Quatrini R, Duarte F, Holmes DS. 2010. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl. Microbiol. Biotechnol. 88: 605-620.
    Pubmed CrossRef
  6. López-López O, Cerdán ME, González-Siso MI. 2014. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 15: 445-455.
    Pubmed PMC CrossRef
  7. Yildiz SY, Radchenkova N, Arga KY, Kambourova M, Toksoy OE. 2015. Genomic analysis of Brevibacillus thermoruber 423 reveals its biotechnological and industrial potential. Appl. Microbiol. Biotechnol. 99: 2277-2289.
    Pubmed CrossRef
  8. Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P. 2015. Metagenomics of extreme environments. Curr. Opin. Microbiol. 25: 97-102.
    Pubmed CrossRef
  9. Qin J, Zhao B, Wang X. 2009. Non-sterilized fermentative production of polymer-grade L-lactic acid by a newly isolated thermophilic strain Bacillus sp. PLoS One 4: 43-59.
    Pubmed PMC CrossRef
  10. Karan R, Capes MD, DasSarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8: 3-15.
    Pubmed PMC CrossRef
  11. Nigam SP. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3: 597-611.
    Pubmed PMC CrossRef
  12. Singh OV, Gabani P. 2011. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J. Appl. Microbiol. 110: 851-861.
    Pubmed CrossRef
  13. Demirjian DC, Morís-Varas F, Cassidy CS. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151.
    CrossRef
  14. Van den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213-218.
    CrossRef
  15. Irwin JA, Baird AW. 2004. Extremophiles and their application to veterinary medicine. Ir. Vet. J. 57: 348-354.
    Pubmed PMC CrossRef
  16. Díaz-Tenaa E, Rodríguez-Ezquerroa A, López de Lacalle Marcaide LN, Bustinduyb LG, Sáenzb AE. 2013. Use of extremophiles microorganisms for metal removal. Procedia Eng. 63: 67-74.
    CrossRef
  17. Eichler J. 2001. Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19: 261-278.
    CrossRef
  18. Fujiwara S. 2002. Extremophiles: developments of their special functions and potential resources. J. Biosci. Bioeng. 94: 518-525.
    CrossRef
  19. Haki GD, Rakshit SK. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 7-34.
    CrossRef
  20. Raddadi N, Cherif A, Daffonchio D, Mohamed N, Fava F. 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 99: 7907-7913.
    Pubmed CrossRef
  21. Dewan S. 2014. Global Markets for Enzymes in Industrial Applications. BCC Research, Wellesley, MA. USA.
  22. Marhuenda-Egea FC, Piere-Velazquez S, Cadenas C, Cadenas E. 2002. An extreme halophilic enzyme active at low salt in reversed micelles. J. Biotechnol. 93: 159-164.
    CrossRef
  23. Jaenicke R, Schuring H, Beaucamp N, Ostendorp R. 1996. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv. Protein Chem. 48: 181-269.
    CrossRef
  24. Sthal S. 1993. In Gupta MN (ed.). Thermostability of Enzymes, pp. 45-74. Springer, Berlin, Germany.
  25. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253-261.
    CrossRef
  26. Bertoldo C, Antranikian G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151-60.
    CrossRef
  27. Van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. 2002. Properties and application of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137-155.
    CrossRef
  28. Madigan MT, Marrs BL. 1997. Gli estremofili. Le Scienze 346: 78-85.
  29. Sunna A, Bergquist PL. 2003. A gene encoding a novel extremely thermostable 1,4-beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7: 63-70.
    Pubmed
  30. Brasen C, Urbanke C, Schonheit P. 2005. A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. FEBS Lett. 579: 477482.
    Pubmed CrossRef
  31. Mayer F, Küper U, Meyer C, Daxer S, Müller V, Rachel R, Huber H. 2012. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J. Bacteriol. 194: 1572-1581.
    Pubmed PMC CrossRef
  32. Staiano M, Bazzicalupo P, Rossi M, D’Auria S. 2005. Glucose biosensors as models for the development of advanced protein-based biosensors. Mol. Biosyst. 1: 354-362.
    Pubmed CrossRef
  33. Bruins ME, Janssen AE, Boom RM. 2001. Thermozymes and their applications: a review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186.
    CrossRef
  34. Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl. Biochem. Biotechnol. 168: 1849-1866.
    Pubmed CrossRef
  35. De Pascale D, Cusano AM, Author F, Parrilli E, di Prisco G, Marino G, Tutino ML. 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12: 311-323.
    Pubmed CrossRef
  36. Unsworth LD, Van Der OJ, Koutsopoulos S. 2007. Hyperthermophilic enzymes - stability, activity and implementation strategies for high temperature applications. FEBS J. 274:4044-4056.
    Pubmed CrossRef
  37. Rosenbaum E, Gabel F, Durá MA, Finet S, Cléry-Barraud C, Masson P, Franzetti B. 2012. Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. Arch. Biochem. Biophys. 517: 104-110.
    Pubmed CrossRef
  38. De Champdoré M, Staiano M, D’Auria S. 2007. Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J. R. Soc. Interface 4:183-191.
    Pubmed PMC CrossRef
  39. Boonyaratanakornkit BB, Park CB, Clark DS. 2002. Pressure effects on intra- and intermolecular interactions within proteins. Biochim. Biophys. Acta 1595: 235-249.
    CrossRef
  40. Fang J, Zhang L, Bazylinski DA. 2010. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 18: 413-422.
    Pubmed CrossRef
  41. Reed CJ, Lewis H, Trejo E, Winston V, Evilia C. 2013. Protein adaptations in archaeal extremophiles. Archaea 2013: 373275.
    Pubmed PMC CrossRef
  42. Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N. 2006. Piezophilic adaptation: a genomic point of view. J. Biotechnol. 126: 11-25.
    Pubmed CrossRef
  43. Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. 2009. Isolation and physiological characterization of two novel piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ. Micriobiol. 11: 1983-1997.
    Pubmed CrossRef
  44. Fusi P, Grisa M, Mombelli E, Consonni R, Tortora P, Vanoni M. 1995. Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus in mesophylic hosts. Gene 154: 99-103
    CrossRef
  45. Mombelli E, Shehi E, Fusi P, Tortora P. 2002. Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim. Biophys. Acta 1595: 392-396.
    CrossRef
  46. Cavicchioli R. 2002. Extremophiles and the search for extraterrestrial life. Astrobiology 2: 281-292.
    Pubmed CrossRef
  47. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, et al. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25-42.
    Pubmed CrossRef
  48. Gomes J, Steiner W. 1998. Production of a high activity of an extremely thermostable β-mannanase by the thermophilic eubacterium Rhodothermus marinus. Biotechnol. Lett. 20: 729733.
    CrossRef
  49. Gomes J, Gomes I, Terler K, Gubala N, Ditzelmuller G, Steiner W. 2000. Optimisation of culture medium and conditions for α-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb. Technol. 27: 414-422.
    CrossRef
