전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Minireview

References

  1. Abe S, Takayama K-I, Kinoshita S. 1967. Taxonomical studies on glutamic acid-producing bacteria. J. Gen. Appl. Microbiol. 13: 279-301.
    CrossRef
  2. Adham SA, Honrubia P, Diaz M, Fernandez-Abalos JM, Santamaria RI, Gil JA. 2001. Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch. Microbiol. 177: 91-97.
    Pubmed CrossRef
  3. An SJ, Yim SS, Jeong KJ. 2013. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Express. Purif. 89: 251-257.
    Pubmed CrossRef
  4. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T. 2007. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl. Environ. Microbiol. 73:1308-1319.
    Pubmed PMC CrossRef
  5. Bückle-Vallant V, Krause F, Messerschmidt S, Eikmanns B. 2014. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl. Microbiol. Biotechnol. 98: 297-311.
    Pubmed CrossRef
  6. Bardonnet N, Blanco C. 1991. Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol. Lett. 68: 97-102.
    Pubmed CrossRef
  7. Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, et al. 2013. Construction of a prophagefree variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79: 6006-6015.
    Pubmed PMC CrossRef
  8. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596.
    Pubmed PMC CrossRef
  9. Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, et al. 2013. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb. Cell Fact. 12: 110.
    Pubmed PMC CrossRef
  10. Becker J, Wittmann C. 2012. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr. Opin. Biotechnol. 23: 718-726.
    Pubmed CrossRef
  11. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. 2011. From zero to hero - design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168.
    Pubmed CrossRef
  12. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T. 2003. Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3: 1637-1646.
    Pubmed CrossRef
  13. Billman-Jacobe H, Hodgson AL, Lightowlers M, Wood PR, Radford AJ. 1994. Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl. Environ. Microbiol. 60: 1641-1645.
    Pubmed PMC
  14. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613.
    Pubmed PMC
  15. Blombach B, Buchholz J, Busche T, Kalinowski J, Takors R. 2013. Impact of different CO2/HCO3 - levels on metabolism and regulation in Corynebacterium glutamicum. J. Biotechnol. 168: 331-340.
    Pubmed CrossRef
  16. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 77: 3300-3310.
    Pubmed PMC CrossRef
  17. Brabetz W, Liebl W, Schleifer KH. 1991. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch. Microbiol. 155: 607-612.
    Pubmed CrossRef
  18. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, et al. 2013. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, Lvaline, and 2-ketoisovalerate. Appl. Environ. Microbiol. 79: 5566-5575.
    Pubmed PMC CrossRef
  19. Buschke N, Schäfer R, Becker J, Wittmann C. 2013. Metabolic engineering of industrial platform microorganisms for biorefinery applications – optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour. Technol. 135: 544-554.
    Pubmed CrossRef
  20. Cadenas RF, Gil JA, Martin JF. 1992. Expression of Streptomyces genes encoding extracellular enzymes in Brevibacterium lactofermentum: secretion proceeds by removal of the same leader peptide as in Streptomyces lividans. Appl. Microbiol. Biotechnol. 38: 362-369.
    Pubmed CrossRef
  21. Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. 2015. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb. Cell Fact. 14: 21.
    Pubmed PMC CrossRef
  22. Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188: 2554-2567.
    Pubmed PMC CrossRef
  23. Date M, Itaya H, Matsui H, Kikuchi Y. 2006. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42: 66-70.
    Pubmed CrossRef
  24. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. 2003. Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl. Environ. Microbiol. 69: 3011-3014.
    Pubmed PMC CrossRef
  25. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. 2004. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J. Biotechnol. 110: 219-226.
    Pubmed CrossRef
  26. Dusch N, Pühler A, Kalinowski J. 1999. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartatedecarboxylase leads to pantothenate overproduction in Escherichia coli. Appl. Environ. Microbiol. 65: 1530-1539.
    Pubmed PMC
  27. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H. 1991. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93-98.
    CrossRef
  28. Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186: 2798-2809.
    Pubmed PMC CrossRef
  29. Hänßler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A. 2009. A game with many players:control of gdh transcription in Corynebacterium glutamicum. J. Biotechnol. 142: 114-122.
    Pubmed CrossRef
  30. Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V, et al. 2005. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl. Environ. Microbiol. 71: 3255-3268.
    Pubmed PMC CrossRef
  31. Hao N, Mu Jr, Hu N, Xu S, Yan M, Li Y, et al. 2015. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J. Ind. Microbiol. Biotechnol. 42: 307-313.
    Pubmed CrossRef
  32. Hartbrich A, Schmitz G, Weuster-Botz D, de Graaf AA, Wandrey C. 1996. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities. Biotechnol. Bioeng. 51:624-635.
    CrossRef
  33. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, et al. 2013. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 79: 1250-1257.
    Pubmed PMC CrossRef
  34. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, et al. 2012. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 78: 865-875.
    Pubmed PMC CrossRef
  35. Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J-I, et al. 2002. Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci. Biotechnol. Biochem. 66: 1337-1344.
    Pubmed CrossRef
  36. Haynes JA, Britz ML. 1990. The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J. Gen. Microbiol. 136: 255-263.
    CrossRef
  37. Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, et al. 2001. Proteome analysis of corynebacterium glutamicum. Electrophoresis 22: 1712-1723.
    CrossRef
  38. Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M. 2009. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J. Biotechnol. 139: 203-210.
    Pubmed CrossRef
  39. Ikeda M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
    Pubmed CrossRef
  40. Ikeda M, Katsumata R. 1992. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl. Environ. Microbiol. 58: 781-785.
    Pubmed PMC
  41. Ikeda M, Katsumata R. 1998. A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144: 1863-1868.
    Pubmed CrossRef
  42. Ikeda M, Katsumata R. 1999. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl. Environ. Microbiol. 65: 2497-2502.
    Pubmed PMC
  43. Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109.
    Pubmed CrossRef
  44. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196.
    Pubmed CrossRef
  45. Jakoby M, Ngouoto-Nkili C-E, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 13: 437-441.
    CrossRef
  46. Jensen JV, Wendisch VF. 2013. Ornithine cyclodeaminasebased proline production by Corynebacterium glutamicum. Microb. Cell Fact. 12: 63.
    Pubmed PMC CrossRef
  47. Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH. 2012. Disruption of genes for the enhanced biosynthesis of alpha-ketoglutarate in Corynebacterium glutamicum. Can. J. Microbiol. 58: 278-286.
    Pubmed CrossRef
  48. Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165.
    Pubmed CrossRef
  49. Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M. 2015. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1165-1172.
    Pubmed CrossRef
  50. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2 003. T he c omp lete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.
