전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A. 2013. Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying betaglucosidase on its cell surface. Appl. Microbiol. Biotechnol. 97: 7165-7172.
    Pubmed CrossRef
  2. Adsul M, Khire J, Bastawde K, Gokhale D. 2007. Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl. Environ. Microbiol. 73: 5055-5057.
    Pubmed PMC CrossRef
  3. Atkinson AJ, Abernethy DR, Daniel CE, Dedrick RL, Markey SP. 2007. Principles of Clinical Pharmacology, pp. 18-20. 2nd Ed. Elsevier Inc., Burlington, MA.
  4. Balejko E, Kucharska E, Balejko J. 2012. Influence of Lactobacillus rhamnosus gg methabolites on growth of periodontal diseases bacteria. Electron. J. Polish Agric. Univ. 15: 1-7.
  5. Berdanier CD, Dwyer JT, Feldman EB. 2007. Handbook of Nutrition and Food, pp. 20-21. 3rd Ed. Taylor & Francis CRC Press, Boca Raton, FL.
  6. Chen Y, Nose M, Ogihara Y. 1987. Alkaline cleavage of ginsenoside. Chem. Pharm. Bull. (Tokyo) 35: 1653-1655.
    CrossRef
  7. Chi H, Ji GE. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771.
    Pubmed CrossRef
  8. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96: 1024-1039.
    Pubmed CrossRef
  9. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71: 3060-3067.
    Pubmed PMC CrossRef
  10. Difco. https://www.bd.com/europe/regulatory/Assets/IFU/Difco_BBL/288110.pdf. Accessed Dec. 20, 2015.
  11. FDA. 2015. http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&sort=Substance&order=ASC&search=. AccessedDec. 20, 2015.
  12. Food Safety and Sustainability Center. 2014. http://www.greenerchoices.org/pdf/cr_fsasc_gmo_final_report_10062014.pdf. Accessed Dec. 17, 2015.
  13. Gao F, Zhang JM, Wang ZlG, Peng W, Hu HL, Fu CM. 2013. Biotransformation, a promising technology for anti-cancer drug development. Asian Pac. J. Cancer Prev. 14: 5599-5608.
    Pubmed CrossRef
  14. Gielkens M, González-Candelas L, Sánchez-Torres P, van de Vondervoort P, de GraaV L, Visser J, Ramón D. 1999. The abfB gene encoding the major a-L-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 145: 735-741.
    Pubmed CrossRef
  15. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S. 1992. Survival of Lactobacillus species ( strain GG) in human gastrointestinal tract. Dig. Dis. Sci 37: 121-128.
    Pubmed CrossRef
  16. Gueimonde M, Noriega L, Margolles A, Reyes-Gavilán CG. 2007. Induction of a-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch. Microbiol. 187: 145-153.
    Pubmed CrossRef
  17. Han YR, Youn SY, Ji GE, Park MS. 2014. Production of αand β-galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 24: 675-682.
    Pubmed CrossRef
  18. Hedberg M, Hasslöf P, Sjöström I, Twetman S, StecksénBlicks C. 2008. Sugar fermentation in probiotic bacteria - an in vitro study. Oral Microbiol. Immunol. 23: 482-485.
    Pubmed CrossRef
  19. Hong H, Cui CH, Kim JK, Jin FX, Kim SC, Im WT. 2012. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424.
    Pubmed PMC CrossRef
  20. Hsueh HY, Yu B, Liu CT, Liu JR. 2014. Increase of the adhesion ability and display of a rumen fungal xylanase on the cell surface of Lactobacillus casei by using a listerial cellwallanchoring protein. J. Sci. Food Agric. 94: 576-584.
    Pubmed CrossRef
  21. Huang SJ, Chen MJ, Yueh PY, Yu B, Zhao X, Liu JR. 2011. Display of Fibrobacter succinogenes β-glucanase on the cell surface of Lactobacillus reuteri. J. Agric. Food Chem. 59: 1744-1751.
    Pubmed CrossRef
  22. Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T. 1991. A human Lactobacillus strain (Lactobacillus casei sp. strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88: 90-97.
    Pubmed
  23. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 40: 17193-171938.
    Pubmed PMC CrossRef
  24. Kim MS, Kwon B, Park MS, Ji GE. 2008. Isolation of ginsenoside Rh1 and compound K from fermented ginseng and efficacy assessment on systemic anaphylactic shock. Food Sci. Biotechnol. 17: 805-808.
  25. Kim MS, Lee MS, Kim SH, Kim HJ, Sung MJ, Kim HY, et al. 2007. Anti-obesity effects of ginsenoside Rd via AMPK and PPAR gamma. Korean J. Biotechnol. Bioeng. 22: 341-344.
  26. Kim RB. 2012. Consumer attitude of risk and benefits toward genetically modified (GM) foods in South Korea:implications for food policy. Eng. Econ. 23: 189-199.
  27. Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. 2013. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur. J. Pharmacol. 702: 285-293.
    Pubmed CrossRef
  28. Kok FS, Muhamad II, Lee CT, Razali F, Pa’e N, Shaharuddin S. 2012. Effects of pH and temperature on the growth and β-glucosidase activity of Lactobacillus rhamnosus NRRL 442 in anaerobic fermentation. Int. Rev. Biophys. Chem. (IREBIC) 3: 24-30.
  29. Ku S, You HJ, Ji GE. 2009. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol.18: 749-754.
  30. Ku S, You HJ, Park MS, Ji GE. 2015. Effects of ascorbic acid on α-L-arabinofuranosidase and α-L-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865.
    Pubmed PMC CrossRef
