전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Baeza-Jiménez R, Lopez-Martinez LX, Cruz-Medina JDl, Espinosa-de-los-Monteros JJ, García-Galindo HS. 2011. Effect of glucose on 1,3-propanediol production by Lactobacillus reuteri. Rev. Mex. Ing. Quím. 10: 39-46.
  2. Blaschek HP, Ezeji TC, Scheffran J. 2010. Biofuels from Agricultural Wastes and Byproducts. Blackwell Publishing.
    CrossRef
  3. Cheng X, Chen W, Peng WF, Li KT. 2014. Improved vitamin B12 fermentation process by adding rotenone to regulate the metabolism of Pseudomonas denitrificans. Appl. Biochem. Biotechnol. 173: 673-681.
    Pubmed CrossRef
  4. de Man JC, Rogosa M, Sharpe ME. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135.
    CrossRef
  5. de Vrese M, Marteau PR. 2007. Probiotics and prebiotics:effects on diarrhea. J. Nutr. 137: 803S-811S.
    Pubmed
  6. Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. 2014. Flux analysis of the Lactobacillus reuteri propanediol utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact. 13: 76.
    Pubmed PMC CrossRef
  7. Dobson R, Gray V, Rumbold K. 2012. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217-226.
    Pubmed CrossRef
  8. El-Ziney MG, Arneborg N. 1998. Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol. Lett. 20: 913-916.
    CrossRef
  9. Florencio L, Field JA, Lettinga G. 1994. Importance of cobalt for individual trophic groups in an anaerobic methanoldegrading consortium. Appl. Environ. Microbiol. 60: 227-234.
    Pubmed PMC
  10. Himmi EH, Bories A, Barbirato F. 1999. Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour. Technol. 67: 123-128.
    CrossRef
  11. Jolly J, Hitzmann B, Ramalingam S, Ramachandran KB. 2014. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J. Biosci. Bioeng. 118: 188-194.
    Pubmed CrossRef
  12. Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S. 2014. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol. J. 9: 1526-1535.
    Pubmed CrossRef
  13. Marley EC, Mackay E, Young G. 2009. Characterisation of vitamin B12 immunoaffinity columns and method development for determination of vitamin B12 in a range of foods, juices and pharmaceutical products using immunoaffinity cleanup and high performance liquid chromatography with UV detection. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26: 282-288.
    Pubmed CrossRef
  14. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, et al. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15: 151-161.
    Pubmed PMC CrossRef
  15. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL. 2006. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.
    Pubmed CrossRef
  16. Nakamura CE, Whited GM. 2003. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14: 454-459.
    Pubmed CrossRef
  17. Pflügl S, Marx H, Mattanovich D, Sauer M. 2012. 1,3Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour. Technol. 119: 133-140.
    Pubmed CrossRef
  18. Pflügl S, Marx H, Mattanovich D, Sauer M. 2014. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 152: 499-504.
    Pubmed CrossRef
  19. Santos F, Teusink B, Molenaar D, van Heck M, Wels M, Sieuwerts S, et al. 2009. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl. Environ. Microbiol. 75: 3930-3936.
    Pubmed PMC CrossRef
  20. Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J. 2008. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology 154: 81-93.
    Pubmed CrossRef
  21. Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26: 100-108.
    Pubmed CrossRef
  22. Saxena RK, Anand P, Saran S, Isar J. 2009. Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 27: 895-913.
    Pubmed CrossRef
  23. Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, et al. 2008. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol. 190: 4559-4567.
    Pubmed PMC CrossRef
  24. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F. 2003. Lactobacillus reuteri CRL1098 produces cobalamin. J. Bacteriol. 185: 5643-5647.
    Pubmed PMC CrossRef
  25. Tobajas M, Mohedano AF, Casas JA, Rodríguez JJ. 2009. Unstructured kinetic model for reuterin and 1,3-propanediol production by Lactobacillus reuteri from glycerol/glucose cofermentation. J. Chem. Technol. Biotechnol. 84: 675-680.
    CrossRef
  26. van Niel EW, Larsson CU, Lohmeier-Vogel EM, Radstrom P. 2012. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Int. J. Food Microbiol. 152:206-210.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2015; 25(6): 893-902

Published online June 28, 2015 https://doi.org/10.4014/jmb.1411.11078

Copyright © The Korean Society for Microbiology and Biotechnology.

Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016

Maria Antonietta Ricci 1, 2, Annamaria Russo 1, 2, Isabella Pisano 1, 2, Luigi Palmieri 1, 2, 3, Maria de Angelis 4 and Gennaro Agrimi 1, 2*

1Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy, 2CIRCC - Interuniversity Consortium Chemical Reactivity and Catalysis, 70126 Bari, Italy, 3CNR Institute of Biomembranes and Bioenergetics (IBBE), 70126, Bari, Italy, 4Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy

Received: November 28, 2014; Accepted: January 15, 2015

Abstract

Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3-
propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a
well-known probiotic, was able to efficiently carry out this bioconversion. Several process
strategies were employed to improve this process. Co2+ addition to the fermentation medium,
led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri
DSM 20016 produced also ca. 3 μg/g of cell dry weight of vitamin B12, conferring an economic
value to the biomass produced in the process. Incidentally, we found that L. reuteri displays
the highest resistance to Co2+ ions ever reported for a microorganism. Two waste materials
(crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or
in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016.
Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure
glycerol (-18%). Compared with the fermentation carried out with pure substrates, the 1,3-
PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and
crude glycerol, but strong increases of the maximal biomass produced (+27%) and of the
glucose consumption rate (+46%) were found. The results of this study lay the foundation for
further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to
produce 1,3-PDO and vitamin B12 using industry byproducts.