    CrossRef
  51. Kalinowski J, Wolters D, Poetsch A. 2008. Proteomics of Corynebacterium glutamicum and other corynebacteria, pp. 55-78. In Burkovski A (ed.). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
  52. Kang M-K, Lee J, Um Y, Lee T, Bott M, Park S, Woo H. 2014. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl. Microbiol. Biotechnol. 98: 5991-6002.
    Pubmed CrossRef
  53. Kang MK, Eom JH, Kim Y, Um Y, Woo HM. 2014. Biosynthesis of pinene from glucose using metabolicallyengineered Corynebacterium glutamicum. Biotechnol. Lett. 36: 2069-2077.
    Pubmed CrossRef
  54. Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH. 2014. High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl. Microbiol. Biotechnol. 98: 4379-4387.
    Pubmed CrossRef
  55. Kass F, Hariskos I, Michel A, Brandt HJ, Spann R, Junne S, et al. 2014. Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioproc. Biosyst. Eng. 37: 1151-1162.
    Pubmed CrossRef
  56. Katsumata RMT, Kikuchi Y, Kino K. 1986. Threonine production by the lysine producing strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon, pp. 217-226. In Alacevic M, Hranueli D, Toman Z (eds.). Genetics of Industrial Microorganisms. Ognjen Prica Printing Works.
  57. Katsumata R, Ozaki A, Oka T, Furuya A. 1984. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol. 159: 306-311.
    Pubmed PMC
  58. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.
    Pubmed PMC CrossRef
  59. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H. 2006. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl. Environ. Microbiol. 72: 3418-3428.
    Pubmed PMC CrossRef
  60. Kelle R, Hermann T, Weuster-Botz D, Eggeling L, Krämer R, Wandrey C. 1996. Glucose-controlled l-isoleucine fed-batch production with recombinant strains of Corynebacterium glutamicum. J. Biotechnol. 50: 123-136.
    CrossRef
  61. Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H. 2003. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366.
    Pubmed PMC CrossRef
  62. Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF. 2008. Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78: 67-74.
    Pubmed CrossRef
  63. Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF. 2009. TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl. Environ. Microbiol. 75: 603-607.
    Pubmed PMC CrossRef
  64. Kim HI, Nam JY, Cho JY, Lee CS, Park YJ. 2013. Nextgeneration sequencing-based transcriptome analysis of Llysine-producing Corynebacterium glutamicum ATCC 21300 strain. J. Microbiol. 51: 877-880.
    Pubmed CrossRef
  65. Kim SY, Lee J, Lee SY. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of Lornithine. Biotechnol. Bioeng. 112: 416-421.
    Pubmed CrossRef
  66. Kind S, Jeong WK, Schröder H, Wittmann C. 2010. Systemswide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab. Eng. 12: 341-351.
    Pubmed CrossRef
  67. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C. 2010. Identification and elimination of the competing Nacetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl. Environ. Microbiol. 76: 5175-5180.
    Pubmed PMC CrossRef
  68. Kind S, Kreye S, Wittmann C. 2011. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab. Eng. 13: 617-627.
    Pubmed CrossRef
  69. Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth GV, et al. 2014. From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25: 113-123.
    Pubmed CrossRef
  70. Kinoshita S, Udaka S, Shimono M. 1957. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193-205.
    CrossRef
  71. Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M. 2007. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 55: 234-239.
    Pubmed CrossRef
  72. Kortmann M, Kuhl V, Klaffl S, Bott M. 2015. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb. Biotechnol. 8: 253-265.
    Pubmed PMC CrossRef
  73. Kotrba P, Inui M, Yukawa H. 2001. The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 289: 1307-1313.
    Pubmed CrossRef
  74. Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum: by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186:1769-1784.
    Pubmed PMC CrossRef
  75. Lee BH, Lee SB, Kim HS, Jeong KJ, Park JY, Park KM, Lee JW. 2015. Whole cell bioconversion of ricinoleic acid to 12-ketooleic acid by recombinant Corynebacterium glutamicumbased biocatalyst. J. Microbiol. Biotechnol. 25: 452-458.
    Pubmed CrossRef
  76. Lee J. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79.
    Pubmed CrossRef
  77. Lee JY, Choy HE, Lee JH, Kim GJ. 2015. Generation of minicells from an endotoxin-free gram-positive strain Corynebacterium glutamicum. J. Microbiol. Biotechnol. 25: 554-558.
    Pubmed CrossRef
  78. Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. A daptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717.
    Pubmed CrossRef
  79. Lee SK, Keasling JD. 2006. A Salmonella-based, propionateinducible, expression system for Salmonella enterica. Gene 377: 6-11.
    Pubmed CrossRef
  80. Liebl W, Ehrmann M, Ludwig W, KH. S. 1991. Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Evol. Microbiol. 41: 255-260.
    CrossRef
  81. Liebl W, Sinskey AJ, Schleifer KH. 1992. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J. Bacteriol. 174: 1854-1861.
    Pubmed PMC
  82. Liu Q, Ouyang S-P, Kim J, Chen G-Q. 2007. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 132: 273-279.
    Pubmed CrossRef
  83. Liu Q, Zhang J, Wei X-X, Ouyang S-P, Wu Q, Chen G-Q. 2008. Microbial production of L-glutamate and L-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl. Microbiol. Biotechnol. 77: 1297-1304.
    Pubmed CrossRef
  84. Loos A, Glanemann C, Willis LB, O’Brien XM, Lessard PA, Gerstmeir R, et al. 2 001. D evelop ment a nd v alidation of Corynebacterium DNA microarrays. Appl. Microbiol. Biotechnol. 67: 2310-2318.
  85. Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YAV, et al. 2014. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb. Cell Fact. 13: 56.
    Pubmed PMC CrossRef
  86. Matsumoto K, Kitagawa K, Jo S-J, Song Y, Taguchi S. 2011. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. J. Biotechnol. 152: 144-146.
    Pubmed CrossRef
  87. Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J. 2013. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics 14: 714.
    Pubmed PMC CrossRef
  88. Mizukami T, Hamu A, Ikeda M, Oka T, Katsumata R. 1994. Cloning of the ATP phosphoribosyl transferase gene of Corynebacterium glutamicum and application of the gene to L-histidine production. Biosci. Biotechnol. Biochem. 58:635-638.
    Pubmed CrossRef
  89. Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O. 2002. Genomewide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J. Biotechnol. 98: 255-268.
    CrossRef
  90. Nakamura Y, Nishio Y, Ikeo K, Gojobori T. 2003. The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene 317: 149-155.
