전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Andersen T, Andersen F. 2006. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquat. Bot. 84: 267-271.
    CrossRef
  2. Arancibia-Avila P, Coleman JR, Russin WA, Wilcox LW, Graham JM, Graham LE. 2000. Effects of pH on cell morphology and carbonic anhydrase activity and localization in bloom-forming Mougeotia (Chlorophyta, Charophyceae). Can. J. Bot. 78: 1206-1214.
    CrossRef
  3. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 377: 911917.
    CrossRef
  4. Borowitzka MA. 1992. Algal biotechnology products and processes - matching science and economics. J. Appl. Phycol. 4: 267-279.
    CrossRef
  5. Chihara M, Nakayama T, Inouye I, Kodama M. 1994. Chlorococcum littorale, a new marine green coccoid alga (Chlorococcales, Chlorophyceae). Arch. Protistenkunde 144:227-235.
    CrossRef
  6. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
    CrossRef
  7. Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126-131.
    CrossRef
  8. Chiu S, Kao C, Tsai M, Ong S, Chen C, Lin C. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100: 833-838.
    CrossRef
  9. Demorais M, Costa J. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ. Convers. Manage. 48:2169-2173.
    CrossRef
  10. Doucha J, Straka F, Livansky K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403-412.
    CrossRef
  11. Fernandez FGA, Gonzalez-Lopez CV, Sevilla JMF, Grima EM. 2012. Conversion of CO2 into biomass by microalgae:how realistic a contribution may it be to significant CO2 removal? Appl. Microbiol. Biotechnol. 96: 577-586.
    CrossRef
  12. Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507.
    CrossRef
  13. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high CO2 and hightemperature. Phytochemistry 31: 3345-3348.
    CrossRef
  14. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639.
    CrossRef
  15. Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energy 88:3336-3341.
    CrossRef
  16. Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80: 53-62.
    CrossRef
  17. Larson TR, Rees TAV. 1996. Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 32: 388-393.
    CrossRef
  18. Lee JS, Sung KD, Kim MS, Park SC, Lee KW. 1996. Current aspects of carbon dioxide fixation by microalgae in Korea. Abstr. Pap. Am. Chem Soc. 212: 119.
  19. Liu J, Yuan C, Hu G, Li F. 2012. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl. Biochem. Biotechnol. 166: 2127-2137.
    CrossRef
  20. Liu ZH, Shao HB. 2010. Comments: main developments and trends of international energy plants. Renew. Sustain. Energy Rev. 14: 530-534.
    CrossRef
  21. Maeda K, Owada M, Kimura N, Omata K, Karube I. 1995. CO2 fixation from the flue-gas on coal-fired thermal powerplant by microalgae. Energy Convers. Manage. 36: 717-720.
    CrossRef
  22. Mandal S, Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84: 281-291.
    CrossRef
  23. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.
    CrossRef
  24. Miron AS, Garciia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y. 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297.
    CrossRef
  25. Pratt R, Johnson E. 1964. Lipid content of Chlorella “aerated” with a CO2-nitrogen versus a CO2-air mixture. J. Pharm. Sci. 53: 1135-1136.
    CrossRef
  26. Huang XX, Huang ZZ, Wen W, Yan JQ. 2013. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol. 25: 129-137.
    CrossRef
  27. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101: 5892-5896.
    CrossRef
  28. Takagi M, Karseno, Yoshida T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223-226.
    CrossRef
  29. Tang DH, Han W, Li PL, Miao XL, Zhong JJ. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 102: 3071-3076.
    CrossRef
  30. Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A. 1990. Effects of CO2 concentration during growth on fattyacid composition in microalgae. Plant Physiol. 93: 851-856.
    CrossRef
  31. Wang B, Li Y, Wu N, Lan CQ. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718.
    CrossRef
  32. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. 2010. Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour. Technol. 101: S71-S74.
    CrossRef
  33. Yuan C, Liu J, Fan Y, Ren X, Hu G, Li F. 2011. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 4: 47
    CrossRef
  34. Yue L, Chen W. 2005. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers. Manage. 46: 1868-1876.
    CrossRef
  35. Yun YS, Lee SB, Park JM, Lee CI, Yang JW. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69: 451-455.
    CrossRef
  36. Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM. 1995. The use of microalgae for assimilation and utilization of carbon-dioxide from fossil fuel-fired power-plant fluegas. Energy Convers. Manage. 36: 707-712.
    CrossRef
  37. Zhang K, Miyachi S, Kurano N. 2001. Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol. 55: 428-433.
    CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2014; 24(5): 683-689

Published online May 28, 2014 https://doi.org/10.4014/jmb.1308.08050

Copyright © The Korean Society for Microbiology and Biotechnology.

Lipid Production by a CO2-Tolerant Green Microalga, Chlorella sp. MRA-1

Yanlin Zheng 1, 3, Cheng Yuan 2, Junhan Liu 2, Guangrong Hu 2 and Fuli Li 2*

1College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China, 2Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China, 3College of Science, Shandong University of Science and Technology, Qingdao 266510, P. R. China

Received: August 19, 2013; Accepted: February 25, 2014

Abstract

Since CO2 concentrations in industrial flue gases are usually 10%–20%, one of the prerequisites
for efficient CO2 removal by algae is the level of tolerance of microalgal species to exposure to
high concentrations of CO2. A newly isolated microalgal strain, Chlorella sp. MRA-1, could
retain growth with high concentrations of CO2 up to 15%. The highest lipid productivity for
Chlorella sp. MRA-1 was 0.118 g/l/day with a 5% CO2 concentration. Octadecenoic acid and
hexadecanoic acid, the main components of biodiesel, accounted for 70% of the total fatty
acids. A lipid content of 52% of dry cell weight was achieved with limited amounts of
nitrogen. Chlorella sp. MRA-1 seems to be an ideal candidate for biodiesel production when
cultured with high concentrations of CO2.