  50. Abe F, Horikoshi K. 2001. The biotechnological potential of piezophiles. Trends Biotechnol. 19: 102-108.
    CrossRef
  51. Cannio R, Di Prizito N, Rossi M, Morana A. 2004. A xylandegrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8:117-124.
    Pubmed CrossRef
  52. Giuliano M, Schiraldi C, Marotta MR, Hugenholtz J, De Rosa M. 2004. Expression of Sulfolobus solfataricus αglucosidase in Lactococcus lactis. Appl. Microbiol. Biotechnol. 64: 829-832.
    Pubmed CrossRef
  53. Jaenicke R. 1981. Enzymes under extreme of physical conditions. Annu. Rev. Biophys. Bioeng. 10: 1-67.
    Pubmed CrossRef
  54. Huang Y, Krauss G, Cottaz H, Driguez H, Lipps G. 2005. A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J. 385: 581-588.
    Pubmed PMC CrossRef
  55. Golyshina O, Timmis KN. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 7: 1277-1288.
    Pubmed CrossRef
  56. Sharma A, Kawarabayasi Y, Satyanarayana T. 2012. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16: 1-19.
    Pubmed CrossRef
  57. Pikuta EV, Hoover RB, Tang J. 2007. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 33: 183-209.
    Pubmed CrossRef
  58. Hauenstein S, Zhang CM, Hou YM, Perona JJ. 2004. Shapeselective RNA recognition by cysteinyl-tRNA synthetase. Nat. Struct. Mol. Biol. 11: 1134-1141.
    Pubmed CrossRef
  59. Szilágyi A, Závodszky P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8: 493-504.
    CrossRef
  60. Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM. 2002. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J. Mol. Biol. 323: 327-344.
    CrossRef
  61. Jackson BR, Noble C, Lavesa-Curto M, Bond PL, Bowater RP. 2007. Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon “Ferroplasma acidarmanus” Fer1. Extremophiles 11: 315-327.
    Pubmed CrossRef
  62. Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R. 2012. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 92: 2575-2580.
    Pubmed CrossRef
  63. Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR. 2001. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 3: 532-542.
    Pubmed CrossRef
  64. Datta S, Holmes B, Park J, Chen Z, Dibble DC, Hadi M, et al. 2010. Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem. 12: 338345.
    CrossRef
  65. Madern D, Pfister C, Zaccai G. 1995. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. Eur. J. Biochem. 3: 1088-1095.
    CrossRef
  66. Raddadi N, Cherif A, Daffonchio D, Fava F. 2013. Haloalkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour. Technol. 150: 121-128.
    Pubmed CrossRef
  67. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. 2013. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 128: 751-759.
    Pubmed CrossRef
  68. Elleuche S, Schröder C, Sahm K, Antranikian G. 2014. Extremozymes - biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29:116-123.
    Pubmed CrossRef
  69. Madern D, Ebel C, Zaccai G. 2000. Halophilic adaptation of enzymes. Extremophiles 4: 91-98.
    Pubmed CrossRef
  70. Sutrisno A, Ueda M, Abe Y, Nakazawa M, Miyatake K. 2004. A chitinase with high activity toward partially Nacetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl. Microbiol. Biotechnol. 63: 398-406.
    Pubmed CrossRef
  71. Taylor INR, Brown C, Rycroft M, King G, Littlechild JA, Lloyd MC, et al. 2004. Application of thermophilic enzymes in commercial biotransformation processes. Biochem. Soc. Trans. 32: 290-292.
    Pubmed CrossRef
  72. Woosowska S, Synowiecki J. 2004. Thermostable glucosidase with broad substrate specificity suitable for processing of lactose-containing products. Food Chem. 85: 181-187.
    CrossRef
  73. Litchfield CD. 2011. Potential for industrial products from the halophilic Archaea. J. Ind. Microbiol. Biotechnol. 38:1635-1647.
    Pubmed CrossRef
  74. Schreck SD, Grunden AM. 2014. Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol. 98: 1011-1021.
    Pubmed CrossRef
  75. Ortega G, Laín A, Tadeo X, López-Méndez B, Castaño D, Milleta O. 2011. Halophilic enzyme activation induced by salts. Sci. Rep. 1: 6.
    Pubmed PMC CrossRef
  76. Serour E, Antranikian G. 2002. Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81: 73-83.
    Pubmed CrossRef
  77. Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 92: 144-148.
    CrossRef
  78. Kim J, Dordick S. 1997. Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol. Bioeng. 55: 471-479.
    CrossRef
  79. Karbalaei-Heidari HR, Ziaee AA, Amoozegar MA. 2007. Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles 11: 237-243.
    Pubmed CrossRef
  80. Ruiz DM, De Castro RE. 2007. Effect of organic solvents on the activity and stability of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. J. Ind. Microbiol. Biotechnol. 34: 111-115.
    Pubmed CrossRef
  81. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. 2005. Organic solvent tolerance of halophilic a-amylase from a haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85-89.
    Pubmed CrossRef
  82. Shafiei M, Ziaee AA, Amoozegar MA. 2011. Purification and characterization of an organic-solvent-tolerant halophilic a-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 38: 275-281.
    Pubmed CrossRef
  83. Yu HY, Li X. 2012. Purification and characterization of novel organic-solvent-tolerant b-amylase and serine protease from a newly isolated Salimicrobium halophilum strain LY20. FEMS Microbiol. Lett 329: 204-211.
    Pubmed CrossRef
  84. Munawar N, Engel PC. 2012. Overexpression in a non-native halophilic host and biotechnological potential of NAD+dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014. Extremophiles 16: 463-476.
    Pubmed CrossRef
  85. Vidyasagar M, Prakash S, Sreeramulu K. 2006. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum borinquense sp. TSS 101. Lett. Appl. Microbiol. 43: 385-391.
    Pubmed CrossRef
  86. Zaccai G. 2004. The effect of water on protein dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 1269-1275.
    Pubmed PMC CrossRef
  87. Sellek GA, Chaudhuri JB. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb. Technol. l25: 471-482.
    CrossRef
  88. Cordone L, Ferrand M, Vitrano E, Zaccai G. 1999. Harmonic behavior of trehalose-coated carbon-monoxymyoglobin at high temperature. Biophys. J. 76: 1043-1047.
    CrossRef
  89. Lehnert U, Réat V, Weik M, Zaccaï G, Pfister C. 1998. Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys. J. 75:1945-1952.
    CrossRef
  90. Singh A, Kuhad RC, Ward OP. 2007. Industrial application of microbial cellulases, pp. 345-358. In Kuhad RC, Singh A (eds.). Lignocellulose Biotechnology: Future Prospects. I.K. International Publishing House, New Delhi, India.
  91. Merlino A, Russo KI, Castellano I, De VE, Rossi B, Conte M, et al. 2010. Structure and flexibility in cold-adapted iron superoxide dismutases: the case of the enzyme isolated from Pseudoalteromonas haloplanktis. J. Struct. Biol. 172: 343352.