    CrossRef
  91. Nakayama K, Tanaka H, Hagino H, Kinoshita S. 1966. Studies on lysine fermentation: Part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Micrococcus glutamicus. Agric. Biol. Chem. 30: 611-616.
  92. Neshat A, Mentz A, Ruckert C, Kalinowski J. 2014. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J. Biotechnol. 190: 55-63.
    Pubmed CrossRef
  93. Oberreuter H, Charzinski J, Scherer S. 2002. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiology 148: 1523-1532.
    Pubmed CrossRef
  94. Oh Y, Choi J, Kim E, Song B, Jeong K, Park K, et al. 2015. Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 176: 1-11.
    Pubmed CrossRef
  95. Okibe N, Suzuki N, Inui M, Yukawa H. 2010. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett. Appl. Microbiol. 50: 173-180.
    Pubmed CrossRef
  96. Okino S, Inui M, Yukawa H. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480.
    Pubmed CrossRef
  97. Okino S, Suda M, Fujikura K, Inui M, Yukawa H. 2008. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 78: 449-454.
    Pubmed CrossRef
  98. Otten A, Brocker M, Bott M. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab. Eng. 30: 156-165.
    Pubmed CrossRef
  99. Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J. 2013. Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6: 103-117.
    Pubmed PMC CrossRef
  100. Paradis FW, Warren RA, Kilburn DG, Miller RC Jr. 1987. The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61: 199-206.
    CrossRef
  101. Park S, Lee S, Park I, Choi J, Jeong W, Kim Y, Lee H. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
  102. Park SD, Lee JY, Sim SY, Kim Y, Lee HS. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336.
    Pubmed CrossRef
  103. Park SH, Kim HU, Kim TY, Park JS, Kim S-S, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for Larginine production. Nat. Commun. 5: 4618.
    Pubmed CrossRef
  104. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. 2003. Promoters of Corynebacterium glutamicum. J. Biotechnol. 104: 311-323.
    CrossRef
  105. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ. 2001. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3: 295-300.
    Pubmed
  106. Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G. 1993. Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol. Microbiol. 9: 97-109.
    Pubmed CrossRef
  107. Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. 2013. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14: 888.
    Pubmed PMC CrossRef
  108. Plassmeier JK, Busche T, Molck S, Persicke M, Puhler A, Ruckert C, Kalinowski J. 2013. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways. J. Biotechnol. 163: 225-232.
    Pubmed CrossRef
  109. Ravasi P, Peiru S, Gramajo H, Menzella HG. 2012. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 11: 147.
    Pubmed PMC CrossRef
  110. Rytter J, Helmark S, Chen J, Lezyk M, Solem C, Jensen P. 2014. Synthetic promoter libraries for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 2617-2623.
    Pubmed CrossRef
  111. Salim K, Haedens V, Content J, Leblon G, Huygen K. 1997. Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63: 4392-4400.
    Pubmed PMC
  112. Santamaria R, Gil J, Mesas JM, Martin JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen Microbiol. 130: 2237-2246.
    CrossRef
  113. Sasaki M, Jojima T, Inui M, Yukawa H. 2008. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygendeprived conditions. Appl. Microbiol. Biotechnol. 81: 691-699.
    Pubmed CrossRef
  114. Schäfer A, Schwarzer A, Kalinowski J, Pühler A. 1994. Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in ntergeneric conjugation with Escherichia coli. J. Bacteriol. 176: 7309-7319.
    Pubmed PMC
  115. Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, et al. 2001. A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22: 4404-4422.
    CrossRef
  116. Scheele S, Oertel D, Bongaerts J, Evers S, Hellmuth H, Maurer K-H, et al. 2013. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol–xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum. Microb. Biotechnol. 6: 202-206.
    Pubmed PMC CrossRef
  117. Schneider J, Eberhardt D, Wendisch VF. 2012. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl. Microbiol. Biotechnol. 95:169-178.
    Pubmed CrossRef
  118. Schneider J, Niermann K, Wendisch VF. 2011. Production of the amino acids L-glutamate, L-lysine, L-ornithine and Larginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. 154: 191-198.
    Pubmed CrossRef
  119. Schneider J, Wendisch V. 2010. Putrescine production by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 88: 859-868.
    Pubmed CrossRef
  120. Schwarzer A, Puhler A. 1991. Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (NY) 9: 84-87.
    CrossRef
  121. Shi F, Jiang J, Li Y, Li Y, Xie Y. 2013. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J. Ind. Microbiol. Biotechnol. 40: 1285-1296.
    Pubmed CrossRef
  122. Shi F, Li Y. 2011. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol. Lett. 33: 2469-2474.
    Pubmed CrossRef
  123. Siebert D, Wendisch VF. 2015. Metabolic pathway engineering for production of 1,2-propanediol and L-propanol by Corynebacterium glutamicum. Biotechnol. Biofuels 8: 91.
    Pubmed PMC CrossRef
  124. Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A. 2005. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl. Environ. Microbiol. 71: 2391-2402.
    Pubmed PMC CrossRef
  125. Smith KM, Cho KM, Liao JC. 2010. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 87: 1045-1055.
    Pubmed PMC CrossRef
  126. Smith MD, Flickinger JL, Lineberger DW, Schmidt B. 1986. Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51: 634-639.
    Pubmed PMC
  127. Stäbler N, Oikawa T, Bott M, Eggeling L. 2011. Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. J. Bacteriol. 193: 1702-1709.
    Pubmed PMC CrossRef
  128. Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 71: 5920-5928.
    Pubmed PMC CrossRef
  129. Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H. 2005. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol. 71: 8472-8480.
    Pubmed PMC CrossRef
  130. Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H. 2005. Multiple large segment deletion method for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 69: 151-161.
    Pubmed CrossRef
  131. Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H. 2005. Large-scale engineering of the Corynebacterium glutamicum genome. Appl. Environ. Microbiol. 71: 3369-3372.
    Pubmed PMC CrossRef
  132. Suzuki N, Tsuge Y, Inui M, Yukawa H. 2005. Cre/loxPmediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 67: 225-233.
    Pubmed CrossRef
  133. Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. 2009. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl. Microbiol. Biotechnol. 82: 491-500.
    Pubmed CrossRef
  134. Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M. 2013. Development of fatty acidproducing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 79: 6776-6783.
    Pubmed PMC CrossRef
  135. Tateno T, Fukuda H, Kondo A. 2007. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl. Microbiol. Biotechnol. 77: 533-541.
    Pubmed CrossRef
  136. Tsuchiya M, Morinaga Y. 1988. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Nat. Biotechnol. 6: 428-430.
    CrossRef
  137. Udaka S. 1960. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 79: 754-755.
    Pubmed PMC
  138. Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, et al. 2015. Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol. J. 10: 290-301.
