전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Anding C, Rohmer M, Qurisson G. 1976. Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J. Am. Chem. Soc. 98: 1274-1275.
    Pubmed CrossRef
  2. Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatani Y, Ourisson G. 1983. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω- dihydroxycarotenoids. Biochem. Biophys. Res. Commun. 110: 320-324.
    CrossRef
  3. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.
    Pubmed CrossRef
  4. Corey EJ, Russey WE, Ortiz de Montellano PR. 1966. 2,3Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene. J. Am. Chem. Soc. 88: 4750-4751.
    CrossRef
  5. Ghimire GP, Oh TJ, Liou K, Sohng JK. 2008. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol. Cells 26: 362-367.
    Pubmed
  6. Ghimire GP, Oh TJ, Lee HC, Kim BG, Sohng JK. 2008. Cloning and functional characterization of germacradienol synthase (spterp13) from Streptomyces peucetius ATCC 27952. J. Microbiol. Biotechnol. 18: 1216-1220.
    Pubmed
  7. Ghimire GP, Oh TJ, Lee HC, Sohng JK. 2009. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol. Lett. 31: 565-569.
    Pubmed CrossRef
  8. Ghimire GP, Lee HC, Sohng JK. 2009. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75: 7291-7293.
    Pubmed PMC CrossRef
  9. Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430.
    Pubmed CrossRef
  10. Jones GH, Hopwood DA. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259:14158-14164.
    Pubmed
  11. Kannenberg EL, Perzl M, Muller P, Hartner T, Poralla K. 1996. Hopanoid lipids in Bradyrhizobium a nd other plant-associa ted bacteria and cloning of the Bradyrhizobium japonicum squalenehopene cyclase. Plant Soil 186: 107-112.
    CrossRef
  12. Kannenberg EL, Poralla K. 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86: 168-176.
    CrossRef
  13. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England.
    PMC
  14. Meyer O, Grosdemanage-Billard C, Tritsch D, Rohmer M. 2003. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3R,4S)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Org. Biomol. Chem. 1: 4367-4372.
    Pubmed CrossRef
  15. Palmu K, Ishida K, Mantsala P, Hertweck C, Mesta-Ketele M. 2007. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. Chembiochem 8: 1577-1584.
    Pubmed CrossRef
  16. Pa rker LL, B etts PW, Hall BG. 1 988. Activa tion o f a c ryptic gene by excision of a DNA fragment. J. Bacteriol. 170: 218-222.
    Pubmed PMC
  17. Poralla K, Kannenberg E, Blume A. 1980. A glycolipid containing hopane isolated from Bacillus acidocaldarius has a cholesterol like function in membranes. FEBS Lett. 113: 107-110.
    CrossRef
  18. Poralla K, Hartner T, Kannenberg E. 1984. Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol. Lett. 23: 253-256.
    CrossRef
  19. Poralla K, Muth G, Harter T. 2000. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett. 189: 93-95.
    Pubmed CrossRef
  20. Qurisson G, Albrecht P, Rohmer M. 1979. The hopanoids:paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709-729.
  21. Roberts SC. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3: 387-395.
    Pubmed CrossRef
  22. Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopaniods in prokaryotes. J. Gen. Microbiol. 130: 1137-1150.
  23. Sahm H, Rhomer M, Bringer-Meyer S, Sprenger GA, Welle R. 1993. Biochemistry and physiology of hopanoids in bacteria. Adv. Microb. Physiol. 35: 247-273.
    CrossRef
  24. Van Tamelen EE, Willett JD, Clayton RB, Lord KE. 1966. Enzymatic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J. Am. Chem. Soc. 88: 4752-4754.
    Pubmed CrossRef
  25. Withers ST, Keasling JD. 2007. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73:980-990.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2015; 25(5): 658-661

Published online May 28, 2015 https://doi.org/10.4014/jmb.1408.08058

Copyright © The Korean Society for Microbiology and Biotechnology.

Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis

Gopal Prasad Ghimire 1, Niranjan Koirala 1 and Jae Kyung Sohng 1*

Institute of Biomolecule Reconstruction (iBR), Department of BT-convergent Pharmaceutical Engineering, Sun Moon University, Asansi 336-708, Republic of Korea

Received: August 25, 2014; Accepted: November 18, 2014

Abstract

Genes encoding enzymes with sequence similarity to hopanoids biosynthetic enzymes of other
organisms were cloned from the hopanoid (hop) gene cluster of Streptomyces peucetius ATCC
27952 and transformed into Streptomyces venezuelae YJ028. The cloned fragments contained
four genes, all transcribed in one direction. These genes encode polypeptides that resemble
polyprenyl diphosphate synthase (hopD), squalene-phytoene synthases (hopAB), and squalenehopene
cyclase (hopE). These enzymes are sufficient for the formation of the pentacyclic
triterpenoid lipid, hopene. The formation of hopene was verified by gas chromatography/
mass spectrometry.

