전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Kopfmann S, Hess WR. 2013. Toxin-antitoxin systems on the large defense plasmid pSYSA of Synechocystis sp. PCC 6803. J. Biol. Chem. 288: 7399-7409.
    Pubmed PMC CrossRef
  2. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
    Pubmed CrossRef
  3. Levasseur A, Bekliz M, Chabriere E, Pontarotti P, La Scola B, Raoult D. 2016. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature 531:249-252.
    Pubmed CrossRef
  4. Lander ES. 2016. The heroes of CRISPR. Cell 164: 18-28.
    Pubmed CrossRef
  5. Jansen R, Embden J, Gaastra W, Schouls L. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 10.
    CrossRef
  6. Sontheimer EJ, Marraffini LA. 2016. RNA. CRISPR goes retro. Science 351: 920-921.
    Pubmed CrossRef
  7. Makarova KS, Koonin EV. 2015. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 1311: 47-75.
    Pubmed CrossRef
  8. Mei Y, Wang Y, Chen H, Sun ZS, Ju XD. 2016. Recent progress in CRISPR/Cas9 technology. J. Genet. Genomics 43:63-75.
    Pubmed CrossRef
  9. Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170.
    Pubmed CrossRef
  10. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.
    Pubmed CrossRef
  11. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353: aad5147.
    Pubmed CrossRef
  12. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. 2011. CRISPR RNA maturation by transencod ed small RNA a nd host factor RNase III. Nature 471:602-607.
    Pubmed PMC CrossRef
  13. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507: 62-67.
    Pubmed PMC CrossRef
  14. Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, et al. 2014. Comparison of non-canonical PAMs for CRISPR/Cas9mediated DNA cleavage in human cells. Sci. Rep. 4: 5405.
    Pubmed PMC
  15. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. Structural biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348: 1477-1481.
    Pubmed CrossRef
  16. Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control of DNA target cleavage by CRISPRCas9. Nature 527: 110-113.
    Pubmed PMC CrossRef
  17. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516: 263-266.
    Pubmed PMC CrossRef
  18. Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, et al. 2016. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351: aad4234.
    Pubmed PMC CrossRef
  19. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353: aaf5573.
    Pubmed PMC CrossRef
  20. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11: 399-402.
    Pubmed CrossRef
  21. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. 2016. Multiplexed labeling of genomic loci with d Cas9 a nd engineered sgRNAs u sing CRISPRainbow. Nat. Biotechnol. 34: 528-530.
    Pubmed PMC CrossRef
  22. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, et al. 2016. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. 18: 1-13.
  23. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, et al. 2015. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12: 1051-1054.
    Pubmed PMC CrossRef
  24. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13: 722-736.
    Pubmed CrossRef
  25. Chylinski K, Le Rhun A, Charpentier E. 2013. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 10: 726-737.
    Pubmed PMC CrossRef
  26. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771.
    Pubmed PMC CrossRef
  27. Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532: 517-521.
    Pubmed CrossRef
  28. Tsai SQ, J oung J K. 2 016. D efining a nd improving t he genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17: 300-312.
    Pubmed CrossRef
  29. Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 5.
    Pubmed PMC CrossRef
  30. Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84.
    Pubmed PMC CrossRef
  31. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677-683.
    Pubmed CrossRef
  32. Jiang W , Bikard D, Cox D, Z hang F , Marraffini L A. 2 013. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 31: 233-242.
    Pubmed PMC CrossRef
  33. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32: 1262-1267.
    Pubmed PMC CrossRef
  34. Jamal M, Khan FA, Da L, Habib Z, Dai J, Cao G. 2015. Keeping CRISPR/Cas on-target. Curr. Issues Mol. Biol. 20: 1-20.
    Pubmed
  35. Taylor DW, Zhu Y, Staals RH, Kornfeld JE, Shinkai A, van der Oost J, et al. 2015. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348: 581-585.
    Pubmed PMC CrossRef
  36. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481-485.
    Pubmed PMC CrossRef
  37. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279-284.
    Pubmed PMC CrossRef
  38. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33: 985-989.
    Pubmed PMC CrossRef
  39. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208:44-53.
    Pubmed CrossRef
  40. Morrical SW. 2015. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb. Perspect. Biol. 7: a016444.
    Pubmed PMC CrossRef
  41. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33: 538-542.
    Pubmed PMC CrossRef
  42. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7: 10548.