    Pubmed PMC CrossRef
  139. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545.
    Pubmed CrossRef
  140. Vasicová P, Abrhámová Z, Nesvera J, Pátek M, Sahm H, Eikmanns B. 1998. Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol. Tech. 12: 743-746.
    CrossRef
  141. Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns B. 1999. Analysis of the Corynebacterium glutamicum dapA promoter. J. Bacteriol. 181: 6188-6191.
    Pubmed PMC
  142. Vertès AA. 2013. Protein secretion systems of Corynebacterium glutamicum, pp. 351-389. In Yukawa H, Inui M (eds.). Corynebacterium glutamicum. Microbiobiology Monographs 23. Springer, Berlin, Germany.
    CrossRef
  143. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H. 1993. Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144: 181-185.
    CrossRef
  144. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M. 2014. Pushing product formation to its limit:metabolic engineering of Corynebacterium glutamicum for Lleucine overproduction. Metab. Eng. 22: 40-52.
    Pubmed CrossRef
  145. Wada M, Awano N, Haisa K, Takagi H, Nakamori S. 2002. Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol. Lett. 217: 103-107.
    Pubmed CrossRef
  146. Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H. 2009. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155: 741-750.
    Pubmed CrossRef
  147. Wendisch VF. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104: 273-285.
    CrossRef
  148. Wendisch VF, Bott M, Eikmanns BJ. 2006. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr. Opin. Microbiol. 9: 268-274.
    Pubmed CrossRef
  149. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. 2006. Emerging Corynebacterium glutamicum systems biology. J. Biotechnol. 124: 74-92.
    Pubmed CrossRef
  150. Wieschalka S, Blombach B, Bott M, Eikmanns BJ. 2013. Biobased production of organic acids with Corynebacterium glutamicum. Microb. Biotechnol. 6: 87-102.
    Pubmed PMC CrossRef
  151. Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. 2013. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 110: 2938-2948.
    Pubmed CrossRef
  152. Yim S, An S, Choi J, Ryu A, Jeong K. 2014. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 273-284.
    Pubmed CrossRef
  153. Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969.
    Pubmed CrossRef
  154. Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ. 2016. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 113: 163-172.
    Pubmed CrossRef
  155. Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2008. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J. Bacteriol. 190: 6458-6466.
    Pubmed PMC CrossRef
  156. Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2009. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J. Bacteriol. 191: 5480-5488.
    Pubmed PMC CrossRef
  157. Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, et al. 2007. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153: 1042-1058.
    Pubmed CrossRef
  158. Zahoor A, Otten A, Wendisch VF. 2014. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J. Biotechnol. 192: 366-375.
    Pubmed CrossRef
  159. Zhang B, Zhou N, Liu Y-M, Liu C, Lou C-B, Jiang C-Y, Liu S-J. 2015. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb. Cell Fact. 14: 71.
    Pubmed PMC CrossRef
  160. Zhang C, Zhang J, Kang Z, Du G, Chen J. 2015. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 42: 787-797.
    Pubmed CrossRef
  161. Zhang D, Guan D, Liang J, Guo C, Xie X, Zhang C, et al. 2014. Reducing lactate secretion by ldhA deletion in Lglutamate-producing strain Corynebacterium glutamicum GDK-9. Braz. J. Microbiol. 45: 1477-1483.
    Pubmed PMC CrossRef
  162. Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T. 2012. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl. Environ. Microbiol. 78: 5831-5838.
    Pubmed PMC CrossRef
  163. Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z. 2015. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1665-1673.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Minireview

J. Microbiol. Biotechnol. 2016; 26(5): 807-822

Published online May 28, 2016 https://doi.org/10.4014/jmb.1601.01053

Copyright © The Korean Society for Microbiology and Biotechnology.

The Actinobacterium Corynebacterium glutamicum, an Industrial Workhorse

Joo-Young Lee 1, Yoon-Ah Na 1, Eungsoo Kim 2, Heung-Shick Lee 3 and Pil Kim 1*

1Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea, 2Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea, 3Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea

Received: January 21, 2016; Accepted: January 31, 2016

Abstract

Starting as a glutamate producer, Corynebacterium glutamicum has played a variety of roles in
the industrial production of amino acids, one of the most important areas of white
biotechnology. From shortly after its genome information became available, C. glutamicum has
been applied in various production processes for value-added chemicals, fuels, and polymers,
as a key organism in industrial biotechnology alongside the surprising progress in systems
biology and metabolic engineering. In addition, recent studies have suggested another
potential for C. glutamicum as a synthetic biology platform chassis that could move the new era
of industrial microbial biotechnology beyond the classical field. Here, we review the recent
progress and perspectives in relation to C. glutamicum, which demonstrate it as one of the most
promising and valuable workhorses in the field of industrial biotechnology.

Keywords: Corynebacterium glutamicum, industrial microbe, synthetic biology, metabolic engineering

References

  1. Abe S, Takayama K-I, Kinoshita S. 1967. Taxonomical studies on glutamic acid-producing bacteria. J. Gen. Appl. Microbiol. 13: 279-301.
    CrossRef
  2. Adham SA, Honrubia P, Diaz M, Fernandez-Abalos JM, Santamaria RI, Gil JA. 2001. Expression of the genes coding for the xylanase Xys1 and the cellulase Cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch. Microbiol. 177: 91-97.
    Pubmed CrossRef
  3. An SJ, Yim SS, Jeong KJ. 2013. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Express. Purif. 89: 251-257.
    Pubmed CrossRef
  4. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T. 2007. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl. Environ. Microbiol. 73:1308-1319.
    Pubmed KoreaMed CrossRef
  5. Bückle-Vallant V, Krause F, Messerschmidt S, Eikmanns B. 2014. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl. Microbiol. Biotechnol. 98: 297-311.
    Pubmed CrossRef
  6. Bardonnet N, Blanco C. 1991. Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol. Lett. 68: 97-102.
    Pubmed CrossRef
  7. Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, et al. 2013. Construction of a prophagefree variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl. Environ. Microbiol. 79: 6006-6015.
    Pubmed KoreaMed CrossRef
  8. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596.
    Pubmed KoreaMed CrossRef
  9. Becker J, Schafer R, Kohlstedt M, Harder BJ, Borchert NS, Stoveken N, et al. 2013. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine. Microb. Cell Fact. 12: 110.
    Pubmed KoreaMed CrossRef
  10. Becker J, Wittmann C. 2012. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr. Opin. Biotechnol. 23: 718-726.
    Pubmed CrossRef
  11. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. 2011. From zero to hero - design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168.
