전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. Adachi M, Sako Y, Ishida Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32:424-432.
    CrossRef
  2. Adesemoye AO, Torbert HA, Kloepper JW. 2009. Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 58: 921-929.
    Pubmed CrossRef
  3. Amies CR. 1967. A modified formula for the preparation of Stuart's transport medium. Can. J. Public Health 58: 296-300.
    Pubmed
  4. Atzorn R, Crozier A, Wheeler CT, Sandberg G. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538.
    Pubmed CrossRef
  5. Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul. 24: 7-11.
    CrossRef
  6. Cassan F, Bottini R, Schneider G, Piccoli P. 2001. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol. 125:2053-2058.
    Pubmed CrossRef
  7. Cassan F, Lucangeli C, Bottini R, P Piccoli. 2001. Azospirillum spp. metabolize [17,17–2H2] gibberellin A20 to [17,17–2H2] gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol. 42: 763-767.
    Pubmed CrossRef
  8. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. 2009. Leifsonia kribbensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59: 18-21.
    Pubmed CrossRef
  9. Diene O, Narisawa K. 2009. The use of symbiotic fungal associations with crops in sustainable agriculture. J. Dev. Sustain. Agric. 4: 50-56.
  10. Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM. 2000. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of ‘Corynebacterium aquaticum’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50: 371-380.
    Pubmed CrossRef
  11. Franck C, Lammertyn J, Nicolaï B. 2005. Metabolic profiling using GC-MS to study biochemical changes during longterm storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991–1998.
  12. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, et al. 1999. Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. USA 96: 5973-5977.
    Pubmed CrossRef
  13. Glick BR. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117.
    CrossRef
  14. Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M. 2001. The plant-growthpromoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant 111: 206-211.
    CrossRef
  15. Hao DC, G e GB, Yang L . 2 008. B acterial d iversity o f Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol. Lett. 284: 204-212.
    Pubmed CrossRef
  16. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion. Ann. Microbiol. 60: 579-598.
    CrossRef
  17. Hedden P. 1997. The oxidases of gibberellin biosynthesis:their function and mechanism. Physiol. Plant 101: 709-719.
    CrossRef
  18. Hedden P, Kamiya Y. 1997. Gibberellin biosynthesis:enzymes, genes, and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 431-460.
    Pubmed CrossRef
  19. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, et al. 2001. slender rice, a constitutive giberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13: 999-1010.
    Pubmed
  20. Janzen R, Rood S, Dormar J, McGill W. 1992. Azospirillum brasilense produces gibberellins in pure culture and chemicallydefined medium and in co-culture on straw. Soil Biol. Biochem. 24: 1061–1064.
    CrossRef
  21. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 2007. How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat. Rev. Microbiol. 5: 619-633.
    Pubmed CrossRef
  22. Joo GJ, K im YM, Lee IJ, Song K S, R hee IK. 2 004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26: 487-491.
    Pubmed CrossRef
  23. Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43: 510-515.
    Pubmed
  24. Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ. 2009. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J. Microbiol. 47:167-171.
    Pubmed CrossRef
  25. Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, et al. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281.
    Pubmed CrossRef
  26. Kang SM, Khan AL, Hamayun H, Javid H, Joo GJ, Lee IJ. 2012. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J. Microbiol. 50: 902-909.
    Pubmed CrossRef
  27. Lee IJ, Foster K, Morga PW. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011.
    Pubmed CrossRef
  28. Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.
    Pubmed CrossRef
  29. MacMillan J. 2002. Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Regul. 20: 387-442.
    Pubmed CrossRef
  30. Madhaiyan M, Selvaraj P, Lee JS, Murugaiyan S, Lee KC, Subbiah S. 2010. Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 1322-1327.
    Pubmed CrossRef
  31. Piccoli P, Masciarelli O, Bottini R. 1996. Metabolism of 17,17 [2H2]-gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21: 167178.
  32. Piccoli P, Lucangeli D, Schneider G, Bottini R. 1997. Hydrolysis of [17,17-2H2] gibberellin A20-glucoside and [17,172H2] gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul. 23: 179-182.
    CrossRef
  33. Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.
    CrossRef
  34. ahin F, Çakmakçi R, Kantar F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265: 123-129.
  35. Sambrook J, Russel DW. 2001. Molecular Cloning, A Laboratory Manual (3rd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  36. Schulz B, Boyle C. 2005. The endophytic continuum. Mycol. Res. 109: 661-686.
    Pubmed CrossRef
  37. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol. Biochem. 41: 1768-1774.
    CrossRef
  38. Sturz AV, Christie BR, Novak J. 2000. Bacterial endophytes:potential role in developing sustainable system of crop production. Crit. Rev. Plant Sci. 19: 1-30.
    CrossRef
  39. Sturz AV, Nowak J. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15: 183190.
    CrossRef
  40. Zaidi S, Usmani S, Singh BR, Musarrat J. 2008. Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2014; 24(1): 106-112