    Pubmed PMC CrossRef
  43. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R. 2015. Increasing the efficiency of homologydirected repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33: 543-548.
    Pubmed CrossRef
  44. Lin S , Staahl B T, A lla RK, Doud na J A. 2 014. E nhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3: e04766.
    Pubmed PMC
  45. Howden SE, McColl B, Glaser A, Vadolas J, Petrou S, Little MH, et al. 2016. A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem. Cell Reports 7: 508-517.
    Pubmed PMC CrossRef
  46. Carroll D. 2014. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83: 409-439.
    Pubmed CrossRef
  47. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 offtarget effects in human cells. Nat. Methods 12: 237-243, 1 p. following 243.
  48. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8: 28.
    Pubmed PMC CrossRef
  49. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33: 179-186.
    Pubmed PMC CrossRef
  50. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380-1389.
    Pubmed PMC CrossRef
  51. Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. 2015. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum. Gene Ther. 26: 425-431.
    Pubmed PMC CrossRef
  52. Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32: 577-582.
    Pubmed PMC CrossRef
  53. Hara S, Tamano M, Yamashita S, Kato T, Saito T, Sakuma T, et al. 2015. Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci. Rep. 5: 11221.
    Pubmed PMC CrossRef
  54. Bolukbasi MF, Gupta A, Oikemus S, Derr AG, Garber M, Brodsky MH, et al. 2015. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12: 1150-1156.
    Pubmed PMC CrossRef
  55. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA. 2015. Rational design of a splitCas9 enzyme complex. Proc. Natl. Acad. Sci. USA 112: 29842989.
    Pubmed PMC CrossRef
  56. Polstein LR, Gersbach CA. 2015. A light-inducible CRISPRCas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11: 198-200.
    Pubmed PMC CrossRef
  57. Zetsche B, Volz SE, Zhang F. 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33: 139-142.
    Pubmed PMC CrossRef
  58. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84-88.
    Pubmed PMC CrossRef
  59. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529: 490-495.
    Pubmed PMC CrossRef
  60. Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569-573.
    Pubmed PMC CrossRef
  61. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. 2014. Structures of Cas9 endonucleases reveal RNAmediated conformational activation. Science 343: 1247997.
    Pubmed PMC CrossRef
  62. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33: 187-197.
    Pubmed PMC CrossRef
  63. Mohammadparast S, Bayat H, Biglarian A, Ohadi M. 2014. Exceptional expansion and conservation of a CT-repeat complex in the core promoter of PAXBP1 in primates. Am. J. Primatol. 76: 747-756.
    Pubmed CrossRef
  64. Choi KY, Silvestre OF, Huang X, Hida N, Liu G, Ho DN, et al. 2014. A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nat. Protoc. 9: 1900-1915.
    Pubmed PMC CrossRef
  65. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31: 839-843.
    Pubmed PMC CrossRef
  66. Li L, He ZY, Wei XW, Gao GP, Wei YQ. 2015. Challenges in CRISPR/Cas9 delivery: potential roles of nonviral vectors. Hum. Gene Ther. 26: 452-462.
    Pubmed CrossRef
  67. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191.
    Pubmed PMC CrossRef
  68. Kotterman MA, Schaffer DV. 2014. Engineering adenoassociated viruses for clinical gene therapy. Nat. Rev. Genet. 15: 445-451.
    Pubmed PMC CrossRef
  69. Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z. 2015. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl. 54: 12029-12033.
    Pubmed PMC CrossRef
  70. Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, et al. 2013. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 110: 2082-2087.
    Pubmed PMC CrossRef
  71. Han X, Liu Z, Jo MC, Zhang K, Li Y, Zeng Z, et al. 2015. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci. Adv. 1: e1500454.
    Pubmed PMC CrossRef
  72. Wang L, Li F, Dang L, Liang C, Wang C, He B, et al. 2016. In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 17: pii: E626.
    CrossRef
  73. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533: 420-424.
    Pubmed PMC CrossRef
  74. Mao XY, Dai JX, Zhou HH, Liu ZQ, Jin WL. 2016. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget 7: 33461-33471.
    CrossRef
  75. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. 2015. Modeling colorectal cancer using CRISPRCas9mediated engineering of human intestinal organoids. Nat. Med. 21: 256-262.
    Pubmed
  76. Bosze Z, Major P, Baczko I, Odening KE, Bodrogi L, Hiripi L, Varro A. 2016. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Prog. Biophys. Mol. Biol. 121: 123-130.