    Pubmed CrossRef
  12. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T. 2003. Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3: 1637-1646.
    Pubmed CrossRef
  13. Billman-Jacobe H, Hodgson AL, Lightowlers M, Wood PR, Radford AJ. 1994. Expression of ovine gamma interferon in Escherichia coli and Corynebacterium glutamicum. Appl. Environ. Microbiol. 60: 1641-1645.
    Pubmed KoreaMed
  14. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A. 1995. Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl. Environ. Microbiol. 61: 1610-1613.
    Pubmed KoreaMed
  15. Blombach B, Buchholz J, Busche T, Kalinowski J, Takors R. 2013. Impact of different CO2/HCO3 - levels on metabolism and regulation in Corynebacterium glutamicum. J. Biotechnol. 168: 331-340.
    Pubmed CrossRef
  16. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl. Environ. Microbiol. 77: 3300-3310.
    Pubmed KoreaMed CrossRef
  17. Brabetz W, Liebl W, Schleifer KH. 1991. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch. Microbiol. 155: 607-612.
    Pubmed CrossRef
  18. Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, et al. 2013. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, Lvaline, and 2-ketoisovalerate. Appl. Environ. Microbiol. 79: 5566-5575.
    Pubmed KoreaMed CrossRef
  19. Buschke N, Schäfer R, Becker J, Wittmann C. 2013. Metabolic engineering of industrial platform microorganisms for biorefinery applications – optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresour. Technol. 135: 544-554.
    Pubmed CrossRef
  20. Cadenas RF, Gil JA, Martin JF. 1992. Expression of Streptomyces genes encoding extracellular enzymes in Brevibacterium lactofermentum: secretion proceeds by removal of the same leader peptide as in Streptomyces lividans. Appl. Microbiol. Biotechnol. 38: 362-369.
    Pubmed CrossRef
  21. Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. 2015. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb. Cell Fact. 14: 21.
    Pubmed KoreaMed CrossRef
  22. Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188: 2554-2567.
    Pubmed KoreaMed CrossRef
  23. Date M, Itaya H, Matsui H, Kikuchi Y. 2006. Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett. Appl. Microbiol. 42: 66-70.
    Pubmed CrossRef
  24. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. 2003. Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl. Environ. Microbiol. 69: 3011-3014.
    Pubmed KoreaMed CrossRef
  25. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y. 2004. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J. Biotechnol. 110: 219-226.
    Pubmed CrossRef
  26. Dusch N, Pühler A, Kalinowski J. 1999. Expression of the Corynebacterium glutamicum panD gene encoding L-aspartatedecarboxylase leads to pantothenate overproduction in Escherichia coli. Appl. Environ. Microbiol. 65: 1530-1539.
    Pubmed KoreaMed
  27. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H. 1991. A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102: 93-98.
    CrossRef
  28. Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186: 2798-2809.
    Pubmed KoreaMed CrossRef
  29. Hänßler E, Müller T, Palumbo K, Patek M, Brocker M, Krämer R, Burkovski A. 2009. A game with many players:control of gdh transcription in Corynebacterium glutamicum. J. Biotechnol. 142: 114-122.
    Pubmed CrossRef
  30. Hüser AT, Chassagnole C, Lindley ND, Merkamm M, Guyonvarch A, Elišáková V, et al. 2005. Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl. Environ. Microbiol. 71: 3255-3268.
    Pubmed KoreaMed CrossRef
  31. Hao N, Mu Jr, Hu N, Xu S, Yan M, Li Y, et al. 2015. Improvement of L-citrulline production in Corynebacterium glutamicum by ornithine acetyltransferase. J. Ind. Microbiol. Biotechnol. 42: 307-313.
    Pubmed CrossRef
  32. Hartbrich A, Schmitz G, Weuster-Botz D, de Graaf AA, Wandrey C. 1996. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial cell densities. Biotechnol. Bioeng. 51:624-635.
    CrossRef
  33. Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, et al. 2013. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl. Environ. Microbiol. 79: 1250-1257.
    Pubmed KoreaMed CrossRef
  34. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, et al. 2012. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl. Environ. Microbiol. 78: 865-875.
    Pubmed KoreaMed CrossRef
  35. Hayashi M, Mizoguchi H, Shiraishi N, Obayashi M, Nakagawa S, Imai J-I, et al. 2002. Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci. Biotechnol. Biochem. 66: 1337-1344.
    Pubmed CrossRef
  36. Haynes JA, Britz ML. 1990. The effect of growth conditions of Corynebacterium glutamicum on the transformation frequency obtained by electroporation. J. Gen. Microbiol. 136: 255-263.
    CrossRef
  37. Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, et al. 2001. Proteome analysis of corynebacterium glutamicum. Electrophoresis 22: 1712-1723.
    CrossRef
  38. Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M. 2009. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J. Biotechnol. 139: 203-210.
    Pubmed CrossRef
  39. Ikeda M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
    Pubmed CrossRef
  40. Ikeda M, Katsumata R. 1992. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl. Environ. Microbiol. 58: 781-785.
    Pubmed KoreaMed
  41. Ikeda M, Katsumata R. 1998. A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum. Microbiology 144: 1863-1868.
    Pubmed CrossRef
  42. Ikeda M, Katsumata R. 1999. Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl. Environ. Microbiol. 65: 2497-2502.
    Pubmed KoreaMed
  43. Ikeda M, Nakagawa S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 62: 99-109.
    Pubmed CrossRef
  44. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196.
    Pubmed CrossRef
  45. Jakoby M, Ngouoto-Nkili C-E, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 13: 437-441.
    CrossRef
  46. Jensen JV, Wendisch VF. 2013. Ornithine cyclodeaminasebased proline production by Corynebacterium glutamicum. Microb. Cell Fact. 12: 63.
    Pubmed KoreaMed CrossRef
  47. Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH. 2012. Disruption of genes for the enhanced biosynthesis of alpha-ketoglutarate in Corynebacterium glutamicum. Can. J. Microbiol. 58: 278-286.
    Pubmed CrossRef
  48. Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165.
    Pubmed CrossRef
  49. Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, Inui M. 2015. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1165-1172.
    Pubmed CrossRef
  50. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2 003. T he c omp lete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.
    CrossRef
  51. Kalinowski J, Wolters D, Poetsch A. 2008. Proteomics of Corynebacterium glutamicum and other corynebacteria, pp. 55-78. In Burkovski A (ed.). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press, Norfolk, UK.
  52. Kang M-K, Lee J, Um Y, Lee T, Bott M, Park S, Woo H. 2014. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Appl. Microbiol. Biotechnol. 98: 5991-6002.
