전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. 2012. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 119:94-98.
    Pubmed CrossRef
  2. Zhang LJ, Liu QY, Ge YS, Li LX, Gao C, Xu P, Ma CQ. 2016. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem. 18: 1560-1570.
    CrossRef
  3. Zhang LY, Chen S, Xie HB, Tian YT, Hu KH. 2012. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol. 87: 1551-1557.
    CrossRef
  4. Wang XQ, Lv M, Zhang LJ, Li K, Gao C, Ma CQ, Xu P. 2013. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. Biotechnol. Biofuels 6:155.
    Pubmed PMC CrossRef
  5. Xiao ZJ, Lv CJ, Gao C, Qin JY, Ma CQ, Liu Z, et al. 2010. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS One 5: e8860.
    Pubmed PMC CrossRef
  6. Hilmi A, Belgsir E, Leger J, Lamy C. 1997. Electrocatalytic oxidation of aliphatic diols Part V. Electro-oxidation of butanediols on platinum based electrodes. J. Electroanal. Chem. 435: 69-75.
    CrossRef
  7. Slipszenko J, Griffiths S, Johnston P, Simons KE, Vermeer WAH, Wells PB. 1998. Enantioselective hydrogenation: V. Hydrogenation of butane-2,3-dione and of 3-hydroxybutan2-one catalysed by cinchona-modified platinum. J. Catal. 179: 267-276.
    CrossRef
  8. Dai JY, Cheng L, He QF, Xiu ZL. 2015. High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Process Biochem. 11:1730-1734.
    CrossRef
  9. Gao C, Zhang LJ, Xie YJ, Hu CH, Zhang Y, Li LX, et al. 2013. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour. Technol. 137: 111-115.
    Pubmed CrossRef
  10. Kochius S, Paetzold M, Scholz A, Merkens H, Vogel A, Ansorge-Schumacher M, et al. 2014. Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3butanediol. J. Mol. Catal. B Enzym. 103: 61-66.
    CrossRef
  11. Tolasch T, Solter S, Toth M, Ruther J, Francke W. 2003. (R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J. Chem. Ecol. 4: 1045-1050.
    CrossRef
  12. Gao J, Xu YY, Li FW, Ding G. 2013. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett. Appl. Microbiol. 57: 274-281.
    Pubmed
  13. He QY, Xia QJ, Wang YJ, Li X, Zhang Y, Hu B, Wang F. 2016. Biodiesel production: utilization of Loofah Sponge to immobilize Rhizopus chinensis CGMCC #3.0232 cells as a whole-cell biocatalyst. J. Microbiol. Biotechnol. 26: 1278-1284.
    Pubmed CrossRef
  14. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215.
    Pubmed CrossRef
  15. Li QZ, Shi Y, He L, Zhao H. 2016. Asymmetric bioconversion of acetophenone in nano-sized emulsion using Rhizopus oryzae. J. Microbiol. Biotechnol. 26: 72-79.
    Pubmed CrossRef
  16. Wang Z, Song QQ, Yu ML, Wang YF, Xiong B, Zhang YJ, et al. 2014. Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl. Microbiol. Biotechnol. 2: 641-650.
    Pubmed CrossRef
  17. Nicholson W. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 22: 6832-6838.
    Pubmed PMC CrossRef
  18. Yu B, Sun JB, Bommareddy RR, Song L, Zeng AP. 2011. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl. Environ. Microbiol. 77: 4230-4233.
    Pubmed PMC CrossRef
  19. Chen C, Wei D, Shi JP, Wang M, Hao J. 2014. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 10: 4603-4613.
    Pubmed CrossRef
  20. Li LX, Zhang LJ, Li K, Wang Y, Gao C, Han BB, et al. 2013. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol. Biofuels 6: 123.
    Pubmed PMC CrossRef
  21. Wang Y, Tao F, Xu P. 2014. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 9: 6080-6090.
    Pubmed PMC CrossRef
  22. Zhang LY, Xu QM, Peng XQ, Xu BH, Wu YH, Yang YL, et al. 2014. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30. J. Ind. Microbiol. Biotechnol. 41: 1319-1327.
    Pubmed CrossRef
  23. Yamada-Onodera K, Yamamoto H, Kawahara N, Tani Y. 2002. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnol. 22: 355-362.
    CrossRef
  24. Zhang GL, Wang CW, Li C. 2012. Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnol. Lett. 34: 1519-1523.
    Pubmed CrossRef
  25. Zhang LY, Guo ZW, Chen JB, Xu QM, Lin H, Hu KH, et al. 2016. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241. Sci. Rep. 6: 19257.
    Pubmed PMC CrossRef
  26. Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 1: 49-57.
    Pubmed CrossRef
  27. Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J. 2010. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour. Technol. 101: 1961-1967.
    Pubmed CrossRef
  28. Liu CH, Li XQ, Jiang XP, Zhuang MY, Ling XM, Zhang JX, et al. 2016. Preparation of functionalized graphene oxide nanocomposites for covalent immobilization of NADH oxidase. Nanosci. Nanotechnol. Lett. 8: 164-167.
    CrossRef
  29. Xu QM, Xie LX, Li YY, Lin H, Sun SJ, Guan X, et al. 2015. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J. Chem. Technol. Biotechnol. 90: 93-100.
    CrossRef
  30. Zhang LY, Xu QM, Zhan SR, Li YY, Lin H, Sun SJ, et al. 2014. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl. Microbiol. Biotechnol. 98: 1175-1184.
    Pubmed CrossRef
  31. Geueke B, Riebel B, Hummel W. 2003. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme Microb. Technol. 32: 205-211.
    CrossRef
  32. Bao T, Zhang X, Rao ZM, Zhao XJ, Zhang RZ, Yang TW, et al. 2014. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous coexpression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One 7: e102951.
    Pubmed PMC CrossRef
  33. Horng YT, Chang KC, Chien CC, Wei YH, Sun YM, Soo PC. 2010. Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose P promoter in Escherichia coli. Lett. Appl. Microbiol. 50: 158-167.
    Pubmed CrossRef
  34. Geckil H, Barak ZE, Chipman DM, Erenler SO, Webster DA, Stark BC. 2004. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst. Eng. 26: 325-330.
    Pubmed CrossRef
  35. Zhu H, Sun SJ, Zhang SS. 2011. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius. Bioresour. Technol. 102:1747-1751.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2017; 27(1): 92-100

