전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Allsopp TE, McLuckie J, Kerr LE, Macleod M, Sharkey J, Kelly JS. 2000. Caspase-6 activity initiates caspase-3 activation in cerebellar granule cell apoptosis. Cell Death Differ. 7: 984-993.
    CrossRef
  2. Cowling V, Downward J. 2002. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9: 1046-1056.
    CrossRef
  3. Earnshaw WC, Martins LM, Kaufmann SH. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383-424.
    CrossRef
  4. Ellis RE, Yuan JY, Horvitz HR. 1991. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663-698.
    CrossRef
  5. Grütter MG. 2000. Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10: 649-655.
    CrossRef
  6. Inoue S, Browne G, Melino G, Cohen GM. 2009. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 16: 1053-1061.
    CrossRef
  7. Jung J, Ahn YJ, Kang LW. 2008. A novel approach to investigating protein/protein interactions and their functions by TAP-tagged yeast strains and its application to examine yeast transcription machinery. J. Microbiol. Biotechnol. 18:631-638.
  8. Lamkanfi M, Kanneqanti TD. 2010. Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42: 21-24.
    CrossRef
  9. Li H, Zhu H, Xu CJ, Yuan J. 1998. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491-501.
    CrossRef
  10. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481-490.
    CrossRef
  11. Philchenkov AA. 2003. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc.) 68: 365-376.
    CrossRef
  12. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695-700.
    CrossRef
  13. Riedl SJ, Shi Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5: 897–907.
    CrossRef
  14. Stennicke HR, Renatus M, Meldal M, Salvesen GS. 2000. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem. J. 350: 563-568.
    CrossRef
  15. Thomas P, Forse RA, Bajenova O. 2011. Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver. Clin. Exp. Metastasis 28: 923-932.
    CrossRef
  16. Thornberry NA, Lazebnik Y. 1998. Caspases: enemies within. Science 281: 1312-1316.
    CrossRef
  17. Tözsér J, Bagossi P, Zahuczky G, Specht SI, Majerova E, Copeland TD. 2003. Effect of caspase cleavage-site phosphorylation on proteolysis. Biochem. J. 15: 137-143.
    CrossRef
  18. Warby SC, Doty CN, Graham RK, Carroll JB, Yang YZ, Singaraja RR, et al. 2008. Activated caspase-6 and caspase-6cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum. Mol. Genet. 17: 2390-2404.
    CrossRef
  19. Zhou C, Ji J, Cai Q, Shi M, Chen X, Yu Y, et al. 2013. MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Mol. Cancer 12: 102.
    CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2014; 24(5): 714-718

Published online May 28, 2014 https://doi.org/10.4014/jmb.1312.12068

Copyright © The Korean Society for Microbiology and Biotechnology.

Identification of Novel Binding Partners for Caspase-6 Using a Proteomic Approach

Ju Yeon Jung 1, 2, Su Rim Lee 1, 2, Sunhong Kim 3, Seung Wook Chi 1, Kwang-Hee Bae 4, Byoung Chul Park 1, Jeong-Hoon Kim 5, 6 and Sung Goo Park 1*

1Medical Proeomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-333, Republic of Korea, 2Department of Biology, Kongju National University, Kongju 314-701, Republic of Korea, 3Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-333, Republic of Korea, 4Research Center for Integrative Cellulomics, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-333, Republic of Korea, 5Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-333, Republic of Korea, 6Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea

Received: December 26, 2013; Accepted: February 25, 2014

Abstract

Apoptosis is the process of programmed cell death executed by specific proteases, the
caspases, which mediate the cleavage of various vital proteins. Elucidating the consequences
of this endoproteolytic cleavage is crucial to understanding cell death and other related
biological processes. Although a number of possible roles for caspase-6 have been proposed,
the identities and functions of proteins that interact with caspase-6 remain uncertain. In this
study, we established a cell line expressing tandem affinity purification (TAP)-tagged caspase-
6 and then used LC-MS/MS proteomic analysis to analyze the caspase-6 interactome. Eight
candidate caspase-6–interacting proteins were identified. Of these, five proteins (hnRNP-M,
DHX38, ASPP2, MTA2, and UACA) were subsequently examined by co-immunoprecipitation
for interactions with caspase-6. Thus, we identified two novel members of the caspase-6
interactome: hnRNP-M and MTA2.

Keywords: interactome, caspase-6, apoptosis, tandem affinity purification

References

  1. Allsopp TE, McLuckie J, Kerr LE, Macleod M, Sharkey J, Kelly JS. 2000. Caspase-6 activity initiates caspase-3 activation in cerebellar granule cell apoptosis. Cell Death Differ. 7: 984-993.
    CrossRef
  2. Cowling V, Downward J. 2002. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 9: 1046-1056.
    CrossRef
  3. Earnshaw WC, Martins LM, Kaufmann SH. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383-424.
    CrossRef
  4. Ellis RE, Yuan JY, Horvitz HR. 1991. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663-698.
    CrossRef
  5. Grütter MG. 2000. Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10: 649-655.
    CrossRef
  6. Inoue S, Browne G, Melino G, Cohen GM. 2009. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 16: 1053-1061.
    CrossRef
  7. Jung J, Ahn YJ, Kang LW. 2008. A novel approach to investigating protein/protein interactions and their functions by TAP-tagged yeast strains and its application to examine yeast transcription machinery. J. Microbiol. Biotechnol. 18:631-638.
  8. Lamkanfi M, Kanneqanti TD. 2010. Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42: 21-24.
    CrossRef
  9. Li H, Zhu H, Xu CJ, Yuan J. 1998. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491-501.
    CrossRef
  10. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481-490.
    CrossRef
  11. Philchenkov AA. 2003. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc.) 68: 365-376.
    CrossRef
  12. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262: 695-700.
    CrossRef
  13. Riedl SJ, Shi Y. 2004. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5: 897–907.
    CrossRef
  14. Stennicke HR, Renatus M, Meldal M, Salvesen GS. 2000. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem. J. 350: 563-568.
    CrossRef
  15. Thomas P, Forse RA, Bajenova O. 2011. Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver. Clin. Exp. Metastasis 28: 923-932.
    CrossRef
  16. Thornberry NA, Lazebnik Y. 1998. Caspases: enemies within. Science 281: 1312-1316.
    CrossRef
  17. Tözsér J, Bagossi P, Zahuczky G, Specht SI, Majerova E, Copeland TD. 2003. Effect of caspase cleavage-site phosphorylation on proteolysis. Biochem. J. 15: 137-143.
    CrossRef
  18. Warby SC, Doty CN, Graham RK, Carroll JB, Yang YZ, Singaraja RR, et al. 2008. Activated caspase-6 and caspase-6cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum. Mol. Genet. 17: 2390-2404.
    CrossRef
  19. Zhou C, Ji J, Cai Q, Shi M, Chen X, Yu Y, et al. 2013. MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Mol. Cancer 12: 102.
    CrossRef