    Pubmed CrossRef
  53. Kang MK, Eom JH, Kim Y, Um Y, Woo HM. 2014. Biosynthesis of pinene from glucose using metabolicallyengineered Corynebacterium glutamicum. Biotechnol. Lett. 36: 2069-2077.
    Pubmed CrossRef
  54. Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH. 2014. High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl. Microbiol. Biotechnol. 98: 4379-4387.
    Pubmed CrossRef
  55. Kass F, Hariskos I, Michel A, Brandt HJ, Spann R, Junne S, et al. 2014. Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioproc. Biosyst. Eng. 37: 1151-1162.
    Pubmed CrossRef
  56. Katsumata RMT, Kikuchi Y, Kino K. 1986. Threonine production by the lysine producing strain of Corynebacterium glutamicum with amplified threonine biosynthetic operon, pp. 217-226. In Alacevic M, Hranueli D, Toman Z (eds.). Genetics of Industrial Microorganisms. Ognjen Prica Printing Works.
  57. Katsumata R, Ozaki A, Oka T, Furuya A. 1984. Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol. 159: 306-311.
    Pubmed KoreaMed
  58. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. 2009. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.
    Pubmed KoreaMed CrossRef
  59. Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H. 2006. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl. Environ. Microbiol. 72: 3418-3428.
    Pubmed KoreaMed CrossRef
  60. Kelle R, Hermann T, Weuster-Botz D, Eggeling L, Krämer R, Wandrey C. 1996. Glucose-controlled l-isoleucine fed-batch production with recombinant strains of Corynebacterium glutamicum. J. Biotechnol. 50: 123-136.
    CrossRef
  61. Kikuchi Y, Date M, Yokoyama K, Umezawa Y, Matsui H. 2003. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366.
    Pubmed KoreaMed CrossRef
  62. Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF. 2008. Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78: 67-74.
    Pubmed CrossRef
  63. Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF. 2009. TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion. Appl. Environ. Microbiol. 75: 603-607.
    Pubmed KoreaMed CrossRef
  64. Kim HI, Nam JY, Cho JY, Lee CS, Park YJ. 2013. Nextgeneration sequencing-based transcriptome analysis of Llysine-producing Corynebacterium glutamicum ATCC 21300 strain. J. Microbiol. 51: 877-880.
    Pubmed CrossRef
  65. Kim SY, Lee J, Lee SY. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of Lornithine. Biotechnol. Bioeng. 112: 416-421.
    Pubmed CrossRef
  66. Kind S, Jeong WK, Schröder H, Wittmann C. 2010. Systemswide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab. Eng. 12: 341-351.
    Pubmed CrossRef
  67. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C. 2010. Identification and elimination of the competing Nacetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl. Environ. Microbiol. 76: 5175-5180.
    Pubmed KoreaMed CrossRef
  68. Kind S, Kreye S, Wittmann C. 2011. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab. Eng. 13: 617-627.
    Pubmed CrossRef
  69. Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth GV, et al. 2014. From zero to hero – production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng. 25: 113-123.
    Pubmed CrossRef
  70. Kinoshita S, Udaka S, Shimono M. 1957. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193-205.
    CrossRef
  71. Knoppova M, Phensaijai M, Vesely M, Zemanova M, Nesvera J, Patek M. 2007. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr. Microbiol. 55: 234-239.
    Pubmed CrossRef
  72. Kortmann M, Kuhl V, Klaffl S, Bott M. 2015. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb. Biotechnol. 8: 253-265.
    Pubmed KoreaMed CrossRef
  73. Kotrba P, Inui M, Yukawa H. 2001. The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 289: 1307-1313.
    Pubmed CrossRef
  74. Kromer JO, Sorgenfrei O, Klopprogge K, Heinzle E, Wittmann C. 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum: by combined analysis of the transcriptome, metabolome, and fluxome. J. Bacteriol. 186:1769-1784.
    Pubmed KoreaMed CrossRef
  75. Lee BH, Lee SB, Kim HS, Jeong KJ, Park JY, Park KM, Lee JW. 2015. Whole cell bioconversion of ricinoleic acid to 12-ketooleic acid by recombinant Corynebacterium glutamicumbased biocatalyst. J. Microbiol. Biotechnol. 25: 452-458.
    Pubmed CrossRef
  76. Lee J. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79.
    Pubmed CrossRef
  77. Lee JY, Choy HE, Lee JH, Kim GJ. 2015. Generation of minicells from an endotoxin-free gram-positive strain Corynebacterium glutamicum. J. Microbiol. Biotechnol. 25: 554-558.
    Pubmed CrossRef
  78. Lee JY, Seo J, Kim ES, Lee HS, Kim P. 2013. A daptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol. Lett. 35: 709-717.
    Pubmed CrossRef
  79. Lee SK, Keasling JD. 2006. A Salmonella-based, propionateinducible, expression system for Salmonella enterica. Gene 377: 6-11.
    Pubmed CrossRef
  80. Liebl W, Ehrmann M, Ludwig W, KH. S. 1991. Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium lilium DSM 20137T to Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Evol. Microbiol. 41: 255-260.
    CrossRef
  81. Liebl W, Sinskey AJ, Schleifer KH. 1992. Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J. Bacteriol. 174: 1854-1861.
    Pubmed KoreaMed
  82. Liu Q, Ouyang S-P, Kim J, Chen G-Q. 2007. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum. J. Biotechnol. 132: 273-279.
    Pubmed CrossRef
  83. Liu Q, Zhang J, Wei X-X, Ouyang S-P, Wu Q, Chen G-Q. 2008. Microbial production of L-glutamate and L-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Appl. Microbiol. Biotechnol. 77: 1297-1304.
    Pubmed CrossRef
  84. Loos A, Glanemann C, Willis LB, O’Brien XM, Lessard PA, Gerstmeir R, et al. 2 001. D evelop ment a nd v alidation of Corynebacterium DNA microarrays. Appl. Microbiol. Biotechnol. 67: 2310-2318.
  85. Matsuda Y, Itaya H, Kitahara Y, Theresia NM, Kutukova EA, Yomantas YAV, et al. 2014. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb. Cell Fact. 13: 56.
    Pubmed KoreaMed CrossRef
  86. Matsumoto K, Kitagawa K, Jo S-J, Song Y, Taguchi S. 2011. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacterium glutamicum using propionate as a precursor. J. Biotechnol. 152: 144-146.
    Pubmed CrossRef
  87. Mentz A, Neshat A, Pfeifer-Sancar K, Puhler A, Ruckert C, Kalinowski J. 2013. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics 14: 714.