Published online January 28, 2014 https://doi.org/10.4014/jmb.1304.04015

Copyright © The Korean Society for Microbiology and Biotechnology.

Gibberellin Production by Newly Isolated Strain Leifsonia soli SE134 and Its Potential to Promote Plant Growth

Sang-Mo Kang 1, Abdul Latif Khan 2, Young-Hyun You 3, Jong-Guk Kim 3, Muhammad Kamran 1 and In-Jung Lee 1*

1School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea, 2Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa Oman, 3College of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea

Received: April 5, 2013; Accepted: October 1, 2013

Abstract

Very few plant growth-promoting rhizobacteria (PGPR) are known to produce gibberellins
(GAs). The current study aimed to isolate a phytohormone-producing PGP rhizobacterium
from soil and assess its potential to enhance plant growth. The newly isolated bacterium was
identified as Leifsonia soli sp. SE134 on the basis of partial 16S ribosomal RNA gene sequence.
Application of L. soli culture filtrate significantly increased the biomass, hypocotyl, and root
lengths of cucumber seeds as compared with non-inoculated sole medium and distilled water
treated controls. Furthermore, the PGPR culture was applied to the GA-deficient mutant rice
cultivar Waito-C. Treatment with L. soli SE134 significantly increased the growth of Waito-C
rice seedlings as compared with controls. Upon chromatographic analysis of L. soli culture, we
isolated, detected and quantified different GAs; namely, GA1 (0.61 ± 0.15), GA4 (1.58 ± 0.26),
GA7 (0.54 ± 0.18), GA8 (0.98 ± 0.15), GA9 (0.45 ± 0.17), GA12 (0.64 ± 0.21), GA19 (0.18 ± 0.09), GA20
(0.78 ± 0.15), GA24 (0.38 ± 0.09), GA34 (0.35 ± 0.10), and GA53 (0.17 ± 0.05). Plant growth
promotion in cucumber, tomato, and young radish plants further evidenced the potential of
this strain as a PGP bacterium. The results suggest that GA secretion by L. soli SE134 might
prove advantageous for its ameliorative role in crop growth. These findings can be extended
for improving the productivity of different crops under diverse environmental conditions.