  31. Ku S, Zheng H, Park MS, Ji GE. 2011. Optimization of βglucuronidase activity from Lactobacillus delbrueckii Rh2 and its use for biotransformation of baicalin and wogonoside. J. Korean Soc. Appl. Biol. Chem. 54: 275-280.
    CrossRef
  32. Library of Congress. 2015. http://www.loc.gov/law/help/restrictions-on-gmos/eu.php#Opinion. Accessed Dec. 16, 2015.
  33. Library of Congress. 2015. http://www.loc.gov/law/help/restrictions-on gmos/usa.php#Foodstuffs. Accessed Dec. 28,2015.
  34. Ma MF, Li SJ, Jin FX, Yu HS. 2012. Expression of ginsenoside glucosidase gene in E. coli and renaturation of inclusion body. J. Dalian Polytechnic Univ. 1: 004.
  35. Matsuura M, Sasaki J, Murao S. 1995. Studies on βglucosidases from soybeans that hydrolyze daidzin and genistin: isolation and characterization of an isozyme. Biosci. Biotechnol. Biochem. 59: 1623-1627.
    CrossRef
  36. Meurman JH, Antila H, Korhonen A, Salminen S. 1995. Effect of Lactobacillus rhamnosus strain GG (ATCC 53103) on the growth of Streptococcus sobrinus in vitro. Eur. J. Oral Sci. 103: 253-258.
    Pubmed CrossRef
  37. Michlmayr H, Schümann C, Barreira Braz da Silva NM, Kulbe KD, Del Hierro AM. 2010. Isolation and basic characterization of a β-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J. Appl. Microbiol. 108: 550-559.
    Pubmed PMC CrossRef
  38. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, et al. 2001. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 35: 412-420.
    Pubmed CrossRef
  39. Park CS, Yoo MH, Noh KH, Oh DK. 2012. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Environ. Microbiol. 87: 9-19.
  40. Park SJ, Youn SY, Ji GE, Park MS. 2012. Whole cell biotransformation of major ginsenosides using leuconostocs and lactobacilli. Food Sci. Biotechnol. 21: 839-844.
    CrossRef
  41. Prather K. 2004. http://www.myoops.org/cocw/mit/NR/rdonlyres/Chemical-Engineering/10-492-2Fall-2004/684CA372-551B-4E59-88F1-4E338646E58A/0/lecture5.pdf. Accessed Dec.17, 2015.
  42. Quan K, Liu Q, Wan JY, Zhao YJ, Guo RZ, Alolga RN, et al. 2015. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci. Rep. 5: 8598.
    Pubmed PMC CrossRef
  43. Sanchez S, Demain, AL. 2008. Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol. 1:283-319.
    Pubmed PMC CrossRef
  44. Saxelin M. 1997. Lactobacillus GG: a human probiotic strain with thorough clinical documentation. Food Rev. Int. 13: 293-313.
    CrossRef
  45. Schüürmann J, Quehl P, Festel G, Jose J. 2014. Bacterial whole-cell biocatalysts by surface display of enzymes:toward industrial application. Appl. Microbiol. Biotechnol. 98:8031-8046.
    Pubmed CrossRef
  46. Sestelo ABF, Poza M, Villa TG. 2004. β-Glucosidase activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 20: 633-637.
    CrossRef
  47. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D. 2010. D(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem. 12: 1106-1109.
    CrossRef
  48. Smith MR, Khera E, Wen F. 2015. Engineering novel and improved biocatalysts by cell surface display. Ind. Eng. Chem. Res. 54: 4021-4032.
    CrossRef
  49. Stanbury PF, Whitaker A, Hall SJ. 1995. Principles of Fermentation Technology, pp. 106, 2nd Edn. Elsevier Science Inc., Burlington, MA.
  50. Tateno T, Fukuda H, Kondo A. 2007. Production of L-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl. Microbiol. Biotechnol. 74: 1213-1220.
    Pubmed CrossRef
  51. Tsuchiya A, Kobayashi G, Yamamoto H, Sekiguchi J. 1999. Production of a recombinant lipase artificially localized on the Bacillus subtilis cell surface. FEMS Microbiol. Lett. 176: 373-378.
    CrossRef
  52. van der Veen P, Arst HN Jr, Flipphi MJ, Visser J. 1994. Extracellular arabinases in Aspergillus nidulans: the effect of different cre mutations on enzyme levels. Arch. Microbiol. 162: 433-440.
    Pubmed CrossRef
  53. Wakabayashi C, Hasegawa H, Murata J, Saiki I. 1997. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417.
    Pubmed
  54. Wang L, Zhang Y, Chen J, Li S, Wang Y, Hu, L, et al. 2012. Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J. Surg. Res. 176: 267-274.
    Pubmed CrossRef
  55. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch MR. 2011. Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48: 54-60.
    Pubmed CrossRef
  56. Xu C, Ji GE. 2013. Bioconversion of flavones during fermentation in milk containing Scutellaria baicalensis extract by Lactobacillus brevis. J. Microbiol. Biotechnol. 23: 1422-1427.
    Pubmed CrossRef
  57. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. 2008. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. J. Microbiol. Biotechnol. 18: 1081-1089.
    Pubmed
  58. Zhou JS, Wang JF, He BR, Cui YS, Fang XY, Ni JL, et al. 2014. Ginsenoside Rd attenuates mitochondrial permeability transition and cytochrome c release in isolated spinal cord mitochondria: involvement of kinase-mediated pathways. Int. J. Mol. Sci. 15: 9859-9877.
    Pubmed PMC CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2016; 26(7): 1206-1215