    Pubmed CrossRef
  77. Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, et al. 2 014. G eneration of m uscular d ystrophy model rats with a CRISPR/Cas system. Sci. Rep. 4: 5635.
    Pubmed PMC
  78. Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends Mol. Med. 21: 609-621.
    Pubmed PMC CrossRef
  79. Kato T, Takada S. 2016. In vivo and in vitro disease modeling with CRISPR/Cas9. Brief. Funct. Genomics pii: elw031.
    Pubmed
  80. Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, et al. 2015. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. pii: S2211-S1247.
  81. Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33: 390-394.
    Pubmed PMC CrossRef
  82. Thakore PI, Black JB, Hilton IB, Gersbach CA. 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13: 127-137.
    Pubmed PMC CrossRef
  83. Black JB, Adler AF, Wang H-G, D’Ippolito AM, Hutchinson HA, Reddy TE, et al. 2016. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19: 1-9.
    Pubmed CrossRef
  84. Banan M, Bayat H, Azarkeivan A, Mohammadparast S, Kamali K, Farashi S, et al. 2 012. T he X mnI and BCL11A single nucleotide polymorphisms may help predict hydroxyurea response in Iranian beta-thalassemia patients. Hemoglobin 36:371-380.
    Pubmed CrossRef
  85. Banan M, Bayat H, Namdar-Aligoodarzi P, Azarkeivan A, Kamali K, Daneshmand P, et al. 2013. Utility of the multivariate approach in predicting beta-thalassemia intermedia or betathalassemia major types In Iranian patients. Hemoglobin 37:413-422.
    Pubmed CrossRef
  86. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342: 253-257.
    Pubmed PMC CrossRef
  87. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, et al. 2015. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 531: 407-411.
  88. Courtney DG, Moore JE, Atkinson SD, Maurizi E, Allen EH, Pedrioli DM, et al. 2016. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther. 23: 108-112.
    Pubmed PMC CrossRef
  89. Kennedy EM, Cullen BR. 2015. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479-480: 213-220.
    Pubmed PMC CrossRef
  90. Rahimpour A, Ahani R, Najaei A, Adeli A, Barkhordari F, Mahboudi F. 2016. Development of genetically modified Chinese hamster ovary host cells for the enhancement of recombinant tissue plasminogen activator expression. Malays. J. Med. Sci. 23: 6-13.
    Pubmed PMC
  91. Lee JS, G rav LM, L ewis NE, F austrup Kild egaard H. 2015. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol. J. 10: 979-994.
    Pubmed CrossRef
  92. Reardon S. 2016. First CRISPR clinical trial gets green light from US panel. Nature News. Available at http://www.nature.com/news/first-crispr-clinical-trial-gets-greenlight-from-us-panel-1.20137.
  93. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34: 339-344.
    Pubmed CrossRef
  94. Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. 2015. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348: 36-38.
    Pubmed PMC CrossRef
  95. Savic N, Schwank G. 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168: 15-21.
    Pubmed CrossRef
  96. Gao Y, Zhao Y. 2014. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPRmediated genome editing. J. Integr. Plant Biol. 56: 343-349.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2017; 27(2): 207-218

Published online February 28, 2017 https://doi.org/10.4014/jmb.1607.07005

Copyright © The Korean Society for Microbiology and Biotechnology.

The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs

Hadi Bayat 1, 2, Meysam Omidi 1, 2, Masoumeh Rajabibazl 3, Suriana Sabri 4 and Azam Rahimpour 1, 2*

1Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 4Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Received: July 4, 2016; Accepted: November 12, 2016

Abstract

Clustered regulatory interspaced short palindromic repeats (CRISPR) in association with
CRISPR-associated protein (Cas) is an adaptive immune system, playing a pivotal role in the
defense of bacteria and archaea. Ease of handling and cost effectiveness make the CRISPR-Cas
system an ideal programmable nuclease tool. Recent advances in understanding the CRISPRCas
system have tremendously improved its efficiency. For instance, it is possible to
recapitulate the chronicle CRISPR-Cas from its infancy and inaugurate a developed version by
generating novel variants of Cas proteins, subduing off-target effects, and optimizing of
innovative strategies. In summary, the CRISPR-Cas system could be employed in a number of
applications, including providing model systems, rectification of detrimental mutations, and
antiviral therapies.