    Pubmed CrossRef
  92. Siddiqui KS, Cavicchioli R. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403-433.
    Pubmed CrossRef
  93. Sukumaran RK, Singhania RR, Pandey A. 2005. Microbial cellulases - production, applications and challenges. J. Sci. Ind. Res. 64: 832-844.
  94. Kumar L, Awasthi G, Singh B. 2011. Extremophiles: a novel source of industrially important enzymes. Biotechnol. Appl. Biochem. 10: 1-15.
    CrossRef
  95. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107.
    CrossRef
  96. Huston AL. 2008. Biotechnological aspects of cold-adapted enzymes, pp. 347-363. In Margesin R, Schinner F, Marx J-C, Gerday C (eds.). Psychrophiles: From Biodiversity to Biotechnology. Springer, Heidelberg. Germany.
    Pubmed CrossRef
  97. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. 2012. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7: e48479.
    Pubmed PMC CrossRef
  98. Rolli E, Marasco M, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. 2015. Improved plant resistance to drought is promoted by the root-associated microbiome as water stress-dependent trait. Environ. Microbiol. 17: 316-331.
    Pubmed CrossRef
  99. Hotta Y, Ezaki S, Atomi H, Imanaka T. 2002. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl. Environ. Microbiol. 68: 3925-3931.
    Pubmed PMC CrossRef
  100. Johnson DB. 2014. Biomining - biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 30: 24-31.
    Pubmed CrossRef
  101. Karasová-Lipovová P, Strnad H, Spiwok V, Malá S, Králová B, Russell NJ. 2003. The cloning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb. Technol. 33: 836-844.
    CrossRef
  102. Navarro CA, von Bernath D, Jerez CA. 2013. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol. Res. 46: 363-371.
    Pubmed CrossRef
  103. Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules 4: 117-139.
    Pubmed PMC CrossRef
  104. Karmakar M, Ray RR. 2011. Current trends in research and application of microbial cellulases. Res. J. Microbiol. 6: 4153.
    CrossRef
  105. Birgisson H, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B. 2003. Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7: 185-193.
    Pubmed
  106. Singh BK. 2010. Exploring microbial diversity for biotechnology:the way forward. Trends Biotechnol. 28: 111-116.
    Pubmed CrossRef
  107. Hess M, Katzer M, Antranikian G. 2008. Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12: 351-364.
    Pubmed CrossRef
  108. Staley JT, Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39: 321-346.
    Pubmed CrossRef
  109. Young P. 1997. Major microbial diversity initiative recommended. ASM News 63: 417-421.
  110. Mohammed K, Pramod WR. 2009. Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can. J. Microbiol. 55: 1294-1301.
    Pubmed CrossRef
  111. Yumoto I. 2002. Bioenergetics of alkaliphilic Bacillus spp. J. Biosci. Bioeng. 93: 342-353.
    CrossRef
  112. Chang P, Tsai WS, Tsai CL, Tseng MJ. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophys. Res. Commun. 319: 1017-1025.
    Pubmed CrossRef
  113. Das H, Sing SK. 2004. Useful byproducts from cellulosic waste of agriculture and food industry - a critical appraisal. Crit. Rev. Food Sci. Nutr. 44: 77-89.
    Pubmed CrossRef
  114. Hashim SO, Delgado O, Hatti-Kaul R, Mulaa FJ, Mattiasson B. 2004. Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnol. Lett. 26: 823-828.
    Pubmed CrossRef
  115. Von Solingen P, Meijer D, Kleij WA, Branett C, Bolle R, Power SD, Jones BE. 2001. Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5: 333-341.
    CrossRef
  116. Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, Van Steenbergen RP, Jones BE. 2004. Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8: 193-200.
    Pubmed CrossRef
  117. Margesin R, Schinner F, Marx JC, Gerday C (eds.). 2008. Psychrophiles: From Biodiversity to Biotechnology. SpringerVerlag, Berlin-Heidelberg. Germany.
  118. Zeng R, Zhang R, Zhao J, Lin N. 2003. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7: 335-337.
    Pubmed CrossRef
  119. Collins T, D’Amico S, Marx JC, Feller G, Gerday C. 2007. Cold-adapted enzymes, pp. 165-179. In Gerday C, Glansdorff N (eds.). Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. USA.
    CrossRef
  120. Gurung N, Ray S, Bose S, Rai V. 2013. A broader view:microbial enzymes and their relevance in industries, medicine, and beyond. Biomed. Res. Int. 2013: 329121.
    Pubmed PMC CrossRef
  121. Egorova K, Antranikian G. 2005. Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 8: 649-655.
    Pubmed CrossRef
  122. Ferrer M, Golyshina O, Beloqui A, Golyshin PN. 2007. Mining enzymes from extreme environments. Curr. Opin. Microbiol. 10: 207-214.
    Pubmed CrossRef
  123. Secades P, Alvarez B, Guijarro JA. 2003. Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol. Lett. 226: 273-279.
    CrossRef
  124. Huang H, Luo H, Wang Y, Fu D, Shao N, Yang P, et al. 2009. Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J. Microbiol. Biotechnol. 19: 1085-1091.
    Pubmed CrossRef
  125. Tutino ML, di Prisco G, Marino G, de Pascale D. 2009. Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept. Lett. 16: 1172-1180.
    Pubmed CrossRef
  126. Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K. 2010. A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, beta-glucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 157: 26-32.
    Pubmed CrossRef
  127. Wang F, Hao J, Yang C, Sun M. 2010. Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS80-122. Appl. Biochem. Biotechnol. 162: 1497-1505.
    Pubmed CrossRef
  128. Parkes R, Cragg J, Banning BA, Brock N, Webster F, Fry G, et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 9: 1146-1161.
    Pubmed CrossRef
  129. Aurilia V, Parracino A, D’Auria S. 2008. Microbial carbohydrate esterases in cold adapted environments. Gene 410: 234-240.
    Pubmed CrossRef
  130. Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW. 2008. Biogeographic and phylogenetic diversity of thermoacidophilic Cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl. Environ. Microbiol. 74:2822-2833.
    Pubmed PMC CrossRef
  131. Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, et al. 2009. Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressuretemperature limits for life. ISME J. 3: 873-876.
    Pubmed CrossRef
  132. Joseph B, Ramteke PW, Thomas G. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26: 457-470.
    Pubmed CrossRef
  133. Sarmiento F, Rocío P, Blamey JM. 2015. Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3: 1-15.
    Pubmed PMC CrossRef
  134. Schmid AK, Reiss DJ, Pan M, Koide T, Baliga NS. 2009. A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Mol. Syst. Biol. 5: 282-294.
    Pubmed PMC CrossRef
  135. Nicholas JR. 2006. Antarctic microorganism: coming in from the cold. Culture 27: 965-989.

