전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes:classification and properties. Biochem. J. 343: 177-183.
    Pubmed CrossRef
  2. Bornscheuer UT, Kazlauskas RJ. 1999. Hydrolases in Organic Synthesis – Regio- and Stereoselective Biotransformations. WileyVCH, Weinheim.
  3. Bornscheuer UT. 2002. Microbial carboxylesterases: classification, properties and applications in biocatalysis. FEMS Microbiol. Rev. 26: 73-81.
    Pubmed CrossRef
  4. Brenner S. 1988. The molecular evolution of genes and proteins: a tale of two serines. Nature 334: 528-530.
    Pubmed CrossRef
  5. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
    Pubmed
  6. Dale JW, Godwin D, Mossakowska D, Stephenson P, Wall S. 1985. Sequence of OXA2 β-lactamase: comparion with other penicillin-reactive enzymes. FEMS Lett. 191: 39-44.
  7. Drauz K, Waldmann H. 1995. Enzyme Catalysis in Organic Synthesis. Vol. 1 and 2. Wiley-VCH, Weinheim.
    CrossRef
  8. Elend C, Schmeisser C, Leggewise C, Babiak P, Carballeira JD, Steele HL, et al. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645.
    Pubmed CrossRef
  9. Feller G, Thiry M, Arpigny JL, Gerday C. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotrophic Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine resides. DNA Cell Biol. 10: 381-388.
    Pubmed CrossRef
  10. Hasan F, Shah AA, Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 234-251.
    CrossRef
  11. Jaeger KE, Dijkstra BW, Reetz MT. 1999. Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351.
    Pubmed CrossRef
  12. Jaeger KE, Ransac S, Kock BH, Feratto FG, Dijkstra BW. 1993. Topology characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett. 332: 143-149.
    CrossRef
  13. Joris B , Ghuysen J M, D ive G, R enard A, Did eberg O , Charlier P, et al. 1988. The active-site-serine penicillinrecognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem. J. 250: 313-324.
    Pubmed
  14. Jung YJ, Kim HK, Kim JH, Park SH, Oh TK, Lee JK. 2005. A direct approach for finding functional lipolytic enzymes from the Paenibacillus polymyxa genome. J. Microbiol. Biotechnol. 15:155-160.
  15. Kim HE, Kim KR. 2002. Purification and characterization of an esterase from Acinetobacter lwoffii 16C-1. Curr. Microbiol. 44: 401-405.
    Pubmed CrossRef
  16. Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK. 2002. Expression and characterization of Ca2+-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212.
    CrossRef
  17. Kim YO, Heo YL, Nam BH, Jee YJ, Lee SJ, An CM. 2013. Molecular cloning, purification, and characterization of a cold-adapted esterase from Photobacterium sp. MA1-3. Fish. Aquat. Sci. 16: 311-318.
  18. Kim YO, Park EM, Seo JS, Nam BH, Kong HJ, Kim WJ, et al. 2013. Shewanella sp. Ke75 esterase with specificity for pnitrophenyl butyrate: gene cloning and characterization. J. Korean Soc. Appl. Biol. Chem. 56: 55-62.
    CrossRef
  19. Kim YO, Park IS, Kim HK, Nam BH, Kong HJ, Kim WJ, et al. 2011. A novel cold-adapted esterase from Salinisphaera sp. P7-4: gene cloning, overexpression, and characterization. J. Gen. Appl. Microbiol. 57: 357-364.
    Pubmed CrossRef
  20. Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300:gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.
    Pubmed CrossRef
  21. Lee HK, Min JA, Sung HK, Won HS, Byeong CJ. 2003. Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB4. J. Microbiol. 41: 22-27.
  22. Lee SJ, Park EH, Han YH, Kim YO, Park SW. 2013. Isolation of a marine bacterium capable of biodegrading poly (butylenes succinate). Fish. Aquat. Sci. 16: 41-44.
  23. Okuda H. 1991. Esterases, pp. 563-577. In Kuby SA (ed.). A Study of Enzymes. CRC Press, Boca Raton, FL.
  24. Panda T, Gowrishankar BS. 2005. Production and applications of esterase. Appl. Microbiol. Biotechnol. 67: 160-169.
    Pubmed CrossRef
  25. Park HJ, Jeong JH, Kang SG, Lee JH, Lee SA, Kim HK. 2007. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr. Purif. 52: 340-347.
    Pubmed CrossRef
  26. Patel RN. 2000. Stereoselective Biocatalysis. Marcel Dekker, New York.
    CrossRef
  27. Petersen SB, Drablos F. 1994. A sequence analysis of lipases, esterases and related proteins, pp. 23-48. In Wooley P, Petersen SB (eds.). Lipases: Their Structure, Biochemistry and Applications. Press Syndicate of the University of Cambridge, New York.
  28. Petersen EI, Valinger G, Sölkner B, Stubenrauch G, Schwab H. 2001. A novel esterase from Burkholderia gladioli that shows high deacetylation activity on cephalosporins is related to β-lactamases and DD-peptidases. J. Biotechnol. 89: 11-25.
    CrossRef
  29. Prim N, Blanco A, Martinez J, Pastor FIJ, Diaz P. 2000. EstA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases. Res. Microbiol. 151: 303-312.
    CrossRef
  30. Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, et al. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326.
    Pubmed CrossRef
  31. Saito H, Miura KI. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72: 619-629.
    CrossRef
  32. Suzuki T, Nakayama T, Choo DW, Hirano Y, Kurihara T, Nishino T, Esaki N. 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30: 171-178.
    CrossRef
  33. Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N. 2002. A cold active esterase with a substrate preference for vinyl esters from a psychrotroph, Acinetobacter sp. strain no. 6: gene cloning, purification, and characterization. J. Mol. Catal. B Enzym. 16: 255-263.
    CrossRef
  34. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Pubmed CrossRef
  35. Tsujita T, Shirai K, Saito Y, Okuda H. 1990. Relationship between lipase and esterase. Isozymes: structure, function, and use in biology and medicine. Prog. Clin. Biol. Res. 344: 915-933.
    Pubmed
  36. Upton C, Buckley JT. 1995. A new family of lipolytic enzymes. Trends Biochem. Sci. 20: 178-179.
    CrossRef
  37. Wei P, Bai L, Song W, Hao G. 2009. Characterization of two soil metagenome-derived lipases with high specificity for pnitrophenyl palmitate. Arch. Microbiol. 191: 233-240.
    Pubmed CrossRef
  38. Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S, Derewenda ZS. 1995. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat. Struct. Biol. 2: 218-223.
    Pubmed CrossRef
  39. Wong CH, Whitesids GM. 1994. Enzymes in Synthetic Organic Chemistry. Pergamon Press, Oxford.