Published online January 28, 2017 https://doi.org/10.4014/jmb.1608.08063

Copyright © The Korean Society for Microbiology and Biotechnology.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

Zewang Guo 1, Xihua Zhao 2, Yuanzhi He 1, Tianxing Yang 1, Huifang Gao 1, Ganxi Li 1, Feixue Chen 1, Meijing Sun 1, Jung-Kul Lee 3 and Liaoyuan Zhang 1, 3*

1Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, P.R. China, 2College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, P.R. China, 2Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea

Received: August 31, 2016; Accepted: September 29, 2016

Abstract

Acetoin (AC) is a volatile platform compound with various potential industrial applications.
AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an
important potential intermediate and widely used as a precursor to synthesize novel optically
active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-
BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol
dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from
Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of
E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized.
Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the
stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell
biocatalyst. The yield and productivity were new records for (3R)-AC production. The results
exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Keywords: meso-2,3-butanediol dehydrogenase, meso-2,3-butanediol, (3R)-acetoin, NAD+ regeneration, vitreoscilla hemoglobin, whole-cell biocatalysis

References

  1. Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. 2012. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol. 119:94-98.
    Pubmed CrossRef
  2. Zhang LJ, Liu QY, Ge YS, Li LX, Gao C, Xu P, Ma CQ. 2016. Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem. 18: 1560-1570.
    CrossRef
  3. Zhang LY, Chen S, Xie HB, Tian YT, Hu KH. 2012. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol. 87: 1551-1557.
    CrossRef
  4. Wang XQ, Lv M, Zhang LJ, Li K, Gao C, Ma CQ, Xu P. 2013. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. Biotechnol. Biofuels 6:155.
    Pubmed KoreaMed CrossRef
  5. Xiao ZJ, Lv CJ, Gao C, Qin JY, Ma CQ, Liu Z, et al. 2010. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS One 5: e8860.
    Pubmed KoreaMed CrossRef
  6. Hilmi A, Belgsir E, Leger J, Lamy C. 1997. Electrocatalytic oxidation of aliphatic diols Part V. Electro-oxidation of butanediols on platinum based electrodes. J. Electroanal. Chem. 435: 69-75.
    CrossRef
  7. Slipszenko J, Griffiths S, Johnston P, Simons KE, Vermeer WAH, Wells PB. 1998. Enantioselective hydrogenation: V. Hydrogenation of butane-2,3-dione and of 3-hydroxybutan2-one catalysed by cinchona-modified platinum. J. Catal. 179: 267-276.
    CrossRef
  8. Dai JY, Cheng L, He QF, Xiu ZL. 2015. High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Process Biochem. 11:1730-1734.
    CrossRef
  9. Gao C, Zhang LJ, Xie YJ, Hu CH, Zhang Y, Li LX, et al. 2013. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour. Technol. 137: 111-115.
    Pubmed CrossRef
  10. Kochius S, Paetzold M, Scholz A, Merkens H, Vogel A, Ansorge-Schumacher M, et al. 2014. Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3butanediol. J. Mol. Catal. B Enzym. 103: 61-66.
    CrossRef
  11. Tolasch T, Solter S, Toth M, Ruther J, Francke W. 2003. (R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J. Chem. Ecol. 4: 1045-1050.
    CrossRef
  12. Gao J, Xu YY, Li FW, Ding G. 2013. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett. Appl. Microbiol. 57: 274-281.
    Pubmed
  13. He QY, Xia QJ, Wang YJ, Li X, Zhang Y, Hu B, Wang F. 2016. Biodiesel production: utilization of Loofah Sponge to immobilize Rhizopus chinensis CGMCC #3.0232 cells as a whole-cell biocatalyst. J. Microbiol. Biotechnol. 26: 1278-1284.