Related articles in JMB

More Related Articles

Article

Minireview

J. Microbiol. Biotechnol. 2017; 27(4): 649-659

Published online April 28, 2017 https://doi.org/10.4014/jmb.1611.11006

Copyright © The Korean Society for Microbiology and Biotechnology.

Extremozymes: A Potential Source for Industrial Applications

Kelly Dumorné 1*, David Camacho Córdova 2, Marcia Astorga-Eló 3 and Prabhaharan Renganathan 4

1Departamento de Ingeniería Química, Facultad de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Chile, 1Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo-USP, Brazil, 2Department of Food Technology, University of Sonora, Mexico, 3Laboratorio Ecología Microbiana Aplicada, Departamento de Ingeniería Química, Facultad de Ciencias Químicas y Recursos Naturales,Universidad de La Frontera, Chile

Received: November 3, 2016; Accepted: January 19, 2017

Abstract

Extremophilic microorganisms have established a diversity of molecular strategies in order to
survive in extreme conditions. Biocatalysts isolated by these organisms are termed
extremozymes, and possess extraordinary properties of salt allowance, thermostability, and
cold adaptivity. Extremozymes are very resistant to extreme conditions owing to their great
solidity, and they pose new opportunities for biocatalysis and biotransformations, as well as
for the development of the economy and new line of research, through their application.
Thermophilic proteins, piezophilic proteins, acidophilic proteins, and halophilic proteins have
been studied during the last few years. Amylases, proteases, lipases, pullulanases, cellulases,
chitinases, xylanases, pectinases, isomerases, esterases, and dehydrogenases have great
potential application for biotechnology, such as in agricultural, chemical, biomedical, and
biotechnological processes. The study of extremozymes and their main applications have
emerged during recent years.