Published online July 28, 2016 https://doi.org/10.4014/jmb.1601.01002

Copyright © The Korean Society for Microbiology and Biotechnology.

Whole-Cell Biocatalysis for Producing Ginsenoside Rd from Rb1 Using Lactobacillus rhamnosus GG

Seockmo Ku 1, Hyun Ju You 1, Myeong Soo Park 2 and Geun Eog Ji 1, 2, 3*

1Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea, 2Department of Hotel Culinary Arts, Yeonsung University, Anyang 14011, Republic of Korea, 3Research Center, BIFIDO Co. Ltd., Hongcheon 25117, Republic of Korea

Received: January 4, 2016; Accepted: March 23, 2016

Abstract

Ginsenosides are the major active ingredients in ginseng used for human therapeutic plant
medicines. One of the most well-known probiotic bacteria among the various strains on the
functional food market is Lactobacillus rhamnosus GG. Biocatalytic methods using probiotic
enzymes for producing deglycosylated ginsenosides such as Rd have a growing significance in
the functional food industry. The addition of 2% cellobiose (w/v) to glucose-free de
Man-Rogosa-Sharpe broths notably induced β-glucosidase production from L. rhamnosus GG.
Enzyme production and activity were optimized at a pH, temperature, and cellobiose
concentration of 6.0, 40°C, and 2% (w/v), respectively. Under these controlled conditions,
β-glucosidase production in L. rhamnosus GG was enhanced by 25-fold. Additionally, wholecell
homogenates showed the highest β-glucosidase activity when compared with disrupted
cell suspensions; the cell disruption step significantly decreased the β-glucosidase activity.
Based on the optimized enzyme conditions, whole-cell L. rhamnosus GG was successfully used
to convert ginsenoside Rb1 into Rd.