Keywords: Gibberellins, plant growth promotion, Leifsonia Soli

References

  1. Adachi M, Sako Y, Ishida Y. 1996. Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J. Phycol. 32:424-432.
    CrossRef
  2. Adesemoye AO, Torbert HA, Kloepper JW. 2009. Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 58: 921-929.
    Pubmed CrossRef
  3. Amies CR. 1967. A modified formula for the preparation of Stuart's transport medium. Can. J. Public Health 58: 296-300.
    Pubmed
  4. Atzorn R, Crozier A, Wheeler CT, Sandberg G. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538.
    Pubmed CrossRef
  5. Bastian F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically defined media. Plant Growth Regul. 24: 7-11.
    CrossRef
  6. Cassan F, Bottini R, Schneider G, Piccoli P. 2001. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants. Plant Physiol. 125:2053-2058.
    Pubmed CrossRef
  7. Cassan F, Lucangeli C, Bottini R, P Piccoli. 2001. Azospirillum spp. metabolize [17,17–2H2] gibberellin A20 to [17,17–2H2] gibberellin A1 in vivo in dy rice mutant seedlings. Plant Cell Physiol. 42: 763-767.
    Pubmed CrossRef
  8. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. 2009. Leifsonia kribbensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59: 18-21.
    Pubmed CrossRef
  9. Diene O, Narisawa K. 2009. The use of symbiotic fungal associations with crops in sustainable agriculture. J. Dev. Sustain. Agric. 4: 50-56.
  10. Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM. 2000. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of ‘Corynebacterium aquaticum’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50: 371-380.
    Pubmed CrossRef
  11. Franck C, Lammertyn J, Nicolaï B. 2005. Metabolic profiling using GC-MS to study biochemical changes during longterm storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991–1998.
  12. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, et al. 1999. Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. USA 96: 5973-5977.
    Pubmed CrossRef
  13. Glick BR. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117.
    CrossRef
  14. Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M. 2001. The plant-growthpromoting rhizobacteria Bacillus pumilis and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant 111: 206-211.
    CrossRef
  15. Hao DC, G e GB, Yang L . 2 008. B acterial d iversity o f Taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiol. Lett. 284: 204-212.
    Pubmed CrossRef
  16. Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion. Ann. Microbiol. 60: 579-598.
    CrossRef
  17. Hedden P. 1997. The oxidases of gibberellin biosynthesis:their function and mechanism. Physiol. Plant 101: 709-719.
    CrossRef
  18. Hedden P, Kamiya Y. 1997. Gibberellin biosynthesis:enzymes, genes, and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 431-460.
    Pubmed CrossRef
  19. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, et al. 2001. slender rice, a constitutive giberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13: 999-1010.
    Pubmed
  20. Janzen R, Rood S, Dormar J, McGill W. 1992. Azospirillum brasilense produces gibberellins in pure culture and chemicallydefined medium and in co-culture on straw. Soil Biol. Biochem. 24: 1061–1064.
    CrossRef
  21. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 2007. How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat. Rev. Microbiol. 5: 619-633.
    Pubmed CrossRef
  22. Joo GJ, K im YM, Lee IJ, Song K S, R hee IK. 2 004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26: 487-491.
    Pubmed CrossRef
  23. Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43: 510-515.
    Pubmed
  24. Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ. 2009. Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J. Microbiol. 47:167-171.
    Pubmed CrossRef
  25. Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, et al. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281.
    Pubmed CrossRef
  26. Kang SM, Khan AL, Hamayun H, Javid H, Joo GJ, Lee IJ. 2012. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J. Microbiol. 50: 902-909.
    Pubmed CrossRef
  27. Lee IJ, Foster K, Morga PW. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011.
    Pubmed CrossRef
  28. Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.
    Pubmed CrossRef
  29. MacMillan J. 2002. Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Regul. 20: 387-442.
    Pubmed CrossRef
  30. Madhaiyan M, Selvaraj P, Lee JS, Murugaiyan S, Lee KC, Subbiah S. 2010. Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 1322-1327.
    Pubmed CrossRef
  31. Piccoli P, Masciarelli O, Bottini R. 1996. Metabolism of 17,17 [2H2]-gibberellins A4, A9, and A20 by Azospirillum lipoferum in chemically-defined culture medium. Symbiosis 21: 167178.
  32. Piccoli P, Lucangeli D, Schneider G, Bottini R. 1997. Hydrolysis of [17,17-2H2] gibberellin A20-glucoside and [17,172H2] gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin-based chemically-defined medium. Plant Growth Regul. 23: 179-182.
    CrossRef
  33. Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.
    CrossRef
  34. ahin F, Çakmakçi R, Kantar F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265: 123-129.
  35. Sambrook J, Russel DW. 2001. Molecular Cloning, A Laboratory Manual (3rd ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  36. Schulz B, Boyle C. 2005. The endophytic continuum. Mycol. Res. 109: 661-686.
    Pubmed CrossRef
  37. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA. 2009. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol. Biochem. 41: 1768-1774.
    CrossRef
  38. Sturz AV, Christie BR, Novak J. 2000. Bacterial endophytes:potential role in developing sustainable system of crop production. Crit. Rev. Plant Sci. 19: 1-30.
    CrossRef
  39. Sturz AV, Nowak J. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl. Soil Ecol. 15: 183190.
    CrossRef
  40. Zaidi S, Usmani S, Singh BR, Musarrat J. 2008. Significance of Bacillus subtilis strains SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.
    Pubmed CrossRef