Keywords: Extremozymes, thermophiles, acidophiles, halophiles, biotechnology

References

  1. Cavicchioli R, Amils D, McGenity T. 2011. Life and applications of extremophiles. Environ. Microbiol. 13: 19031907.
    Pubmed CrossRef
  2. Deppe U, Richnow HH, Michaelis W, Antranikian G. 2005. Degradation of crude oil by an arctic microbial consortium. Extremophiles 9: 461-470.
    Pubmed CrossRef
  3. Navarro-González R, Iniguez E, de la Rosa J, McKay CR. 2009. Characterization of organics, microorganisms, desert soil, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions. Astrobiology 9: 703-711.
    Pubmed CrossRef
  4. Seitz KH, Studdert C, Sanchez J, de Castro R. 1997. Intracellular proteolytic activity of the haloalkaliphilic archaeon Natronococcus occultus. Effect of starvation. J. Basic Microbiol. 7: 313-322.
    CrossRef
  5. Cárdenas JP, Valdés J, Quatrini R, Duarte F, Holmes DS. 2010. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl. Microbiol. Biotechnol. 88: 605-620.
    Pubmed CrossRef
  6. López-López O, Cerdán ME, González-Siso MI. 2014. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 15: 445-455.
    Pubmed KoreaMed CrossRef
  7. Yildiz SY, Radchenkova N, Arga KY, Kambourova M, Toksoy OE. 2015. Genomic analysis of Brevibacillus thermoruber 423 reveals its biotechnological and industrial potential. Appl. Microbiol. Biotechnol. 99: 2277-2289.
    Pubmed CrossRef
  8. Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P. 2015. Metagenomics of extreme environments. Curr. Opin. Microbiol. 25: 97-102.
    Pubmed CrossRef
  9. Qin J, Zhao B, Wang X. 2009. Non-sterilized fermentative production of polymer-grade L-lactic acid by a newly isolated thermophilic strain Bacillus sp. PLoS One 4: 43-59.
    Pubmed KoreaMed CrossRef
  10. Karan R, Capes MD, DasSarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8: 3-15.
    Pubmed KoreaMed CrossRef
  11. Nigam SP. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3: 597-611.
    Pubmed KoreaMed CrossRef
  12. Singh OV, Gabani P. 2011. Extremophiles: radiation resistance microbial reserves and therapeutic implications. J. Appl. Microbiol. 110: 851-861.
    Pubmed CrossRef
  13. Demirjian DC, Morís-Varas F, Cassidy CS. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151.
    CrossRef
  14. Van den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213-218.
    CrossRef
  15. Irwin JA, Baird AW. 2004. Extremophiles and their application to veterinary medicine. Ir. Vet. J. 57: 348-354.
    Pubmed KoreaMed CrossRef
  16. Díaz-Tenaa E, Rodríguez-Ezquerroa A, López de Lacalle Marcaide LN, Bustinduyb LG, Sáenzb AE. 2013. Use of extremophiles microorganisms for metal removal. Procedia Eng. 63: 67-74.
    CrossRef
  17. Eichler J. 2001. Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19: 261-278.
    CrossRef
  18. Fujiwara S. 2002. Extremophiles: developments of their special functions and potential resources. J. Biosci. Bioeng. 94: 518-525.
    CrossRef
  19. Haki GD, Rakshit SK. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 7-34.
    CrossRef
  20. Raddadi N, Cherif A, Daffonchio D, Mohamed N, Fava F. 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl. Microbiol. Biotechnol. 99: 7907-7913.
    Pubmed CrossRef
  21. Dewan S. 2014. Global Markets for Enzymes in Industrial Applications. BCC Research, Wellesley, MA. USA.
  22. Marhuenda-Egea FC, Piere-Velazquez S, Cadenas C, Cadenas E. 2002. An extreme halophilic enzyme active at low salt in reversed micelles. J. Biotechnol. 93: 159-164.
    CrossRef
  23. Jaenicke R, Schuring H, Beaucamp N, Ostendorp R. 1996. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. Adv. Protein Chem. 48: 181-269.
    CrossRef
  24. Sthal S. 1993. In Gupta MN (ed.). Thermostability of Enzymes, pp. 45-74. Springer, Berlin, Germany.
  25. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253-261.
    CrossRef
  26. Bertoldo C, Antranikian G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151-60.
    CrossRef
  27. Van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. 2002. Properties and application of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137-155.
    CrossRef
  28. Madigan MT, Marrs BL. 1997. Gli estremofili. Le Scienze 346: 78-85.
  29. Sunna A, Bergquist PL. 2003. A gene encoding a novel extremely thermostable 1,4-beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7: 63-70.
    Pubmed
  30. Brasen C, Urbanke C, Schonheit P. 2005. A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. FEBS Lett. 579: 477482.
    Pubmed CrossRef
  31. Mayer F, Küper U, Meyer C, Daxer S, Müller V, Rachel R, Huber H. 2012. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J. Bacteriol. 194: 1572-1581.
    Pubmed KoreaMed CrossRef
  32. Staiano M, Bazzicalupo P, Rossi M, D’Auria S. 2005. Glucose biosensors as models for the development of advanced protein-based biosensors. Mol. Biosyst. 1: 354-362.
    Pubmed CrossRef
  33. Bruins ME, Janssen AE, Boom RM. 2001. Thermozymes and their applications: a review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155-186.
    CrossRef
  34. Jayakumar R, Jayashree S, Annapurna B, Seshadri S. 2012. Characterization of thermostable serine alkaline protease from an alkaliphilic strain Bacillus pumilus MCAS8 and its applications. Appl. Biochem. Biotechnol. 168: 1849-1866.
    Pubmed CrossRef
  35. De Pascale D, Cusano AM, Author F, Parrilli E, di Prisco G, Marino G, Tutino ML. 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12: 311-323.
    Pubmed CrossRef