Keywords: whole-cell bioconversion, biocatalysis, Lactobacillus rhamnosus, ginsenoside, β-glucosidase

References

  1. Adachi N, Takahashi C, Ono-Murota N, Yamaguchi R, Tanaka T, Kondo A. 2013. Direct L-lysine production from cellobiose by Corynebacterium glutamicum displaying betaglucosidase on its cell surface. Appl. Microbiol. Biotechnol. 97: 7165-7172.
    Pubmed CrossRef
  2. Adsul M, Khire J, Bastawde K, Gokhale D. 2007. Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Appl. Environ. Microbiol. 73: 5055-5057.
    Pubmed KoreaMed CrossRef
  3. Atkinson AJ, Abernethy DR, Daniel CE, Dedrick RL, Markey SP. 2007. Principles of Clinical Pharmacology, pp. 18-20. 2nd Ed. Elsevier Inc., Burlington, MA.
  4. Balejko E, Kucharska E, Balejko J. 2012. Influence of Lactobacillus rhamnosus gg methabolites on growth of periodontal diseases bacteria. Electron. J. Polish Agric. Univ. 15: 1-7.
  5. Berdanier CD, Dwyer JT, Feldman EB. 2007. Handbook of Nutrition and Food, pp. 20-21. 3rd Ed. Taylor & Francis CRC Press, Boca Raton, FL.
  6. Chen Y, Nose M, Ogihara Y. 1987. Alkaline cleavage of ginsenoside. Chem. Pharm. Bull. (Tokyo) 35: 1653-1655.
    CrossRef
  7. Chi H, Ji GE. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771.
    Pubmed CrossRef
  8. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96: 1024-1039.
    Pubmed CrossRef
  9. Corcoran BM, Stanton C, Fitzgerald GF, Ross RP. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71: 3060-3067.
    Pubmed KoreaMed CrossRef
  10. Difco. https://www.bd.com/europe/regulatory/Assets/IFU/Difco_BBL/288110.pdf. Accessed Dec. 20, 2015.
  11. FDA. 2015. http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&sort=Substance&order=ASC&search=. AccessedDec. 20, 2015.
  12. Food Safety and Sustainability Center. 2014. http://www.greenerchoices.org/pdf/cr_fsasc_gmo_final_report_10062014.pdf. Accessed Dec. 17, 2015.
  13. Gao F, Zhang JM, Wang ZlG, Peng W, Hu HL, Fu CM. 2013. Biotransformation, a promising technology for anti-cancer drug development. Asian Pac. J. Cancer Prev. 14: 5599-5608.
    Pubmed CrossRef
  14. Gielkens M, González-Candelas L, Sánchez-Torres P, van de Vondervoort P, de GraaV L, Visser J, Ramón D. 1999. The abfB gene encoding the major a-L-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology 145: 735-741.
    Pubmed CrossRef
  15. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S. 1992. Survival of Lactobacillus species ( strain GG) in human gastrointestinal tract. Dig. Dis. Sci 37: 121-128.
    Pubmed CrossRef
  16. Gueimonde M, Noriega L, Margolles A, Reyes-Gavilán CG. 2007. Induction of a-L-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Arch. Microbiol. 187: 145-153.
    Pubmed CrossRef
  17. Han YR, Youn SY, Ji GE, Park MS. 2014. Production of αand β-galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 24: 675-682.
    Pubmed CrossRef
  18. Hedberg M, Hasslöf P, Sjöström I, Twetman S, StecksénBlicks C. 2008. Sugar fermentation in probiotic bacteria - an in vitro study. Oral Microbiol. Immunol. 23: 482-485.
    Pubmed CrossRef
  19. Hong H, Cui CH, Kim JK, Jin FX, Kim SC, Im WT. 2012. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424.
    Pubmed KoreaMed CrossRef
  20. Hsueh HY, Yu B, Liu CT, Liu JR. 2014. Increase of the adhesion ability and display of a rumen fungal xylanase on the cell surface of Lactobacillus casei by using a listerial cellwallanchoring protein. J. Sci. Food Agric. 94: 576-584.