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2014; 24(9): 1260-1268

Published online September 28, 2014 https://doi.org/10.4014/jmb.1405.05043

Copyright © The Korean Society for Microbiology and Biotechnology.

A Novel Esterase from Paenibacillus sp. PBS-2 Is a New Member of the β-Lactamase Belonging to the Family VIII Lipases/Esterases

Young-Ok Kim 1*, In-Suk Park 1, Bo-Hye Nam 1, Dong-Gyun Kim 1, Young-Ju Jee 1, Sang-Jun Lee 1 and Cheul-Min An 1

Biotechnology Research Division, National Fisheries Research and Development Institute, Busan 619-705, Republic of Korea

Received: May 20, 2014; Accepted: June 20, 2014

Abstract

Screening of a gene library from Paenibacillus sp. PBS-2 generated in Escherichia coli led to the
identification of a clone with lipolytic activity. Sequence analysis showed an open reading
frame encoding a polypeptide of 378 amino acid residues with a predicted molecular mass of
42 kDa. The esterase displayed 69% and 42% identity with the putative β-lactamases from
Paenibacillus sp. JDR-2 and Clostridium sp. BNL1100, respectively. The esterase contained a Serx-
x-Lys motif that is conserved among all β-lactamases found to date. The protein PBS-2 was
produced in both soluble and insoluble forms when E. coli cells harboring the gene were
cultured at 18°C. The enzyme is a serine protein and was active against p-nitrophenyl esters of
C2, C4, C8, and C10. The optimum pH and temperature for enzyme activity were pH 9.0 and
30°C, respectively. Relative activity of 55% remained at up to 5°C with an activation energy of
5.84 kcal/mol, which indicates that the enzyme is cold-adapted. Enzyme activity was
inhibited by Cd2+, Cu2+, and Hg2+ ions. As expected for a serine esterase, activity was inhibited
by phenylmethylsulfonyl fluoride. The enzyme was remarkably active and stable in the
presence of commercial detergents and organic solvents. This cold-adapted esterase has
potential as a biocatalyst and detergent additive for use at low temperatures.

