전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195-201.
    Pubmed CrossRef
  2. Bao T, Zhang X, Zhao X, Rao Z, Yang T, Yang S. 2015. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol. J. 10: 1298-1306.
    Pubmed CrossRef
  3. Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350.
    Pubmed PMC CrossRef
  4. Boontim N, Yoshimune K, Lumyong S, Moriguchi M. 2004. Purification and characterization of D-glucose dehydrogenase from Bacillus thuringiensis M15. Ann. Microbiol. 54: 481-492.
  5. Boontim N, Yoshimune K, Lumyong S, Moriguchi M. 2006. Cloning of D-glucose dehydrogenase with a narrow substrate specificity from Bacillus thuringiensis M15. Annals Microbiol. 56: 237-240.
    CrossRef
  6. Chen X, Ding H, Du Y, Lin H, Li Z, Zhao Y. 2011. Cloning, expression, and characterization of a glucose dehydrogenase from Bacillus sp. G3 in Escherichia coli. Afr. J. Microbiol. Res. 5: 5882-5888.
  7. Chen X, Mei T, Cui Y, Chen Q, Liu X, Feng J, et al. 2015. Highly efficient synthesis of optically pure (S)-1-phenyl-1,2ethanediol by a self-sufficient whole cell biocatalyst. ChemistryOpen 4: 483-488.
    Pubmed PMC CrossRef
  8. Choo JW, Kim HK. 2015. Production of (R)-ethyl-4-chloro-3hydroxybutanoate using Saccharomyces cerevisiae YOL151W reductase immobilized onto magnetic microparticles. J. Microbiol. Biotechnol. 25: 1810-1818.
    Pubmed CrossRef
  9. de Costa F, Barber CJ, Pujara PT, Reed DW, Covello PS. 2016. Purification of a recombinant polyhistidine-tagged glucosyltransferase using immobilized metal-affinity chromatography (IMAC). Methods Mol. Biol. 1405: 91-97.
    Pubmed CrossRef
  10. Ding HT, Du YQ, Liu DF, Li ZL, Chen XJ, Zhao YH. 2011. Cloning and expression in E. coli of an organic solventtolerant and alkali-resistant glucose 1-dehydrogenase from Lysinibacillus sphaericus G10. Bioresour. Technol. 102: 1528-1536.
    Pubmed CrossRef
  11. Fang Z, Zhou P, Chang F, Yin Q, Fang Q, Yuan J, et al. 2014. Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One 9: 1-6.
    CrossRef
  12. Ferri S, Kojima K, Sode K. 2011. Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. 5: 1068-1076.
    CrossRef
  13. Heilmann HJ, Magert HJ, Gassen HG. 1988. Identification and isolation of glucose dehydrogenase genes of Bacillus megaterium M1286 and their expression in Escherichia coli. FEBS J. 174: 485-490.
    CrossRef
  14. Kim EY, Choi HJ, Chung TW, Jang SB, Kim K, Ha KT. 2015. Expression and efficient one-step chromatographic purification of a soluble antagonist for human leukemia inhibitory factor receptor in Escherichia coli. J. Microbiol. Biotechnol. 25: 1307-1314.
    Pubmed CrossRef
  15. Lee YL, Su MS, Huang TH, Shaw JF. 1999. C-Terminal His-tagging results in substrate specificity changes of the thioesterase I from Escherichia coli. J. Am. Oil Chem. Soc. 76:1113-1118.
    CrossRef
  16. Mitamura T, Urabe I, Okada H. 1989. Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium. FEBS J. 186: 389-393.
    CrossRef
  17. Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H. 1992. Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030. J. Bacteriol. 174: 5013-5020.
    Pubmed PMC CrossRef
  18. Nishioka T, Yasutake Y, Nishiya Y, Tamura T. 2012. Structureguided mutagenesis for the improvement of substrate specificity of Bacillus megaterium glucose 1-dehydrogenase IV. FEBS J. 279: 3264-3275.
    Pubmed CrossRef
  19. Piacente F, Bernardi C, Marin M, Blane G, Abergel C, Tonetti MG. 2014. Characterization of an UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology 24: 51-61.
    Pubmed CrossRef
  20. Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. 2015. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Expr. 5: 68.
    Pubmed PMC CrossRef
  21. Quaglia D, Irwin JA, Paradisi F. 2012. Horse liver alcohol dehydrogenase: new perspectives for an old enzyme. Mol. Biotechnol. 52: 244-250.
    Pubmed CrossRef
  22. Rauter M, Prokoph A, Kasprzak J, Becker K, Baronian K, Bode R, et al. 2015. Coexpression of Lactobacillus brevis ADH with GDH or G6PDH in Arxula adeninivorans for the synthesis of 1-(R)-phenylethanol. Appl. Microbiol. Biotechnol. 99: 47234733.
    Pubmed CrossRef
  23. Sabaty M, G rosse S, A dryanczyk G , Boiry S, B iaso F , Arnoux P, Pignol D. 2013. Detrimental effect of the 6 His Cterminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochem. 14: 28.
    Pubmed PMC CrossRef
  24. Tishkov VI, Popov VO. 2004. Catalytic mechanism and application of formate dehydrogenase. Biochemistry 69: 12521267.
    CrossRef
  25. Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius AS. 2007. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. Chembiochem 8: 2295-2301.
    Pubmed CrossRef
  26. Vrtis JM, White AK, Metcalf WW, van der Donk WA. 2002. Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew. Chem. 41: 3257-3259.
    CrossRef
  27. Yamamoto K, Kurisu G, Kusunoki M, Tabata S, Urabe I, Osaki S. 2001. Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7Å resolution. J. Biochem. 129: 303-312.
    Pubmed CrossRef
  28. Yoon SA, Kim HK. 2013. Development of a bioconversion system using Saccharomyces cerevisiae reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis. J. Microbiol. Biotechnol. 23: 1395-1402.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(10): 1708-1716