  36. Unsworth LD, Van Der OJ, Koutsopoulos S. 2007. Hyperthermophilic enzymes - stability, activity and implementation strategies for high temperature applications. FEBS J. 274:4044-4056.
    Pubmed CrossRef
  37. Rosenbaum E, Gabel F, Durá MA, Finet S, Cléry-Barraud C, Masson P, Franzetti B. 2012. Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. Arch. Biochem. Biophys. 517: 104-110.
    Pubmed CrossRef
  38. De Champdoré M, Staiano M, D’Auria S. 2007. Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J. R. Soc. Interface 4:183-191.
    Pubmed KoreaMed CrossRef
  39. Boonyaratanakornkit BB, Park CB, Clark DS. 2002. Pressure effects on intra- and intermolecular interactions within proteins. Biochim. Biophys. Acta 1595: 235-249.
    CrossRef
  40. Fang J, Zhang L, Bazylinski DA. 2010. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 18: 413-422.
    Pubmed CrossRef
  41. Reed CJ, Lewis H, Trejo E, Winston V, Evilia C. 2013. Protein adaptations in archaeal extremophiles. Archaea 2013: 373275.
    Pubmed KoreaMed CrossRef
  42. Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N. 2006. Piezophilic adaptation: a genomic point of view. J. Biotechnol. 126: 11-25.
    Pubmed CrossRef
  43. Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. 2009. Isolation and physiological characterization of two novel piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ. Micriobiol. 11: 1983-1997.
    Pubmed CrossRef
  44. Fusi P, Grisa M, Mombelli E, Consonni R, Tortora P, Vanoni M. 1995. Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus in mesophylic hosts. Gene 154: 99-103
    CrossRef
  45. Mombelli E, Shehi E, Fusi P, Tortora P. 2002. Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim. Biophys. Acta 1595: 392-396.
    CrossRef
  46. Cavicchioli R. 2002. Extremophiles and the search for extraterrestrial life. Astrobiology 2: 281-292.
    Pubmed CrossRef
  47. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, et al. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25-42.
    Pubmed CrossRef
  48. Gomes J, Steiner W. 1998. Production of a high activity of an extremely thermostable β-mannanase by the thermophilic eubacterium Rhodothermus marinus. Biotechnol. Lett. 20: 729733.
    CrossRef
  49. Gomes J, Gomes I, Terler K, Gubala N, Ditzelmuller G, Steiner W. 2000. Optimisation of culture medium and conditions for α-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb. Technol. 27: 414-422.
    CrossRef
  50. Abe F, Horikoshi K. 2001. The biotechnological potential of piezophiles. Trends Biotechnol. 19: 102-108.
    CrossRef
  51. Cannio R, Di Prizito N, Rossi M, Morana A. 2004. A xylandegrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8:117-124.
    Pubmed CrossRef
  52. Giuliano M, Schiraldi C, Marotta MR, Hugenholtz J, De Rosa M. 2004. Expression of Sulfolobus solfataricus αglucosidase in Lactococcus lactis. Appl. Microbiol. Biotechnol. 64: 829-832.
    Pubmed CrossRef
  53. Jaenicke R. 1981. Enzymes under extreme of physical conditions. Annu. Rev. Biophys. Bioeng. 10: 1-67.
    Pubmed CrossRef
  54. Huang Y, Krauss G, Cottaz H, Driguez H, Lipps G. 2005. A highly acid-stable and thermostable endo-β-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J. 385: 581-588.
    Pubmed KoreaMed CrossRef
  55. Golyshina O, Timmis KN. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 7: 1277-1288.
    Pubmed CrossRef
  56. Sharma A, Kawarabayasi Y, Satyanarayana T. 2012. Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16: 1-19.
    Pubmed CrossRef
  57. Pikuta EV, Hoover RB, Tang J. 2007. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 33: 183-209.
    Pubmed CrossRef
  58. Hauenstein S, Zhang CM, Hou YM, Perona JJ. 2004. Shapeselective RNA recognition by cysteinyl-tRNA synthetase. Nat. Struct. Mol. Biol. 11: 1134-1141.
    Pubmed CrossRef
  59. Szilágyi A, Závodszky P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8: 493-504.
    CrossRef
  60. Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM. 2002. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J. Mol. Biol. 323: 327-344.
    CrossRef
  61. Jackson BR, Noble C, Lavesa-Curto M, Bond PL, Bowater RP. 2007. Characterization of an ATP-dependent DNA ligase from the acidophilic archaeon “Ferroplasma acidarmanus” Fer1. Extremophiles 11: 315-327.
    Pubmed CrossRef
  62. Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R. 2012. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 92: 2575-2580.
    Pubmed CrossRef
  63. Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR. 2001. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 3: 532-542.
    Pubmed CrossRef
  64. Datta S, Holmes B, Park J, Chen Z, Dibble DC, Hadi M, et al. 2010. Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem. 12: 338345.
    CrossRef
  65. Madern D, Pfister C, Zaccai G. 1995. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. Eur. J. Biochem. 3: 1088-1095.
    CrossRef
  66. Raddadi N, Cherif A, Daffonchio D, Fava F. 2013. Haloalkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour. Technol. 150: 121-128.
    Pubmed CrossRef
  67. Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. 2013. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour. Technol. 128: 751-759.
    Pubmed CrossRef
  68. Elleuche S, Schröder C, Sahm K, Antranikian G. 2014. Extremozymes - biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29:116-123.
    Pubmed CrossRef
  69. Madern D, Ebel C, Zaccai G. 2000. Halophilic adaptation of enzymes. Extremophiles 4: 91-98.
    Pubmed CrossRef