Keywords: Cryptic genes, Genome, Heterologous expression, Hopanoid biosynthesis, S. peucetius

References

  1. Anding C, Rohmer M, Qurisson G. 1976. Nonspecific biosynthesis of hopane triterpenes in a cell-free system from Acetobacter rancens. J. Am. Chem. Soc. 98: 1274-1275.
    Pubmed CrossRef
  2. Bisseret P, Wolff G, Albrecht AM, Tanaka T, Nakatani Y, Ourisson G. 1983. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω- dihydroxycarotenoids. Biochem. Biophys. Res. Commun. 110: 320-324.
    CrossRef
  3. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.
    Pubmed CrossRef
  4. Corey EJ, Russey WE, Ortiz de Montellano PR. 1966. 2,3Oxidosqualene, an intermediate in the biological synthesis of sterols from squalene. J. Am. Chem. Soc. 88: 4750-4751.
    CrossRef
  5. Ghimire GP, Oh TJ, Liou K, Sohng JK. 2008. Identification of a cryptic type III polyketide synthase (1,3,6,8-tetrahydroxynaphthalene synthase) from Streptomyces peucetius ATCC 27952. Mol. Cells 26: 362-367.
    Pubmed
  6. Ghimire GP, Oh TJ, Lee HC, Kim BG, Sohng JK. 2008. Cloning and functional characterization of germacradienol synthase (spterp13) from Streptomyces peucetius ATCC 27952. J. Microbiol. Biotechnol. 18: 1216-1220.
    Pubmed
  7. Ghimire GP, Oh TJ, Lee HC, Sohng JK. 2009. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol. Lett. 31: 565-569.
    Pubmed CrossRef
  8. Ghimire GP, Lee HC, Sohng JK. 2009. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75: 7291-7293.
    Pubmed KoreaMed CrossRef
  9. Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430.
    Pubmed CrossRef
  10. Jones GH, Hopwood DA. 1984. Activation of phenoxazinone synthase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem. 259:14158-14164.
    Pubmed
  11. Kannenberg EL, Perzl M, Muller P, Hartner T, Poralla K. 1996. Hopanoid lipids in Bradyrhizobium a nd other plant-associa ted bacteria and cloning of the Bradyrhizobium japonicum squalenehopene cyclase. Plant Soil 186: 107-112.
    CrossRef
  12. Kannenberg EL, Poralla K. 1999. Hopanoid biosynthesis and function in bacteria. Naturwissenschaften 86: 168-176.
    CrossRef
  13. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England.
    KoreaMed
  14. Meyer O, Grosdemanage-Billard C, Tritsch D, Rohmer M. 2003. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3R,4S)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Org. Biomol. Chem. 1: 4367-4372.
    Pubmed CrossRef
  15. Palmu K, Ishida K, Mantsala P, Hertweck C, Mesta-Ketele M. 2007. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. Chembiochem 8: 1577-1584.
    Pubmed CrossRef
  16. Pa rker LL, B etts PW, Hall BG. 1 988. Activa tion o f a c ryptic gene by excision of a DNA fragment. J. Bacteriol. 170: 218-222.
    Pubmed KoreaMed
  17. Poralla K, Kannenberg E, Blume A. 1980. A glycolipid containing hopane isolated from Bacillus acidocaldarius has a cholesterol like function in membranes. FEBS Lett. 113: 107-110.
    CrossRef
  18. Poralla K, Hartner T, Kannenberg E. 1984. Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol. Lett. 23: 253-256.
    CrossRef
  19. Poralla K, Muth G, Harter T. 2000. Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3 (2). FEMS Microbiol. Lett. 189: 93-95.
    Pubmed CrossRef
  20. Qurisson G, Albrecht P, Rohmer M. 1979. The hopanoids:paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51: 709-729.
  21. Roberts SC. 2007. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3: 387-395.
    Pubmed CrossRef
  22. Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopaniods in prokaryotes. J. Gen. Microbiol. 130: 1137-1150.
  23. Sahm H, Rhomer M, Bringer-Meyer S, Sprenger GA, Welle R. 1993. Biochemistry and physiology of hopanoids in bacteria. Adv. Microb. Physiol. 35: 247-273.
    CrossRef
  24. Van Tamelen EE, Willett JD, Clayton RB, Lord KE. 1966. Enzymatic conversion of squalene 2,3-oxide to lanosterol and cholesterol. J. Am. Chem. Soc. 88: 4752-4754.
    Pubmed CrossRef
  25. Withers ST, Keasling JD. 2007. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73:980-990.
    Pubmed CrossRef