Published online October 28, 2016 https://doi.org/10.4014/jmb.1603.03021

Copyright © The Korean Society for Microbiology and Biotechnology.

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

Jeongwoo Hyun 1, Maria Abigail 1, 2, Jin Woo Choo 1, Jin Ryu 1 and Hyung Kwoun Kim 1*

1Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea, 2Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia

Received: March 11, 2016; Accepted: June 29, 2016

Abstract

Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to
regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the
glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki,
and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were
produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from
E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and
5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of
0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for
GDH-BT activity. GDH-BTWT was stable up to 65oC, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45oC. Gel permeation chromatography showed that GDH-BTWT is a dimer,
whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact
N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer
structure. The homology model of the GDH-BTWT single subunit was constructed based on the
crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a
Rossmann fold structure with its N- and C-termini located on the subunit surface, which
suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His
regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that
these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

Keywords: glucose dehydrogenase, Bacillus thuringiensis, His-tag, homology model, NADPH regeneration

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195-201.
    Pubmed CrossRef
  2. Bao T, Zhang X, Zhao X, Rao Z, Yang T, Yang S. 2015. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol. J. 10: 1298-1306.
    Pubmed CrossRef
  3. Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350.
    Pubmed KoreaMed CrossRef
  4. Boontim N, Yoshimune K, Lumyong S, Moriguchi M. 2004. Purification and characterization of D-glucose dehydrogenase from Bacillus thuringiensis M15. Ann. Microbiol. 54: 481-492.
  5. Boontim N, Yoshimune K, Lumyong S, Moriguchi M. 2006. Cloning of D-glucose dehydrogenase with a narrow substrate specificity from Bacillus thuringiensis M15. Annals Microbiol. 56: 237-240.
    CrossRef
  6. Chen X, Ding H, Du Y, Lin H, Li Z, Zhao Y. 2011. Cloning, expression, and characterization of a glucose dehydrogenase from Bacillus sp. G3 in Escherichia coli. Afr. J. Microbiol. Res. 5: 5882-5888.
  7. Chen X, Mei T, Cui Y, Chen Q, Liu X, Feng J, et al. 2015. Highly efficient synthesis of optically pure (S)-1-phenyl-1,2ethanediol by a self-sufficient whole cell biocatalyst. ChemistryOpen 4: 483-488.
    Pubmed KoreaMed CrossRef
  8. Choo JW, Kim HK. 2015. Production of (R)-ethyl-4-chloro-3hydroxybutanoate using Saccharomyces cerevisiae YOL151W reductase immobilized onto magnetic microparticles. J. Microbiol. Biotechnol. 25: 1810-1818.
    Pubmed CrossRef
  9. de Costa F, Barber CJ, Pujara PT, Reed DW, Covello PS. 2016. Purification of a recombinant polyhistidine-tagged glucosyltransferase using immobilized metal-affinity chromatography (IMAC). Methods Mol. Biol. 1405: 91-97.
    Pubmed CrossRef
  10. Ding HT, Du YQ, Liu DF, Li ZL, Chen XJ, Zhao YH. 2011. Cloning and expression in E. coli of an organic solventtolerant and alkali-resistant glucose 1-dehydrogenase from Lysinibacillus sphaericus G10. Bioresour. Technol. 102: 1528-1536.