    Pubmed CrossRef
  21. Huang SJ, Chen MJ, Yueh PY, Yu B, Zhao X, Liu JR. 2011. Display of Fibrobacter succinogenes β-glucanase on the cell surface of Lactobacillus reuteri. J. Agric. Food Chem. 59: 1744-1751.
    Pubmed CrossRef
  22. Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T. 1991. A human Lactobacillus strain (Lactobacillus casei sp. strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88: 90-97.
    Pubmed
  23. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 40: 17193-171938.
    Pubmed KoreaMed CrossRef
  24. Kim MS, Kwon B, Park MS, Ji GE. 2008. Isolation of ginsenoside Rh1 and compound K from fermented ginseng and efficacy assessment on systemic anaphylactic shock. Food Sci. Biotechnol. 17: 805-808.
  25. Kim MS, Lee MS, Kim SH, Kim HJ, Sung MJ, Kim HY, et al. 2007. Anti-obesity effects of ginsenoside Rd via AMPK and PPAR gamma. Korean J. Biotechnol. Bioeng. 22: 341-344.
  26. Kim RB. 2012. Consumer attitude of risk and benefits toward genetically modified (GM) foods in South Korea:implications for food policy. Eng. Econ. 23: 189-199.
  27. Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. 2013. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur. J. Pharmacol. 702: 285-293.
    Pubmed CrossRef
  28. Kok FS, Muhamad II, Lee CT, Razali F, Pa’e N, Shaharuddin S. 2012. Effects of pH and temperature on the growth and β-glucosidase activity of Lactobacillus rhamnosus NRRL 442 in anaerobic fermentation. Int. Rev. Biophys. Chem. (IREBIC) 3: 24-30.
  29. Ku S, You HJ, Ji GE. 2009. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol.18: 749-754.
  30. Ku S, You HJ, Park MS, Ji GE. 2015. Effects of ascorbic acid on α-L-arabinofuranosidase and α-L-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865.
    Pubmed KoreaMed CrossRef
  31. Ku S, Zheng H, Park MS, Ji GE. 2011. Optimization of βglucuronidase activity from Lactobacillus delbrueckii Rh2 and its use for biotransformation of baicalin and wogonoside. J. Korean Soc. Appl. Biol. Chem. 54: 275-280.
    CrossRef
  32. Library of Congress. 2015. http://www.loc.gov/law/help/restrictions-on-gmos/eu.php#Opinion. Accessed Dec. 16, 2015.
  33. Library of Congress. 2015. http://www.loc.gov/law/help/restrictions-on gmos/usa.php#Foodstuffs. Accessed Dec. 28,2015.
  34. Ma MF, Li SJ, Jin FX, Yu HS. 2012. Expression of ginsenoside glucosidase gene in E. coli and renaturation of inclusion body. J. Dalian Polytechnic Univ. 1: 004.
  35. Matsuura M, Sasaki J, Murao S. 1995. Studies on βglucosidases from soybeans that hydrolyze daidzin and genistin: isolation and characterization of an isozyme. Biosci. Biotechnol. Biochem. 59: 1623-1627.
    CrossRef
  36. Meurman JH, Antila H, Korhonen A, Salminen S. 1995. Effect of Lactobacillus rhamnosus strain GG (ATCC 53103) on the growth of Streptococcus sobrinus in vitro. Eur. J. Oral Sci. 103: 253-258.
    Pubmed CrossRef
  37. Michlmayr H, Schümann C, Barreira Braz da Silva NM, Kulbe KD, Del Hierro AM. 2010. Isolation and basic characterization of a β-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J. Appl. Microbiol. 108: 550-559.
    Pubmed KoreaMed CrossRef
  38. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, et al. 2001. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 35: 412-420.
    Pubmed CrossRef
  39. Park CS, Yoo MH, Noh KH, Oh DK. 2012. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Environ. Microbiol. 87: 9-19.