Keywords: CRISPR-Cas system, DNA repair, adoptive immunity, genome editing

References

  1. Kopfmann S, Hess WR. 2013. Toxin-antitoxin systems on the large defense plasmid pSYSA of Synechocystis sp. PCC 6803. J. Biol. Chem. 288: 7399-7409.
    Pubmed KoreaMed CrossRef
  2. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
    Pubmed CrossRef
  3. Levasseur A, Bekliz M, Chabriere E, Pontarotti P, La Scola B, Raoult D. 2016. MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature 531:249-252.
    Pubmed CrossRef
  4. Lander ES. 2016. The heroes of CRISPR. Cell 164: 18-28.
    Pubmed CrossRef
  5. Jansen R, Embden J, Gaastra W, Schouls L. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 10.
    CrossRef
  6. Sontheimer EJ, Marraffini LA. 2016. RNA. CRISPR goes retro. Science 351: 920-921.
    Pubmed CrossRef
  7. Makarova KS, Koonin EV. 2015. Annotation and classification of CRISPR-Cas systems. Methods Mol. Biol. 1311: 47-75.
    Pubmed CrossRef
  8. Mei Y, Wang Y, Chen H, Sun ZS, Ju XD. 2016. Recent progress in CRISPR/Cas9 technology. J. Genet. Genomics 43:63-75.
    Pubmed CrossRef
  9. Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170.
    Pubmed CrossRef
  10. Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.
    Pubmed CrossRef
  11. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353: aad5147.
    Pubmed CrossRef
  12. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. 2011. CRISPR RNA maturation by transencod ed small RNA a nd host factor RNase III. Nature 471:602-607.
    Pubmed KoreaMed CrossRef
  13. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507: 62-67.
    Pubmed KoreaMed CrossRef
  14. Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, et al. 2014. Comparison of non-canonical PAMs for CRISPR/Cas9mediated DNA cleavage in human cells. Sci. Rep. 4: 5405.
    Pubmed KoreaMed
  15. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. Structural biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348: 1477-1481.
    Pubmed CrossRef
  16. Sternberg SH, LaFrance B, Kaplan M, Doudna JA. 2015. Conformational control of DNA target cleavage by CRISPRCas9. Nature 527: 110-113.
    Pubmed KoreaMed CrossRef
  17. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516: 263-266.
    Pubmed KoreaMed CrossRef
  18. Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, et al. 2016. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351: aad4234.
    Pubmed KoreaMed CrossRef
  19. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353: aaf5573.
    Pubmed KoreaMed CrossRef
  20. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11: 399-402.
    Pubmed CrossRef
  21. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. 2016. Multiplexed labeling of genomic loci with d Cas9 a nd engineered sgRNAs u sing CRISPRainbow. Nat. Biotechnol. 34: 528-530.
    Pubmed KoreaMed CrossRef
  22. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, et al. 2016. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. 18: 1-13.
  23. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, et al. 2015. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12: 1051-1054.
    Pubmed KoreaMed CrossRef
  24. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13: 722-736.
    Pubmed CrossRef
  25. Chylinski K, Le Rhun A, Charpentier E. 2013. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 10: 726-737.
    Pubmed KoreaMed CrossRef
  26. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759-771.
    Pubmed KoreaMed CrossRef
  27. Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532: 517-521.
    Pubmed CrossRef
  28. Tsai SQ, J oung J K. 2 016. D efining a nd improving t he genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17: 300-312.
    Pubmed CrossRef
  29. Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 5.
    Pubmed KoreaMed CrossRef
  30. Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-84.
    Pubmed KoreaMed CrossRef
  31. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677-683.
    Pubmed CrossRef
  32. Jiang W , Bikard D, Cox D, Z hang F , Marraffini L A. 2 013. RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 31: 233-242.
    Pubmed KoreaMed CrossRef
  33. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32: 1262-1267.
    Pubmed KoreaMed CrossRef
  34. Jamal M, Khan FA, Da L, Habib Z, Dai J, Cao G. 2015. Keeping CRISPR/Cas on-target. Curr. Issues Mol. Biol. 20: 1-20.
    Pubmed
  35. Taylor DW, Zhu Y, Staals RH, Kornfeld JE, Shinkai A, van der Oost J, et al. 2015. Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348: 581-585.
    Pubmed KoreaMed CrossRef
  36. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523: 481-485.
    Pubmed KoreaMed CrossRef
  37. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32: 279-284.