  70. Sutrisno A, Ueda M, Abe Y, Nakazawa M, Miyatake K. 2004. A chitinase with high activity toward partially Nacetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, Ralstonia sp. A-471. Appl. Microbiol. Biotechnol. 63: 398-406.
    Pubmed CrossRef
  71. Taylor INR, Brown C, Rycroft M, King G, Littlechild JA, Lloyd MC, et al. 2004. Application of thermophilic enzymes in commercial biotransformation processes. Biochem. Soc. Trans. 32: 290-292.
    Pubmed CrossRef
  72. Woosowska S, Synowiecki J. 2004. Thermostable glucosidase with broad substrate specificity suitable for processing of lactose-containing products. Food Chem. 85: 181-187.
    CrossRef
  73. Litchfield CD. 2011. Potential for industrial products from the halophilic Archaea. J. Ind. Microbiol. Biotechnol. 38:1635-1647.
    Pubmed CrossRef
  74. Schreck SD, Grunden AM. 2014. Biotechnological applications of halophilic lipases and thioesterases. Appl. Microbiol. Biotechnol. 98: 1011-1021.
    Pubmed CrossRef
  75. Ortega G, Laín A, Tadeo X, López-Méndez B, Castaño D, Milleta O. 2011. Halophilic enzyme activation induced by salts. Sci. Rep. 1: 6.
    Pubmed KoreaMed CrossRef
  76. Serour E, Antranikian G. 2002. Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81: 73-83.
    Pubmed CrossRef
  77. Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. J. Biosci. Bioeng. 92: 144-148.
    CrossRef
  78. Kim J, Dordick S. 1997. Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnol. Bioeng. 55: 471-479.
    CrossRef
  79. Karbalaei-Heidari HR, Ziaee AA, Amoozegar MA. 2007. Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles 11: 237-243.
    Pubmed CrossRef
  80. Ruiz DM, De Castro RE. 2007. Effect of organic solvents on the activity and stability of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. J. Ind. Microbiol. Biotechnol. 34: 111-115.
    Pubmed CrossRef
  81. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. 2005. Organic solvent tolerance of halophilic a-amylase from a haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85-89.
    Pubmed CrossRef
  82. Shafiei M, Ziaee AA, Amoozegar MA. 2011. Purification and characterization of an organic-solvent-tolerant halophilic a-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 38: 275-281.
    Pubmed CrossRef
  83. Yu HY, Li X. 2012. Purification and characterization of novel organic-solvent-tolerant b-amylase and serine protease from a newly isolated Salimicrobium halophilum strain LY20. FEMS Microbiol. Lett 329: 204-211.
    Pubmed CrossRef
  84. Munawar N, Engel PC. 2012. Overexpression in a non-native halophilic host and biotechnological potential of NAD+dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014. Extremophiles 16: 463-476.
    Pubmed CrossRef
  85. Vidyasagar M, Prakash S, Sreeramulu K. 2006. Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum borinquense sp. TSS 101. Lett. Appl. Microbiol. 43: 385-391.
    Pubmed CrossRef
  86. Zaccai G. 2004. The effect of water on protein dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 1269-1275.
    Pubmed KoreaMed CrossRef
  87. Sellek GA, Chaudhuri JB. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb. Technol. l25: 471-482.
    CrossRef
  88. Cordone L, Ferrand M, Vitrano E, Zaccai G. 1999. Harmonic behavior of trehalose-coated carbon-monoxymyoglobin at high temperature. Biophys. J. 76: 1043-1047.
    CrossRef
  89. Lehnert U, Réat V, Weik M, Zaccaï G, Pfister C. 1998. Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys. J. 75:1945-1952.
    CrossRef
  90. Singh A, Kuhad RC, Ward OP. 2007. Industrial application of microbial cellulases, pp. 345-358. In Kuhad RC, Singh A (eds.). Lignocellulose Biotechnology: Future Prospects. I.K. International Publishing House, New Delhi, India.
  91. Merlino A, Russo KI, Castellano I, De VE, Rossi B, Conte M, et al. 2010. Structure and flexibility in cold-adapted iron superoxide dismutases: the case of the enzyme isolated from Pseudoalteromonas haloplanktis. J. Struct. Biol. 172: 343352.
    Pubmed CrossRef
  92. Siddiqui KS, Cavicchioli R. 2006. Cold-adapted enzymes. Annu. Rev. Biochem. 75: 403-433.
    Pubmed CrossRef
  93. Sukumaran RK, Singhania RR, Pandey A. 2005. Microbial cellulases - production, applications and challenges. J. Sci. Ind. Res. 64: 832-844.
  94. Kumar L, Awasthi G, Singh B. 2011. Extremophiles: a novel source of industrially important enzymes. Biotechnol. Appl. Biochem. 10: 1-15.
    CrossRef
  95. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103-107.
    CrossRef
  96. Huston AL. 2008. Biotechnological aspects of cold-adapted enzymes, pp. 347-363. In Margesin R, Schinner F, Marx J-C, Gerday C (eds.). Psychrophiles: From Biodiversity to Biotechnology. Springer, Heidelberg. Germany.
    Pubmed CrossRef
  97. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. 2012. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7: e48479.
    Pubmed KoreaMed CrossRef
  98. Rolli E, Marasco M, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. 2015. Improved plant resistance to drought is promoted by the root-associated microbiome as water stress-dependent trait. Environ. Microbiol. 17: 316-331.
    Pubmed CrossRef
  99. Hotta Y, Ezaki S, Atomi H, Imanaka T. 2002. Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl. Environ. Microbiol. 68: 3925-3931.
    Pubmed KoreaMed CrossRef
  100. Johnson DB. 2014. Biomining - biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 30: 24-31.
    Pubmed CrossRef
  101. Karasová-Lipovová P, Strnad H, Spiwok V, Malá S, Králová B, Russell NJ. 2003. The cloning, purification and characterisation of a cold-active β-galactosidase from the psychrotolerant Antarctic bacterium Arthrobacter sp. C2-2. Enzyme Microb. Technol. 33: 836-844.