    Pubmed KoreaMed CrossRef
  88. Mizukami T, Hamu A, Ikeda M, Oka T, Katsumata R. 1994. Cloning of the ATP phosphoribosyl transferase gene of Corynebacterium glutamicum and application of the gene to L-histidine production. Biosci. Biotechnol. Biochem. 58:635-638.
    Pubmed CrossRef
  89. Muffler A, Bettermann S, Haushalter M, Hörlein A, Neveling U, Schramm M, Sorgenfrei O. 2002. Genomewide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J. Biotechnol. 98: 255-268.
    CrossRef
  90. Nakamura Y, Nishio Y, Ikeo K, Gojobori T. 2003. The genome stability in Corynebacterium species due to lack of the recombinational repair system. Gene 317: 149-155.
    CrossRef
  91. Nakayama K, Tanaka H, Hagino H, Kinoshita S. 1966. Studies on lysine fermentation: Part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Micrococcus glutamicus. Agric. Biol. Chem. 30: 611-616.
  92. Neshat A, Mentz A, Ruckert C, Kalinowski J. 2014. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J. Biotechnol. 190: 55-63.
    Pubmed CrossRef
  93. Oberreuter H, Charzinski J, Scherer S. 2002. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiology 148: 1523-1532.
    Pubmed CrossRef
  94. Oh Y, Choi J, Kim E, Song B, Jeong K, Park K, et al. 2015. Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 176: 1-11.
    Pubmed CrossRef
  95. Okibe N, Suzuki N, Inui M, Yukawa H. 2010. Isolation, evaluation and use of two strong, carbon source-inducible promoters from Corynebacterium glutamicum. Lett. Appl. Microbiol. 50: 173-180.
    Pubmed CrossRef
  96. Okino S, Inui M, Yukawa H. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480.
    Pubmed CrossRef
  97. Okino S, Suda M, Fujikura K, Inui M, Yukawa H. 2008. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 78: 449-454.
    Pubmed CrossRef
  98. Otten A, Brocker M, Bott M. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab. Eng. 30: 156-165.
    Pubmed CrossRef
  99. Pátek M, Holátko J, Busche T, Kalinowski J, Nešvera J. 2013. Corynebacterium glutamicum promoters: a practical approach. Microb. Biotechnol. 6: 103-117.
    Pubmed KoreaMed CrossRef
  100. Paradis FW, Warren RA, Kilburn DG, Miller RC Jr. 1987. The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61: 199-206.
    CrossRef
  101. Park S, Lee S, Park I, Choi J, Jeong W, Kim Y, Lee H. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795.
  102. Park SD, Lee JY, Sim SY, Kim Y, Lee HS. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336.
    Pubmed CrossRef
  103. Park SH, Kim HU, Kim TY, Park JS, Kim S-S, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for Larginine production. Nat. Commun. 5: 4618.
    Pubmed CrossRef
  104. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G. 2003. Promoters of Corynebacterium glutamicum. J. Biotechnol. 104: 311-323.
    CrossRef
  105. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ. 2001. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 3: 295-300.
    Pubmed
  106. Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G. 1993. Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol. Microbiol. 9: 97-109.
    Pubmed CrossRef
  107. Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. 2013. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 14: 888.
    Pubmed KoreaMed CrossRef
  108. Plassmeier JK, Busche T, Molck S, Persicke M, Puhler A, Ruckert C, Kalinowski J. 2013. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways. J. Biotechnol. 163: 225-232.
    Pubmed CrossRef
  109. Ravasi P, Peiru S, Gramajo H, Menzella HG. 2012. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb. Cell Fact. 11: 147.
    Pubmed KoreaMed CrossRef
  110. Rytter J, Helmark S, Chen J, Lezyk M, Solem C, Jensen P. 2014. Synthetic promoter libraries for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 2617-2623.
    Pubmed CrossRef
  111. Salim K, Haedens V, Content J, Leblon G, Huygen K. 1997. Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Environ. Microbiol. 63: 4392-4400.
    Pubmed KoreaMed
  112. Santamaria R, Gil J, Mesas JM, Martin JF. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen Microbiol. 130: 2237-2246.
    CrossRef
  113. Sasaki M, Jojima T, Inui M, Yukawa H. 2008. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygendeprived conditions. Appl. Microbiol. Biotechnol. 81: 691-699.
    Pubmed CrossRef
  114. Schäfer A, Schwarzer A, Kalinowski J, Pühler A. 1994. Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in ntergeneric conjugation with Escherichia coli. J. Bacteriol. 176: 7309-7319.
    Pubmed KoreaMed
  115. Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, et al. 2001. A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22: 4404-4422.
    CrossRef
  116. Scheele S, Oertel D, Bongaerts J, Evers S, Hellmuth H, Maurer K-H, et al. 2013. Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol–xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum. Microb. Biotechnol. 6: 202-206.
    Pubmed KoreaMed CrossRef
  117. Schneider J, Eberhardt D, Wendisch VF. 2012. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl. Microbiol. Biotechnol. 95:169-178.
    Pubmed CrossRef
  118. Schneider J, Niermann K, Wendisch VF. 2011. Production of the amino acids L-glutamate, L-lysine, L-ornithine and Larginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. 154: 191-198.
    Pubmed CrossRef
  119. Schneider J, Wendisch V. 2010. Putrescine production by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 88: 859-868.
    Pubmed CrossRef
  120. Schwarzer A, Puhler A. 1991. Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (NY) 9: 84-87.
    CrossRef
  121. Shi F, Jiang J, Li Y, Li Y, Xie Y. 2013. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J. Ind. Microbiol. Biotechnol. 40: 1285-1296.
    Pubmed CrossRef
  122. Shi F, Li Y. 2011. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol. Lett. 33: 2469-2474.
    Pubmed CrossRef
  123. Siebert D, Wendisch VF. 2015. Metabolic pathway engineering for production of 1,2-propanediol and L-propanol by Corynebacterium glutamicum. Biotechnol. Biofuels 8: 91.
    Pubmed KoreaMed CrossRef
  124. Silberbach M, Schäfer M, Hüser AT, Kalinowski J, Pühler A, Krämer R, Burkovski A. 2005. Adaptation of Corynebacterium glutamicum to ammonium limitation: a global analysis using transcriptome and proteome techniques. Appl. Environ. Microbiol. 71: 2391-2402.
    Pubmed KoreaMed CrossRef
  125. Smith KM, Cho KM, Liao JC. 2010. Engineering Corynebacterium glutamicum for isobutanol production. Appl. Microbiol. Biotechnol. 87: 1045-1055.