Keywords: Paenibacillus sp., cold-adapted esterase, β-lactamase, gene expression

References

  1. Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes:classification and properties. Biochem. J. 343: 177-183.
    Pubmed CrossRef
  2. Bornscheuer UT, Kazlauskas RJ. 1999. Hydrolases in Organic Synthesis – Regio- and Stereoselective Biotransformations. WileyVCH, Weinheim.
  3. Bornscheuer UT. 2002. Microbial carboxylesterases: classification, properties and applications in biocatalysis. FEMS Microbiol. Rev. 26: 73-81.
    Pubmed CrossRef
  4. Brenner S. 1988. The molecular evolution of genes and proteins: a tale of two serines. Nature 334: 528-530.
    Pubmed CrossRef
  5. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491.
    Pubmed
  6. Dale JW, Godwin D, Mossakowska D, Stephenson P, Wall S. 1985. Sequence of OXA2 β-lactamase: comparion with other penicillin-reactive enzymes. FEMS Lett. 191: 39-44.
  7. Drauz K, Waldmann H. 1995. Enzyme Catalysis in Organic Synthesis. Vol. 1 and 2. Wiley-VCH, Weinheim.
    CrossRef
  8. Elend C, Schmeisser C, Leggewise C, Babiak P, Carballeira JD, Steele HL, et al. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ. Microbiol. 72: 3637-3645.
    Pubmed CrossRef
  9. Feller G, Thiry M, Arpigny JL, Gerday C. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotrophic Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine resides. DNA Cell Biol. 10: 381-388.
    Pubmed CrossRef
  10. Hasan F, Shah AA, Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 234-251.
    CrossRef
  11. Jaeger KE, Dijkstra BW, Reetz MT. 1999. Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351.
    Pubmed CrossRef
  12. Jaeger KE, Ransac S, Kock BH, Feratto FG, Dijkstra BW. 1993. Topology characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett. 332: 143-149.
    CrossRef
  13. Joris B , Ghuysen J M, D ive G, R enard A, Did eberg O , Charlier P, et al. 1988. The active-site-serine penicillinrecognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem. J. 250: 313-324.
    Pubmed
  14. Jung YJ, Kim HK, Kim JH, Park SH, Oh TK, Lee JK. 2005. A direct approach for finding functional lipolytic enzymes from the Paenibacillus polymyxa genome. J. Microbiol. Biotechnol. 15:155-160.
  15. Kim HE, Kim KR. 2002. Purification and characterization of an esterase from Acinetobacter lwoffii 16C-1. Curr. Microbiol. 44: 401-405.
    Pubmed CrossRef
  16. Kim HK, Choi HJ, Kim MH, Sohn CB, Oh TK. 2002. Expression and characterization of Ca2+-independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205-212.
    CrossRef
  17. Kim YO, Heo YL, Nam BH, Jee YJ, Lee SJ, An CM. 2013. Molecular cloning, purification, and characterization of a cold-adapted esterase from Photobacterium sp. MA1-3. Fish. Aquat. Sci. 16: 311-318.
  18. Kim YO, Park EM, Seo JS, Nam BH, Kong HJ, Kim WJ, et al. 2013. Shewanella sp. Ke75 esterase with specificity for pnitrophenyl butyrate: gene cloning and characterization. J. Korean Soc. Appl. Biol. Chem. 56: 55-62.
    CrossRef
  19. Kim YO, Park IS, Kim HK, Nam BH, Kong HJ, Kim WJ, et al. 2011. A novel cold-adapted esterase from Salinisphaera sp. P7-4: gene cloning, overexpression, and characterization. J. Gen. Appl. Microbiol. 57: 357-364.
    Pubmed CrossRef