    Pubmed CrossRef
  11. Fang Z, Zhou P, Chang F, Yin Q, Fang Q, Yuan J, et al. 2014. Structure-based rational design to enhance the solubility and thermostability of a bacterial laccase Lac15. PLoS One 9: 1-6.
    CrossRef
  12. Ferri S, Kojima K, Sode K. 2011. Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J. Diabetes Sci. 5: 1068-1076.
    CrossRef
  13. Heilmann HJ, Magert HJ, Gassen HG. 1988. Identification and isolation of glucose dehydrogenase genes of Bacillus megaterium M1286 and their expression in Escherichia coli. FEBS J. 174: 485-490.
    CrossRef
  14. Kim EY, Choi HJ, Chung TW, Jang SB, Kim K, Ha KT. 2015. Expression and efficient one-step chromatographic purification of a soluble antagonist for human leukemia inhibitory factor receptor in Escherichia coli. J. Microbiol. Biotechnol. 25: 1307-1314.
    Pubmed CrossRef
  15. Lee YL, Su MS, Huang TH, Shaw JF. 1999. C-Terminal His-tagging results in substrate specificity changes of the thioesterase I from Escherichia coli. J. Am. Oil Chem. Soc. 76:1113-1118.
    CrossRef
  16. Mitamura T, Urabe I, Okada H. 1989. Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium. FEBS J. 186: 389-393.
    CrossRef
  17. Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H. 1992. Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030. J. Bacteriol. 174: 5013-5020.
    Pubmed KoreaMed CrossRef
  18. Nishioka T, Yasutake Y, Nishiya Y, Tamura T. 2012. Structureguided mutagenesis for the improvement of substrate specificity of Bacillus megaterium glucose 1-dehydrogenase IV. FEBS J. 279: 3264-3275.
    Pubmed CrossRef
  19. Piacente F, Bernardi C, Marin M, Blane G, Abergel C, Tonetti MG. 2014. Characterization of an UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology 24: 51-61.
    Pubmed CrossRef
  20. Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. 2015. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. AMB Expr. 5: 68.
    Pubmed KoreaMed CrossRef
  21. Quaglia D, Irwin JA, Paradisi F. 2012. Horse liver alcohol dehydrogenase: new perspectives for an old enzyme. Mol. Biotechnol. 52: 244-250.
    Pubmed CrossRef
  22. Rauter M, Prokoph A, Kasprzak J, Becker K, Baronian K, Bode R, et al. 2015. Coexpression of Lactobacillus brevis ADH with GDH or G6PDH in Arxula adeninivorans for the synthesis of 1-(R)-phenylethanol. Appl. Microbiol. Biotechnol. 99: 47234733.
    Pubmed CrossRef
  23. Sabaty M, G rosse S, A dryanczyk G , Boiry S, B iaso F , Arnoux P, Pignol D. 2013. Detrimental effect of the 6 His Cterminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochem. 14: 28.
    Pubmed KoreaMed CrossRef
  24. Tishkov VI, Popov VO. 2004. Catalytic mechanism and application of formate dehydrogenase. Biochemistry 69: 12521267.
    CrossRef
  25. Vázquez-Figueroa E, Chaparro-Riggers J, Bommarius AS. 2007. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept. Chembiochem 8: 2295-2301.
    Pubmed CrossRef
  26. Vrtis JM, White AK, Metcalf WW, van der Donk WA. 2002. Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew. Chem. 41: 3257-3259.
    CrossRef
  27. Yamamoto K, Kurisu G, Kusunoki M, Tabata S, Urabe I, Osaki S. 2001. Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7Å resolution. J. Biochem. 129: 303-312.
    Pubmed CrossRef
  28. Yoon SA, Kim HK. 2013. Development of a bioconversion system using Saccharomyces cerevisiae reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis. J. Microbiol. Biotechnol. 23: 1395-1402.
    Pubmed CrossRef