  40. Park SJ, Youn SY, Ji GE, Park MS. 2012. Whole cell biotransformation of major ginsenosides using leuconostocs and lactobacilli. Food Sci. Biotechnol. 21: 839-844.
    CrossRef
  41. Prather K. 2004. http://www.myoops.org/cocw/mit/NR/rdonlyres/Chemical-Engineering/10-492-2Fall-2004/684CA372-551B-4E59-88F1-4E338646E58A/0/lecture5.pdf. Accessed Dec.17, 2015.
  42. Quan K, Liu Q, Wan JY, Zhao YJ, Guo RZ, Alolga RN, et al. 2015. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Sci. Rep. 5: 8598.
    Pubmed KoreaMed CrossRef
  43. Sanchez S, Demain, AL. 2008. Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol. 1:283-319.
    Pubmed KoreaMed CrossRef
  44. Saxelin M. 1997. Lactobacillus GG: a human probiotic strain with thorough clinical documentation. Food Rev. Int. 13: 293-313.
    CrossRef
  45. Schüürmann J, Quehl P, Festel G, Jose J. 2014. Bacterial whole-cell biocatalysts by surface display of enzymes:toward industrial application. Appl. Microbiol. Biotechnol. 98:8031-8046.
    Pubmed CrossRef
  46. Sestelo ABF, Poza M, Villa TG. 2004. β-Glucosidase activity in a Lactobacillus plantarum wine strain. World J. Microbiol. Biotechnol. 20: 633-637.
    CrossRef
  47. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D. 2010. D(−)-Lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem. 12: 1106-1109.
    CrossRef
  48. Smith MR, Khera E, Wen F. 2015. Engineering novel and improved biocatalysts by cell surface display. Ind. Eng. Chem. Res. 54: 4021-4032.
    CrossRef
  49. Stanbury PF, Whitaker A, Hall SJ. 1995. Principles of Fermentation Technology, pp. 106, 2nd Edn. Elsevier Science Inc., Burlington, MA.
  50. Tateno T, Fukuda H, Kondo A. 2007. Production of L-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl. Microbiol. Biotechnol. 74: 1213-1220.
    Pubmed CrossRef
  51. Tsuchiya A, Kobayashi G, Yamamoto H, Sekiguchi J. 1999. Production of a recombinant lipase artificially localized on the Bacillus subtilis cell surface. FEMS Microbiol. Lett. 176: 373-378.
    CrossRef
  52. van der Veen P, Arst HN Jr, Flipphi MJ, Visser J. 1994. Extracellular arabinases in Aspergillus nidulans: the effect of different cre mutations on enzyme levels. Arch. Microbiol. 162: 433-440.
    Pubmed CrossRef
  53. Wakabayashi C, Hasegawa H, Murata J, Saiki I. 1997. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417.
    Pubmed
  54. Wang L, Zhang Y, Chen J, Li S, Wang Y, Hu, L, et al. 2012. Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J. Surg. Res. 176: 267-274.
    Pubmed CrossRef
  55. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch MR. 2011. Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48: 54-60.
    Pubmed CrossRef
  56. Xu C, Ji GE. 2013. Bioconversion of flavones during fermentation in milk containing Scutellaria baicalensis extract by Lactobacillus brevis. J. Microbiol. Biotechnol. 23: 1422-1427.
    Pubmed CrossRef
  57. Yan Q, Zhou XW, Zhou W, Li XW, Feng MQ, Zhou P. 2008. Purification and properties of a novel beta-glucosidase, hydrolyzing ginsenoside Rb1 to CK, from Paecilomyces Bainier. J. Microbiol. Biotechnol. 18: 1081-1089.
    Pubmed
  58. Zhou JS, Wang JF, He BR, Cui YS, Fang XY, Ni JL, et al. 2014. Ginsenoside Rd attenuates mitochondrial permeability transition and cytochrome c release in isolated spinal cord mitochondria: involvement of kinase-mediated pathways. Int. J. Mol. Sci. 15: 9859-9877.
    Pubmed KoreaMed CrossRef