Keywords: Biodiesel, CO2-tolerance, Fatty acid composition, Lipid production, Microalgae

References

  1. Andersen T, Andersen F. 2006. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish softwater lake. Aquat. Bot. 84: 267-271.
    CrossRef
  2. Arancibia-Avila P, Coleman JR, Russin WA, Wilcox LW, Graham JM, Graham LE. 2000. Effects of pH on cell morphology and carbonic anhydrase activity and localization in bloom-forming Mougeotia (Chlorophyta, Charophyceae). Can. J. Bot. 78: 1206-1214.
    CrossRef
  3. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 377: 911917.
    CrossRef
  4. Borowitzka MA. 1992. Algal biotechnology products and processes - matching science and economics. J. Appl. Phycol. 4: 267-279.
    CrossRef
  5. Chihara M, Nakayama T, Inouye I, Kodama M. 1994. Chlorococcum littorale, a new marine green coccoid alga (Chlorococcales, Chlorophyceae). Arch. Protistenkunde 144:227-235.
    CrossRef
  6. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
    CrossRef
  7. Chisti Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26: 126-131.
    CrossRef
  8. Chiu S, Kao C, Tsai M, Ong S, Chen C, Lin C. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100: 833-838.
    CrossRef
  9. Demorais M, Costa J. 2007. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energ. Convers. Manage. 48:2169-2173.
    CrossRef
  10. Doucha J, Straka F, Livansky K. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403-412.
    CrossRef
  11. Fernandez FGA, Gonzalez-Lopez CV, Sevilla JMF, Grima EM. 2012. Conversion of CO2 into biomass by microalgae:how realistic a contribution may it be to significant CO2 removal? Appl. Microbiol. Biotechnol. 96: 577-586.
    CrossRef
  12. Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507.
    CrossRef
  13. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. 1992. Tolerance of microalgae to high CO2 and hightemperature. Phytochemistry 31: 3345-3348.
    CrossRef
  14. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639.
    CrossRef
  15. Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energy 88:3336-3341.
    CrossRef
  16. Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80: 53-62.
    CrossRef
  17. Larson TR, Rees TAV. 1996. Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 32: 388-393.
    CrossRef
  18. Lee JS, Sung KD, Kim MS, Park SC, Lee KW. 1996. Current aspects of carbon dioxide fixation by microalgae in Korea. Abstr. Pap. Am. Chem Soc. 212: 119.
  19. Liu J, Yuan C, Hu G, Li F. 2012. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl. Biochem. Biotechnol. 166: 2127-2137.
    CrossRef
  20. Liu ZH, Shao HB. 2010. Comments: main developments and trends of international energy plants. Renew. Sustain. Energy Rev. 14: 530-534.
    CrossRef
  21. Maeda K, Owada M, Kimura N, Omata K, Karube I. 1995. CO2 fixation from the flue-gas on coal-fired thermal powerplant by microalgae. Energy Convers. Manage. 36: 717-720.
    CrossRef
  22. Mandal S, Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84: 281-291.
    CrossRef
  23. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.
    CrossRef
  24. Miron AS, Garciia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y. 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297.
    CrossRef
  25. Pratt R, Johnson E. 1964. Lipid content of Chlorella “aerated” with a CO2-nitrogen versus a CO2-air mixture. J. Pharm. Sci. 53: 1135-1136.
    CrossRef
  26. Huang XX, Huang ZZ, Wen W, Yan JQ. 2013. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol. 25: 129-137.
    CrossRef
  27. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101: 5892-5896.
    CrossRef
  28. Takagi M, Karseno, Yoshida T. 2006. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223-226.
    CrossRef
  29. Tang DH, Han W, Li PL, Miao XL, Zhong JJ. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 102: 3071-3076.
    CrossRef
  30. Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A. 1990. Effects of CO2 concentration during growth on fattyacid composition in microalgae. Plant Physiol. 93: 851-856.
    CrossRef
  31. Wang B, Li Y, Wu N, Lan CQ. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707-718.
    CrossRef
  32. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. 2010. Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour. Technol. 101: S71-S74.
    CrossRef
  33. Yuan C, Liu J, Fan Y, Ren X, Hu G, Li F. 2011. Mychonastes afer HSO-3-1 as a potential new source of biodiesel. Biotechnol. Biofuels 4: 47
    CrossRef
  34. Yue L, Chen W. 2005. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Convers. Manage. 46: 1868-1876.
    CrossRef
  35. Yun YS, Lee SB, Park JM, Lee CI, Yang JW. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69: 451-455.
    CrossRef
  36. Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM. 1995. The use of microalgae for assimilation and utilization of carbon-dioxide from fossil fuel-fired power-plant fluegas. Energy Convers. Manage. 36: 707-712.
    CrossRef
  37. Zhang K, Miyachi S, Kurano N. 2001. Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Appl. Microbiol. Biotechnol. 55: 428-433.
    CrossRef