  20. Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N. 2004. Cold-active esterase from Psychrobacter sp. Ant300:gene cloning, characterization, and the effects of GlyPro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta 1696: 59-65.
    Pubmed CrossRef
  21. Lee HK, Min JA, Sung HK, Won HS, Byeong CJ. 2003. Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB4. J. Microbiol. 41: 22-27.
  22. Lee SJ, Park EH, Han YH, Kim YO, Park SW. 2013. Isolation of a marine bacterium capable of biodegrading poly (butylenes succinate). Fish. Aquat. Sci. 16: 41-44.
  23. Okuda H. 1991. Esterases, pp. 563-577. In Kuby SA (ed.). A Study of Enzymes. CRC Press, Boca Raton, FL.
  24. Panda T, Gowrishankar BS. 2005. Production and applications of esterase. Appl. Microbiol. Biotechnol. 67: 160-169.
    Pubmed CrossRef
  25. Park HJ, Jeong JH, Kang SG, Lee JH, Lee SA, Kim HK. 2007. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr. Purif. 52: 340-347.
    Pubmed CrossRef
  26. Patel RN. 2000. Stereoselective Biocatalysis. Marcel Dekker, New York.
    CrossRef
  27. Petersen SB, Drablos F. 1994. A sequence analysis of lipases, esterases and related proteins, pp. 23-48. In Wooley P, Petersen SB (eds.). Lipases: Their Structure, Biochemistry and Applications. Press Syndicate of the University of Cambridge, New York.
  28. Petersen EI, Valinger G, Sölkner B, Stubenrauch G, Schwab H. 2001. A novel esterase from Burkholderia gladioli that shows high deacetylation activity on cephalosporins is related to β-lactamases and DD-peptidases. J. Biotechnol. 89: 11-25.
    CrossRef
  29. Prim N, Blanco A, Martinez J, Pastor FIJ, Diaz P. 2000. EstA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases. Res. Microbiol. 151: 303-312.
    CrossRef
  30. Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, et al. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326.
    Pubmed CrossRef
  31. Saito H, Miura KI. 1963. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim. Biophys. Acta 72: 619-629.
    CrossRef
  32. Suzuki T, Nakayama T, Choo DW, Hirano Y, Kurihara T, Nishino T, Esaki N. 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30: 171-178.
    CrossRef
  33. Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N. 2002. A cold active esterase with a substrate preference for vinyl esters from a psychrotroph, Acinetobacter sp. strain no. 6: gene cloning, purification, and characterization. J. Mol. Catal. B Enzym. 16: 255-263.
    CrossRef
  34. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
    Pubmed CrossRef
  35. Tsujita T, Shirai K, Saito Y, Okuda H. 1990. Relationship between lipase and esterase. Isozymes: structure, function, and use in biology and medicine. Prog. Clin. Biol. Res. 344: 915-933.
    Pubmed
  36. Upton C, Buckley JT. 1995. A new family of lipolytic enzymes. Trends Biochem. Sci. 20: 178-179.
    CrossRef
  37. Wei P, Bai L, Song W, Hao G. 2009. Characterization of two soil metagenome-derived lipases with high specificity for pnitrophenyl palmitate. Arch. Microbiol. 191: 233-240.
    Pubmed CrossRef
  38. Wei Y, Schottel JL, Derewenda U, Swenson L, Patkar S, Derewenda ZS. 1995. A novel variant of the catalytic triad in the Streptomyces scabies esterase. Nat. Struct. Biol. 2: 218-223.
    Pubmed CrossRef
  39. Wong CH, Whitesids GM. 1994. Enzymes in Synthetic Organic Chemistry. Pergamon Press, Oxford.