전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature 409: 1092-1101.
    Pubmed CrossRef
  2. Sarmiento F, Peralta R, Blamey JM. 2015. Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3: 148.
    Pubmed PMC CrossRef
  3. Elleuche S, Schroder C, Sahm K, Antranikian G. 2014. Extremozymes - biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29:116-123.
    Pubmed CrossRef
  4. Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J. 2016. Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol. 90: 1-18.
    Pubmed CrossRef
  5. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, et al. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41:633-645.
    Pubmed CrossRef
  6. Sharma A, Tewari R, Rana SS, Soni R, Soni SK. 2016. Cellulases: classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 8: 1346-1380.
    Pubmed CrossRef
  7. Alvarez C, Reyes-Sosa FM, Diez B. 2016. Enzymatic hydrolysis of biomass from wood. Microb. Biotechnol. 9: 149-156.
    Pubmed PMC CrossRef
  8. Hua C, Yi H, Jiao L. 2011. Cloning and expression of the endo-1,3(4)-β-glucanase gene from Paecilomyces sp. FLH30 and characterization of the recombinant enzyme. Biosci. Biotechnol. Biochem. 75: 1807-1812.
    Pubmed CrossRef
  9. Juturu V, Wu JC. 2014. Microbial exo-xylanases: a mini review. Appl. Biochem. Biotechnol. 174: 81-92.
    Pubmed CrossRef
  10. Nam GW, Lee DW, Lee HS , Lee NJ, Kim BC, Choe EA, et al. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547.
    Pubmed CrossRef
  11. Lee YJ, Jeong H, Park GS, Kwak Y, Lee SJ, Lee SJ, et al. 2015. Genome sequence of a native-feather degrading extremely thermophilic eubacterium, Fervidobacterium islandicum AW-1. Stand. Genomic Sci. 10: 71.
    Pubmed PMC CrossRef
  12. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  13. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  14. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y. 2010. A novel thermostable cellulase from Fervidobacterium nodosum. J. Mol. Catal. B Enzym. 66: 294-301.
    CrossRef
  15. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, et al. 2013. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl. Environ. Microbiol. 79: 4220-4229.
    Pubmed PMC CrossRef
  16. Zverlov VV, Schantz N, Schwarz WH. 2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-β-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249: 353-358.
    Pubmed CrossRef
  17. Bronnenmeier K, Rucknagel KP, Staudenbauer WL. 1991. Purification and properties of a novel type of exo-1,4-βglucanase (avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur. J. Biochem. 200: 379-385.
    Pubmed CrossRef
  18. Zheng F, Ding S. 2013. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl. Environ. Microbiol. 79: 989-996.
    Pubmed PMC CrossRef
  19. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW. 2009. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J. Bacteriol. 191: 56975705.
    Pubmed PMC CrossRef
  20. Bhat MK. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.
    CrossRef
  21. van Beilen JB, Li Z. 2002. Enzyme technology: an overview. Curr. Opin. Biotechnol. 13: 338-344.
    CrossRef
  22. Fernandes P. 2010. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010: 862537.
    Pubmed PMC CrossRef
  23. Turner P, Mamo G, Karlsson EN. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 9: 1-23.
    CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2017; 27(2): 271-276

Published online February 28, 2017 https://doi.org/10.4014/jmb.1609.09022

Copyright © The Korean Society for Microbiology and Biotechnology.

Enzymatic Characteristics of a Highly Thermostable β-(1-4)-Glucanase from Fervidobacterium islandicum AW-1 (KCTC 4680)

Woo Soo Jeong 1, Dong Ho Seo 1, 2, Jong Hyun Jung 1, 3, Dong Hyun Jung 1, Dong-Woo Lee 4, Young-Seo Park 5 and Cheonseok Park 1*

1Graduate School of Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Republic of Korea, 2Korea Food Research Institute, Seongnam 13539, Republic of Korea, 3Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea, 4School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea, 5Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea

Received: September 19, 2016; Accepted: October 14, 2016

Abstract

A highly thermostable β-(1-4)-glucanase (NA23_08975) gene (fig) from Fervidobacterium
islandicum AW-1, a native-feather degrading thermophilic eubacterium, was cloned and
expressed in Escherichia coli. The recombinant FiG (rFiG) protein showed strong activity
toward β-D-glucan from barley (367.0 IU/mg), galactomannan (174.0 IU/mg), and 4-
nitrophenyl-cellobioside (66.1 IU/mg), but relatively weak activity was observed with
hydroxyethyl cellulose (5.3 IU/mg), carboxymethyl cellulose (2.4 IU/mg), and xylan from oat
spelt (1.4 IU/mg). rFiG exhibited optimal activity at 90oC and pH 5.0. In addition, this enzyme
was extremely thermostable, showing a half-life of 113 h at 85oC. These results indicate that
rFiG could be used for hydrolysis of cellulosic and hemicellulosic biomass substrates for
biofuel production.

Keywords: Cellulase, Fervidobacterium islandicum, β-glucan, β-(1-4)-glucanase, thermophilic enzyme

References

  1. Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. Nature 409: 1092-1101.
    Pubmed CrossRef
  2. Sarmiento F, Peralta R, Blamey JM. 2015. Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3: 148.
    Pubmed KoreaMed CrossRef
  3. Elleuche S, Schroder C, Sahm K, Antranikian G. 2014. Extremozymes - biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol. 29:116-123.
    Pubmed CrossRef
  4. Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J. 2016. Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb. Technol. 90: 1-18.
    Pubmed CrossRef
  5. Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, et al. 2016. Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41:633-645.
    Pubmed CrossRef
  6. Sharma A, Tewari R, Rana SS, Soni R, Soni SK. 2016. Cellulases: classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 8: 1346-1380.
    Pubmed CrossRef
  7. Alvarez C, Reyes-Sosa FM, Diez B. 2016. Enzymatic hydrolysis of biomass from wood. Microb. Biotechnol. 9: 149-156.
    Pubmed KoreaMed CrossRef
  8. Hua C, Yi H, Jiao L. 2011. Cloning and expression of the endo-1,3(4)-β-glucanase gene from Paecilomyces sp. FLH30 and characterization of the recombinant enzyme. Biosci. Biotechnol. Biochem. 75: 1807-1812.
    Pubmed CrossRef
  9. Juturu V, Wu JC. 2014. Microbial exo-xylanases: a mini review. Appl. Biochem. Biotechnol. 174: 81-92.
    Pubmed CrossRef
  10. Nam GW, Lee DW, Lee HS , Lee NJ, Kim BC, Choe EA, et al. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547.
    Pubmed CrossRef
  11. Lee YJ, Jeong H, Park GS, Kwak Y, Lee SJ, Lee SJ, et al. 2015. Genome sequence of a native-feather degrading extremely thermophilic eubacterium, Fervidobacterium islandicum AW-1. Stand. Genomic Sci. 10: 71.
    Pubmed KoreaMed CrossRef
  12. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    CrossRef
  13. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    CrossRef
  14. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y. 2010. A novel thermostable cellulase from Fervidobacterium nodosum. J. Mol. Catal. B Enzym. 66: 294-301.
    CrossRef
  15. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, et al. 2013. Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl. Environ. Microbiol. 79: 4220-4229.
    Pubmed KoreaMed CrossRef
  16. Zverlov VV, Schantz N, Schwarz WH. 2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-β-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249: 353-358.
    Pubmed CrossRef
  17. Bronnenmeier K, Rucknagel KP, Staudenbauer WL. 1991. Purification and properties of a novel type of exo-1,4-βglucanase (avicelase II) from the cellulolytic thermophile Clostridium stercorarium. Eur. J. Biochem. 200: 379-385.
    Pubmed CrossRef
  18. Zheng F, Ding S. 2013. Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl. Environ. Microbiol. 79: 989-996.
    Pubmed KoreaMed CrossRef
  19. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW. 2009. Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J. Bacteriol. 191: 56975705.
    Pubmed KoreaMed CrossRef
  20. Bhat MK. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.
    CrossRef
  21. van Beilen JB, Li Z. 2002. Enzyme technology: an overview. Curr. Opin. Biotechnol. 13: 338-344.
    CrossRef
  22. Fernandes P. 2010. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res. 2010: 862537.
    Pubmed KoreaMed CrossRef
  23. Turner P, Mamo G, Karlsson EN. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 9: 1-23.
    CrossRef