Keywords: 1,3-Propanediol, L. reuteri, Vitamin B12, Lignocellulosic hydrolysates, Cobalt

References

  1. Baeza-Jiménez R, Lopez-Martinez LX, Cruz-Medina JDl, Espinosa-de-los-Monteros JJ, García-Galindo HS. 2011. Effect of glucose on 1,3-propanediol production by Lactobacillus reuteri. Rev. Mex. Ing. Quím. 10: 39-46.
  2. Blaschek HP, Ezeji TC, Scheffran J. 2010. Biofuels from Agricultural Wastes and Byproducts. Blackwell Publishing.
    CrossRef
  3. Cheng X, Chen W, Peng WF, Li KT. 2014. Improved vitamin B12 fermentation process by adding rotenone to regulate the metabolism of Pseudomonas denitrificans. Appl. Biochem. Biotechnol. 173: 673-681.
    Pubmed CrossRef
  4. de Man JC, Rogosa M, Sharpe ME. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135.
    CrossRef
  5. de Vrese M, Marteau PR. 2007. Probiotics and prebiotics:effects on diarrhea. J. Nutr. 137: 803S-811S.
    Pubmed
  6. Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. 2014. Flux analysis of the Lactobacillus reuteri propanediol utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact. 13: 76.
    Pubmed KoreaMed CrossRef
  7. Dobson R, Gray V, Rumbold K. 2012. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217-226.
    Pubmed CrossRef
  8. El-Ziney MG, Arneborg N. 1998. Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol. Lett. 20: 913-916.
    CrossRef
  9. Florencio L, Field JA, Lettinga G. 1994. Importance of cobalt for individual trophic groups in an anaerobic methanoldegrading consortium. Appl. Environ. Microbiol. 60: 227-234.
    Pubmed KoreaMed
  10. Himmi EH, Bories A, Barbirato F. 1999. Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour. Technol. 67: 123-128.
    CrossRef
  11. Jolly J, Hitzmann B, Ramalingam S, Ramachandran KB. 2014. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J. Biosci. Bioeng. 118: 188-194.
    Pubmed CrossRef
  12. Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S. 2014. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol. J. 9: 1526-1535.
    Pubmed CrossRef
  13. Marley EC, Mackay E, Young G. 2009. Characterisation of vitamin B12 immunoaffinity columns and method development for determination of vitamin B12 in a range of foods, juices and pharmaceutical products using immunoaffinity cleanup and high performance liquid chromatography with UV detection. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26: 282-288.
    Pubmed CrossRef
  14. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, et al. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15: 151-161.
    Pubmed KoreaMed CrossRef
  15. Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL. 2006. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.
    Pubmed CrossRef
  16. Nakamura CE, Whited GM. 2003. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14: 454-459.
    Pubmed CrossRef
  17. Pflügl S, Marx H, Mattanovich D, Sauer M. 2012. 1,3Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour. Technol. 119: 133-140.
    Pubmed CrossRef
  18. Pflügl S, Marx H, Mattanovich D, Sauer M. 2014. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 152: 499-504.
    Pubmed CrossRef
  19. Santos F, Teusink B, Molenaar D, van Heck M, Wels M, Sieuwerts S, et al. 2009. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl. Environ. Microbiol. 75: 3930-3936.
    Pubmed KoreaMed CrossRef
  20. Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J. 2008. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology 154: 81-93.
    Pubmed CrossRef
  21. Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26: 100-108.
    Pubmed CrossRef
  22. Saxena RK, Anand P, Saran S, Isar J. 2009. Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 27: 895-913.
    Pubmed CrossRef
  23. Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, et al. 2008. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol. 190: 4559-4567.
    Pubmed KoreaMed CrossRef
  24. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F. 2003. Lactobacillus reuteri CRL1098 produces cobalamin. J. Bacteriol. 185: 5643-5647.
    Pubmed KoreaMed CrossRef
  25. Tobajas M, Mohedano AF, Casas JA, Rodríguez JJ. 2009. Unstructured kinetic model for reuterin and 1,3-propanediol production by Lactobacillus reuteri from glycerol/glucose cofermentation. J. Chem. Technol. Biotechnol. 84: 675-680.
    CrossRef
  26. van Niel EW, Larsson CU, Lohmeier-Vogel EM, Radstrom P. 2012. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Int. J. Food Microbiol. 152:206-210.
    Pubmed CrossRef