    Pubmed KoreaMed CrossRef
  126. Smith MD, Flickinger JL, Lineberger DW, Schmidt B. 1986. Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl. Environ. Microbiol. 51: 634-639.
    Pubmed KoreaMed
  127. Stäbler N, Oikawa T, Bott M, Eggeling L. 2011. Corynebacterium glutamicum as a host for synthesis and export of D-amino acids. J. Bacteriol. 193: 1702-1709.
    Pubmed KoreaMed CrossRef
  128. Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 71: 5920-5928.
    Pubmed KoreaMed CrossRef
  129. Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H. 2005. New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl. Environ. Microbiol. 71: 8472-8480.
    Pubmed KoreaMed CrossRef
  130. Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H. 2005. Multiple large segment deletion method for Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 69: 151-161.
    Pubmed CrossRef
  131. Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H. 2005. Large-scale engineering of the Corynebacterium glutamicum genome. Appl. Environ. Microbiol. 71: 3369-3372.
    Pubmed KoreaMed CrossRef
  132. Suzuki N, Tsuge Y, Inui M, Yukawa H. 2005. Cre/loxPmediated deletion system for large genome rearrangements in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 67: 225-233.
    Pubmed CrossRef
  133. Suzuki N, Watanabe K, Okibe N, Tsuchida Y, Inui M, Yukawa H. 2009. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum. Appl. Microbiol. Biotechnol. 82: 491-500.
    Pubmed CrossRef
  134. Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M. 2013. Development of fatty acidproducing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 79: 6776-6783.
    Pubmed KoreaMed CrossRef
  135. Tateno T, Fukuda H, Kondo A. 2007. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl. Microbiol. Biotechnol. 77: 533-541.
    Pubmed CrossRef
  136. Tsuchiya M, Morinaga Y. 1988. Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Nat. Biotechnol. 6: 428-430.
    CrossRef
  137. Udaka S. 1960. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J. Bacteriol. 79: 754-755.
    Pubmed KoreaMed
  138. Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, et al. 2015. Chassis organism from Corynebacterium glutamicum – a top-down approach to identify and delete irrelevant gene clusters. Biotechnol. J. 10: 290-301.
    Pubmed KoreaMed CrossRef
  139. van der Rest ME, Lange C, Molenaar D. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541-545.
    Pubmed CrossRef
  140. Vasicová P, Abrhámová Z, Nesvera J, Pátek M, Sahm H, Eikmanns B. 1998. Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol. Tech. 12: 743-746.
    CrossRef
  141. Vasicova P, Patek M, Nesvera J, Sahm H, Eikmanns B. 1999. Analysis of the Corynebacterium glutamicum dapA promoter. J. Bacteriol. 181: 6188-6191.
    Pubmed KoreaMed
  142. Vertès AA. 2013. Protein secretion systems of Corynebacterium glutamicum, pp. 351-389. In Yukawa H, Inui M (eds.). Corynebacterium glutamicum. Microbiobiology Monographs 23. Springer, Berlin, Germany.
    CrossRef
  143. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H. 1993. Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144: 181-185.
    CrossRef
  144. Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M. 2014. Pushing product formation to its limit:metabolic engineering of Corynebacterium glutamicum for Lleucine overproduction. Metab. Eng. 22: 40-52.
    Pubmed CrossRef
  145. Wada M, Awano N, Haisa K, Takagi H, Nakamori S. 2002. Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol. Lett. 217: 103-107.
    Pubmed CrossRef
  146. Watanabe K, Tsuchida Y, Okibe N, Teramoto H, Suzuki N, Inui M, Yukawa H. 2009. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences. Microbiology 155: 741-750.
    Pubmed CrossRef
  147. Wendisch VF. 2003. Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J. Biotechnol. 104: 273-285.
    CrossRef
  148. Wendisch VF, Bott M, Eikmanns BJ. 2006. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr. Opin. Microbiol. 9: 268-274.
    Pubmed CrossRef
  149. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. 2006. Emerging Corynebacterium glutamicum systems biology. J. Biotechnol. 124: 74-92.
    Pubmed CrossRef
  150. Wieschalka S, Blombach B, Bott M, Eikmanns BJ. 2013. Biobased production of organic acids with Corynebacterium glutamicum. Microb. Biotechnol. 6: 87-102.
    Pubmed KoreaMed CrossRef
  151. Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H. 2013. Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol. Bioeng. 110: 2938-2948.
    Pubmed CrossRef
  152. Yim S, An S, Choi J, Ryu A, Jeong K. 2014. High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 98: 273-284.
    Pubmed CrossRef
  153. Yim SS, An SJ, Kang M, Lee J, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969.
    Pubmed CrossRef
  154. Yim SS, Choi JW, Lee RJ, Lee YJ, Lee SH, Kim SY, Jeong KJ. 2016. Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 113: 163-172.
    Pubmed CrossRef
  155. Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2008. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J. Bacteriol. 190: 6458-6466.
    Pubmed KoreaMed CrossRef
  156. Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF. 2009. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J. Bacteriol. 191: 5480-5488.
    Pubmed KoreaMed CrossRef
  157. Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, et al. 2007. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153: 1042-1058.
    Pubmed CrossRef
  158. Zahoor A, Otten A, Wendisch VF. 2014. Metabolic engineering of Corynebacterium glutamicum for glycolate production. J. Biotechnol. 192: 366-375.
    Pubmed CrossRef
  159. Zhang B, Zhou N, Liu Y-M, Liu C, Lou C-B, Jiang C-Y, Liu S-J. 2015. Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb. Cell Fact. 14: 71.
    Pubmed KoreaMed CrossRef
  160. Zhang C, Zhang J, Kang Z, Du G, Chen J. 2015. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum. J. Ind. Microbiol. Biotechnol. 42: 787-797.
    Pubmed CrossRef
  161. Zhang D, Guan D, Liang J, Guo C, Xie X, Zhang C, et al. 2014. Reducing lactate secretion by ldhA deletion in Lglutamate-producing strain Corynebacterium glutamicum GDK-9. Braz. J. Microbiol. 45: 1477-1483.
    Pubmed KoreaMed CrossRef
  162. Zhang Y, Shang X, Lai S, Zhang G, Liang Y, Wen T. 2012. Development and application of an arabinose-inducible expression system by facilitating inducer uptake in Corynebacterium glutamicum. Appl. Environ. Microbiol. 78: 5831-5838.
    Pubmed KoreaMed CrossRef
  163. Zhu Q, Zhang X, Luo Y, Guo W, Xu G, Shi J, Xu Z. 2015. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 99: 1665-1673.
    Pubmed CrossRef