    Pubmed KoreaMed CrossRef
  38. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33: 985-989.
    Pubmed KoreaMed CrossRef
  39. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208:44-53.
    Pubmed CrossRef
  40. Morrical SW. 2015. DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb. Perspect. Biol. 7: a016444.
    Pubmed KoreaMed CrossRef
  41. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33: 538-542.
    Pubmed KoreaMed CrossRef
  42. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7: 10548.
    Pubmed KoreaMed CrossRef
  43. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R. 2015. Increasing the efficiency of homologydirected repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33: 543-548.
    Pubmed CrossRef
  44. Lin S , Staahl B T, A lla RK, Doud na J A. 2 014. E nhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife 3: e04766.
    Pubmed KoreaMed
  45. Howden SE, McColl B, Glaser A, Vadolas J, Petrou S, Little MH, et al. 2016. A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem. Cell Reports 7: 508-517.
    Pubmed KoreaMed CrossRef
  46. Carroll D. 2014. Genome engineering with targetable nucleases. Annu. Rev. Biochem. 83: 409-439.
    Pubmed CrossRef
  47. Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 offtarget effects in human cells. Nat. Methods 12: 237-243, 1 p. following 243.
  48. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8: 28.
    Pubmed KoreaMed CrossRef
  49. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. 2015. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33: 179-186.
    Pubmed KoreaMed CrossRef
  50. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 1380-1389.
    Pubmed KoreaMed CrossRef
  51. Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. 2015. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum. Gene Ther. 26: 425-431.
    Pubmed KoreaMed CrossRef
  52. Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32: 577-582.
    Pubmed KoreaMed CrossRef
  53. Hara S, Tamano M, Yamashita S, Kato T, Saito T, Sakuma T, et al. 2015. Generation of mutant mice via the CRISPR/Cas9 system using FokI-dCas9. Sci. Rep. 5: 11221.
    Pubmed KoreaMed CrossRef
  54. Bolukbasi MF, Gupta A, Oikemus S, Derr AG, Garber M, Brodsky MH, et al. 2015. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12: 1150-1156.
    Pubmed KoreaMed CrossRef
  55. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA. 2015. Rational design of a splitCas9 enzyme complex. Proc. Natl. Acad. Sci. USA 112: 29842989.
    Pubmed KoreaMed CrossRef
  56. Polstein LR, Gersbach CA. 2015. A light-inducible CRISPRCas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11: 198-200.
    Pubmed KoreaMed CrossRef
  57. Zetsche B, Volz SE, Zhang F. 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33: 139-142.
    Pubmed KoreaMed CrossRef
  58. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84-88.
    Pubmed KoreaMed CrossRef
  59. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. 2016. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529: 490-495.
    Pubmed KoreaMed CrossRef
  60. Anders C, Niewoehner O, Duerst A, Jinek M. 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513: 569-573.
    Pubmed KoreaMed CrossRef
  61. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. 2014. Structures of Cas9 endonucleases reveal RNAmediated conformational activation. Science 343: 1247997.
    Pubmed KoreaMed CrossRef
  62. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33: 187-197.
    Pubmed KoreaMed CrossRef
  63. Mohammadparast S, Bayat H, Biglarian A, Ohadi M. 2014. Exceptional expansion and conservation of a CT-repeat complex in the core promoter of PAXBP1 in primates. Am. J. Primatol. 76: 747-756.
    Pubmed CrossRef
  64. Choi KY, Silvestre OF, Huang X, Hida N, Liu G, Ho DN, et al. 2014. A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nat. Protoc. 9: 1900-1915.
    Pubmed KoreaMed CrossRef
  65. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31: 839-843.
    Pubmed KoreaMed CrossRef
  66. Li L, He ZY, Wei XW, Gao GP, Wei YQ. 2015. Challenges in CRISPR/Cas9 delivery: potential roles of nonviral vectors. Hum. Gene Ther. 26: 452-462.
    Pubmed CrossRef
  67. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186-191.
    Pubmed KoreaMed CrossRef
  68. Kotterman MA, Schaffer DV. 2014. Engineering adenoassociated viruses for clinical gene therapy. Nat. Rev. Genet. 15: 445-451.
    Pubmed KoreaMed CrossRef
  69. Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z. 2015. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. Engl. 54: 12029-12033.
    Pubmed KoreaMed CrossRef
  70. Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, et al. 2013. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 110: 2082-2087.