    CrossRef
  102. Navarro CA, von Bernath D, Jerez CA. 2013. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol. Res. 46: 363-371.
    Pubmed CrossRef
  103. Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules 4: 117-139.
    Pubmed KoreaMed CrossRef
  104. Karmakar M, Ray RR. 2011. Current trends in research and application of microbial cellulases. Res. J. Microbiol. 6: 4153.
    CrossRef
  105. Birgisson H, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B. 2003. Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7: 185-193.
    Pubmed
  106. Singh BK. 2010. Exploring microbial diversity for biotechnology:the way forward. Trends Biotechnol. 28: 111-116.
    Pubmed CrossRef
  107. Hess M, Katzer M, Antranikian G. 2008. Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12: 351-364.
    Pubmed CrossRef
  108. Staley JT, Konopka A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39: 321-346.
    Pubmed CrossRef
  109. Young P. 1997. Major microbial diversity initiative recommended. ASM News 63: 417-421.
  110. Mohammed K, Pramod WR. 2009. Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can. J. Microbiol. 55: 1294-1301.
    Pubmed CrossRef
  111. Yumoto I. 2002. Bioenergetics of alkaliphilic Bacillus spp. J. Biosci. Bioeng. 93: 342-353.
    CrossRef
  112. Chang P, Tsai WS, Tsai CL, Tseng MJ. 2004. Cloning and characterization of two thermostable xylanases from an alkaliphilic Bacillus firmus. Biochem. Biophys. Res. Commun. 319: 1017-1025.
    Pubmed CrossRef
  113. Das H, Sing SK. 2004. Useful byproducts from cellulosic waste of agriculture and food industry - a critical appraisal. Crit. Rev. Food Sci. Nutr. 44: 77-89.
    Pubmed CrossRef
  114. Hashim SO, Delgado O, Hatti-Kaul R, Mulaa FJ, Mattiasson B. 2004. Starch hydrolysing Bacillus halodurans isolates from a Kenyan soda lake. Biotechnol. Lett. 26: 823-828.
    Pubmed CrossRef
  115. Von Solingen P, Meijer D, Kleij WA, Branett C, Bolle R, Power SD, Jones BE. 2001. Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5: 333-341.
    CrossRef
  116. Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, Van Steenbergen RP, Jones BE. 2004. Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8: 193-200.
    Pubmed CrossRef
  117. Margesin R, Schinner F, Marx JC, Gerday C (eds.). 2008. Psychrophiles: From Biodiversity to Biotechnology. SpringerVerlag, Berlin-Heidelberg. Germany.
  118. Zeng R, Zhang R, Zhao J, Lin N. 2003. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7: 335-337.
    Pubmed CrossRef
  119. Collins T, D’Amico S, Marx JC, Feller G, Gerday C. 2007. Cold-adapted enzymes, pp. 165-179. In Gerday C, Glansdorff N (eds.). Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. USA.
    CrossRef
  120. Gurung N, Ray S, Bose S, Rai V. 2013. A broader view:microbial enzymes and their relevance in industries, medicine, and beyond. Biomed. Res. Int. 2013: 329121.
    Pubmed KoreaMed CrossRef
  121. Egorova K, Antranikian G. 2005. Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 8: 649-655.
    Pubmed CrossRef
  122. Ferrer M, Golyshina O, Beloqui A, Golyshin PN. 2007. Mining enzymes from extreme environments. Curr. Opin. Microbiol. 10: 207-214.
    Pubmed CrossRef
  123. Secades P, Alvarez B, Guijarro JA. 2003. Purification and properties of a new psychrophilic metalloprotease (Fpp2) in the fish pathogen Flavobacterium psychrophilum. FEMS Microbiol. Lett. 226: 273-279.
    CrossRef
  124. Huang H, Luo H, Wang Y, Fu D, Shao N, Yang P, et al. 2009. Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J. Microbiol. Biotechnol. 19: 1085-1091.
    Pubmed CrossRef
  125. Tutino ML, di Prisco G, Marino G, de Pascale D. 2009. Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept. Lett. 16: 1172-1180.
    Pubmed CrossRef
  126. Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K. 2010. A novel cold-adapted cellulase complex from Eisenia foetida: characterization of a multienzyme complex with carboxymethylcellulase, beta-glucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 157: 26-32.
    Pubmed CrossRef
  127. Wang F, Hao J, Yang C, Sun M. 2010. Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS80-122. Appl. Biochem. Biotechnol. 162: 1497-1505.
    Pubmed CrossRef
  128. Parkes R, Cragg J, Banning BA, Brock N, Webster F, Fry G, et al. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 9: 1146-1161.
    Pubmed CrossRef
  129. Aurilia V, Parracino A, D’Auria S. 2008. Microbial carbohydrate esterases in cold adapted environments. Gene 410: 234-240.
    Pubmed CrossRef
  130. Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW. 2008. Biogeographic and phylogenetic diversity of thermoacidophilic Cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl. Environ. Microbiol. 74:2822-2833.
    Pubmed KoreaMed CrossRef
  131. Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, et al. 2009. Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressuretemperature limits for life. ISME J. 3: 873-876.
    Pubmed CrossRef
  132. Joseph B, Ramteke PW, Thomas G. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol. Adv. 26: 457-470.
    Pubmed CrossRef
  133. Sarmiento F, Rocío P, Blamey JM. 2015. Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3: 1-15.
    Pubmed KoreaMed CrossRef
  134. Schmid AK, Reiss DJ, Pan M, Koide T, Baliga NS. 2009. A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability. Mol. Syst. Biol. 5: 282-294.
    Pubmed KoreaMed CrossRef
  135. Nicholas JR. 2006. Antarctic microorganism: coming in from the cold. Culture 27: 965-989.