    Pubmed CrossRef
  14. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215.
    Pubmed CrossRef
  15. Li QZ, Shi Y, He L, Zhao H. 2016. Asymmetric bioconversion of acetophenone in nano-sized emulsion using Rhizopus oryzae. J. Microbiol. Biotechnol. 26: 72-79.
    Pubmed CrossRef
  16. Wang Z, Song QQ, Yu ML, Wang YF, Xiong B, Zhang YJ, et al. 2014. Characterization of a stereospecific acetoin (diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl. Microbiol. Biotechnol. 2: 641-650.
    Pubmed CrossRef
  17. Nicholson W. 2008. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 22: 6832-6838.
    Pubmed KoreaMed CrossRef
  18. Yu B, Sun JB, Bommareddy RR, Song L, Zeng AP. 2011. Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl. Environ. Microbiol. 77: 4230-4233.
    Pubmed KoreaMed CrossRef
  19. Chen C, Wei D, Shi JP, Wang M, Hao J. 2014. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 10: 4603-4613.
    Pubmed CrossRef
  20. Li LX, Zhang LJ, Li K, Wang Y, Gao C, Han BB, et al. 2013. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol. Biofuels 6: 123.
    Pubmed KoreaMed CrossRef
  21. Wang Y, Tao F, Xu P. 2014. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J. Biol. Chem. 9: 6080-6090.
    Pubmed KoreaMed CrossRef
  22. Zhang LY, Xu QM, Peng XQ, Xu BH, Wu YH, Yang YL, et al. 2014. Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30. J. Ind. Microbiol. Biotechnol. 41: 1319-1327.
    Pubmed CrossRef
  23. Yamada-Onodera K, Yamamoto H, Kawahara N, Tani Y. 2002. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnol. 22: 355-362.
    CrossRef
  24. Zhang GL, Wang CW, Li C. 2012. Cloning, expression and characterization of meso-2,3-butanediol dehydrogenase from Klebsiella pneumoniae. Biotechnol. Lett. 34: 1519-1523.
    Pubmed CrossRef
  25. Zhang LY, Guo ZW, Chen JB, Xu QM, Lin H, Hu KH, et al. 2016. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241. Sci. Rep. 6: 19257.
    Pubmed KoreaMed CrossRef
  26. Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, et al. 2009. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 1: 49-57.
    Pubmed CrossRef
  27. Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J. 2010. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour. Technol. 101: 1961-1967.
    Pubmed CrossRef
  28. Liu CH, Li XQ, Jiang XP, Zhuang MY, Ling XM, Zhang JX, et al. 2016. Preparation of functionalized graphene oxide nanocomposites for covalent immobilization of NADH oxidase. Nanosci. Nanotechnol. Lett. 8: 164-167.
    CrossRef
  29. Xu QM, Xie LX, Li YY, Lin H, Sun SJ, Guan X, et al. 2015. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J. Chem. Technol. Biotechnol. 90: 93-100.
    CrossRef
  30. Zhang LY, Xu QM, Zhan SR, Li YY, Lin H, Sun SJ, et al. 2014. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl. Microbiol. Biotechnol. 98: 1175-1184.
    Pubmed CrossRef
  31. Geueke B, Riebel B, Hummel W. 2003. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme Microb. Technol. 32: 205-211.
    CrossRef
  32. Bao T, Zhang X, Rao ZM, Zhao XJ, Zhang RZ, Yang TW, et al. 2014. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous coexpression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One 7: e102951.
    Pubmed KoreaMed CrossRef
  33. Horng YT, Chang KC, Chien CC, Wei YH, Sun YM, Soo PC. 2010. Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose P promoter in Escherichia coli. Lett. Appl. Microbiol. 50: 158-167.
    Pubmed CrossRef
  34. Geckil H, Barak ZE, Chipman DM, Erenler SO, Webster DA, Stark BC. 2004. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst. Eng. 26: 325-330.
    Pubmed CrossRef
  35. Zhu H, Sun SJ, Zhang SS. 2011. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius. Bioresour. Technol. 102:1747-1751.
    Pubmed CrossRef