    Pubmed KoreaMed CrossRef
  71. Han X, Liu Z, Jo MC, Zhang K, Li Y, Zeng Z, et al. 2015. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci. Adv. 1: e1500454.
    Pubmed KoreaMed CrossRef
  72. Wang L, Li F, Dang L, Liang C, Wang C, He B, et al. 2016. In vivo delivery systems for therapeutic genome editing. Int. J. Mol. Sci. 17: pii: E626.
    CrossRef
  73. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533: 420-424.
    Pubmed KoreaMed CrossRef
  74. Mao XY, Dai JX, Zhou HH, Liu ZQ, Jin WL. 2016. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future. Oncotarget 7: 33461-33471.
    CrossRef
  75. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. 2015. Modeling colorectal cancer using CRISPRCas9mediated engineering of human intestinal organoids. Nat. Med. 21: 256-262.
    Pubmed
  76. Bosze Z, Major P, Baczko I, Odening KE, Bodrogi L, Hiripi L, Varro A. 2016. The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. Prog. Biophys. Mol. Biol. 121: 123-130.
    Pubmed CrossRef
  77. Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, et al. 2 014. G eneration of m uscular d ystrophy model rats with a CRISPR/Cas system. Sci. Rep. 4: 5635.
    Pubmed KoreaMed
  78. Dow LE. 2015. Modeling disease in vivo with CRISPR/Cas9. Trends Mol. Med. 21: 609-621.
    Pubmed KoreaMed CrossRef
  79. Kato T, Takada S. 2016. In vivo and in vitro disease modeling with CRISPR/Cas9. Brief. Funct. Genomics pii: elw031.
    Pubmed
  80. Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, et al. 2015. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. pii: S2211-S1247.
  81. Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33: 390-394.
    Pubmed KoreaMed CrossRef
  82. Thakore PI, Black JB, Hilton IB, Gersbach CA. 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13: 127-137.
    Pubmed KoreaMed CrossRef
  83. Black JB, Adler AF, Wang H-G, D’Ippolito AM, Hutchinson HA, Reddy TE, et al. 2016. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19: 1-9.
    Pubmed CrossRef
  84. Banan M, Bayat H, Azarkeivan A, Mohammadparast S, Kamali K, Farashi S, et al. 2 012. T he X mnI and BCL11A single nucleotide polymorphisms may help predict hydroxyurea response in Iranian beta-thalassemia patients. Hemoglobin 36:371-380.
    Pubmed CrossRef
  85. Banan M, Bayat H, Namdar-Aligoodarzi P, Azarkeivan A, Kamali K, Daneshmand P, et al. 2013. Utility of the multivariate approach in predicting beta-thalassemia intermedia or betathalassemia major types In Iranian patients. Hemoglobin 37:413-422.
    Pubmed CrossRef
  86. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342: 253-257.
    Pubmed KoreaMed CrossRef
  87. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, et al. 2015. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 531: 407-411.
  88. Courtney DG, Moore JE, Atkinson SD, Maurizi E, Allen EH, Pedrioli DM, et al. 2016. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther. 23: 108-112.
    Pubmed KoreaMed CrossRef
  89. Kennedy EM, Cullen BR. 2015. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479-480: 213-220.
    Pubmed KoreaMed CrossRef
  90. Rahimpour A, Ahani R, Najaei A, Adeli A, Barkhordari F, Mahboudi F. 2016. Development of genetically modified Chinese hamster ovary host cells for the enhancement of recombinant tissue plasminogen activator expression. Malays. J. Med. Sci. 23: 6-13.
    Pubmed KoreaMed
  91. Lee JS, G rav LM, L ewis NE, F austrup Kild egaard H. 2015. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol. J. 10: 979-994.
    Pubmed CrossRef
  92. Reardon S. 2016. First CRISPR clinical trial gets green light from US panel. Nature News. Available at http://www.nature.com/news/first-crispr-clinical-trial-gets-greenlight-from-us-panel-1.20137.
  93. Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34: 339-344.
    Pubmed CrossRef
  94. Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. 2015. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348: 36-38.
    Pubmed KoreaMed CrossRef
  95. Savic N, Schwank G. 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168: 15-21.
    Pubmed CrossRef
  96. Gao Y, Zhao Y. 2014. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPRmediated genome editing. J. Integr. Plant Biol. 56: 343-349.
    Pubmed CrossRef