전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Research article

References

  1. Achal V, Mukherjee A, Basu PC, Reddy MS. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.
    Pubmed CrossRef
  2. Ascasoa C, Wierzchosa J, Castelloa R. 1998. Study of the biogenic weathering of calcereous litharenite stones caused by lichen and endolithic microorganisms. Int. Biodeterior. Biodegradation 42: 29-38.
    CrossRef
  3. Boquet E, Boronat, A, Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529.
    CrossRef
  4. Choo YS, Lee GS. 2009. Natural Heritage of Korea, Dokdo, pp. 114-132. Kyungpook National University, Ulleongdo Dokdo Research Institute, Daegu, Korea.
  5. De Muynck W, De Belle N, Verstraete W. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108: 62-72.
    Pubmed CrossRef
  6. De Muynck W, De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136.
    CrossRef
  7. Diakumaku E, Gorbushin AA, Krumbein WE, Panina L, Soukharjevski S. 1995. Black fungi in marble and limestones – an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167: 295-304.
    CrossRef
  8. Do JG, Song H, So HS, Soh YS. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35: 371-376.
    CrossRef
  9. Fang ZD. 1988. Research Methods for Plant Disease, pp 248-249. 3rd Ed. Chinese Agriculture Press, Beijing [in Chinese].
  10. Ghosh P, Mandal S, Chattopadhyay BD, Pal S. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983.
    CrossRef
  11. Ghosh S, Biswas M, Chattopadhyay BD, Mandals. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Comp. 31: 93-98.
    CrossRef
  12. Gu JD, Ford TE, Berke NS, Mitchell R. 1998. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegradation 41: 101-109.
    CrossRef
  13. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.
    Pubmed CrossRef
  14. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Piñar G, Rodriguez-Gallego M, et al. 2008. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota that inhabits the stone. Int. Biodeterior. Biodegradation 62: 352-363
    CrossRef
  15. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangena E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.
    CrossRef
  16. Lowenstan HA, Weiner S. 1988. On Biomineralization. Oxford University Press, New York.
  17. Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ. 2000. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeterior. Biodegradation 46: 61-68.
    CrossRef
  18. Nolan E, Basheer BPAM, Long AE. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build. Mater. 9: 267-272.
    CrossRef
  19. Pablo HP, du Toit Lindsey J. 2006. Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. J. Plant Dis. 90: 137-145.
    CrossRef
  20. Pangallo D, Chovanová K, Simonovicová A, Ferianc P. 2009. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55: 277-287.
    Pubmed CrossRef
  21. Park JM, Park SJ, Ghim SY. 2011. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
  22. Park SJ, Lee NY, Kim WJ, Ghim SY. 2010. Application of bacteria isolated from Dokdo for improving compressive strength and crack remediation of cement-sand mortar. J. Microbiol. Biotechnol. 20: 782-788.
    Pubmed
  23. Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
    Pubmed
  24. Park SK, Kim JHJ, Nam JW, Phan HD, Kim JK. 2009. Development of anti-fungal mortar and concrete using zeolite and zeocarbon microcapsules. Cem. Concr. Comp. 31:447-453.
    CrossRef
  25. Queener SW, Capone JJ. 1974. Simple method for preparation of homogeneous spore suspensions useful in industrial strain selection. Appl. Microbiol. 28: 498-500.
    Pubmed
  26. Ramacjandran SK, Ramakrishnan V, Bang SS. 2001. Remediation of concrete using microorganism. ACI Mater. 98: 3-9.
  27. Schultze-Lam S, Fortin D, Davis BS, Beveridge TJ. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171181.
    CrossRef
  28. Stocks-Fischer S, Galinat JK, Bang SS. 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31: 1563-1571.
    CrossRef
  29. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalies and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
    Pubmed CrossRef
  30. Tiano P, Biagiotti L, Mastromei G. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation:methods of evaluation. J. Microbiol. Methods 36: 139–145.
    CrossRef
  31. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166.
    CrossRef
  32. Warscheid Th, Braams J. 2010. Biodeterioration of stone: a review. Int. Biodeterior. Biodegradation 46: 343-368.
    CrossRef
  33. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14: 908-934.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Research article

J. Microbiol. Biotechnol. 2013; 23(9): 1269-1278

Published online September 28, 2013 https://doi.org/10.4014/jmb.1303.03085

Copyright © The Korean Society for Microbiology and Biotechnology.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

Jong-Myong Park 1, Sung-Jin Park 1 and Sa-Youl Ghim 1*

School of Life Sciences and Institute for Microorganisms, Kyungpook National University, Daegu 702-701, Republic of Korea

Received: March 26, 2013; Accepted: May 30, 2013

Abstract

Crack remediation on the surface of cement mortar using microbiological calcium carbonate
(CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on
construction materials. However, MICP research has never acknowledged the antifungal
properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can
trigger biodeterioration processes, fungi on concrete buildings have to be prevented.
Therefore, to develop a microbial sealing agent that has antifungal properties to remediate
cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB
isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of
the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media.
Furthermore, antifungal assays were done using the pairing culture and disk diffusion
methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against
deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S
rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability
reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed
crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the
water permeability. Furthermore, these three strains showed fungi growth inhibition. This
paper is the first application research of CFB that have antifungal activity, for an eco-friendly
improvement of construction materials.

Keywords: Antifungal, Fungi growth inhibition, Cladosporium sphaerospermum, Calcite-forming bacteria, Crack remediation, Water permeability

References

  1. Achal V, Mukherjee A, Basu PC, Reddy MS. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.
    Pubmed CrossRef
  2. Ascasoa C, Wierzchosa J, Castelloa R. 1998. Study of the biogenic weathering of calcereous litharenite stones caused by lichen and endolithic microorganisms. Int. Biodeterior. Biodegradation 42: 29-38.
    CrossRef
  3. Boquet E, Boronat, A, Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246: 527-529.
    CrossRef
  4. Choo YS, Lee GS. 2009. Natural Heritage of Korea, Dokdo, pp. 114-132. Kyungpook National University, Ulleongdo Dokdo Research Institute, Daegu, Korea.
  5. De Muynck W, De Belle N, Verstraete W. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108: 62-72.
    Pubmed CrossRef
  6. De Muynck W, De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136.
    CrossRef
  7. Diakumaku E, Gorbushin AA, Krumbein WE, Panina L, Soukharjevski S. 1995. Black fungi in marble and limestones – an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167: 295-304.
    CrossRef
  8. Do JG, Song H, So HS, Soh YS. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35: 371-376.
    CrossRef
  9. Fang ZD. 1988. Research Methods for Plant Disease, pp 248-249. 3rd Ed. Chinese Agriculture Press, Beijing [in Chinese].
  10. Ghosh P, Mandal S, Chattopadhyay BD, Pal S. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983.
    CrossRef
  11. Ghosh S, Biswas M, Chattopadhyay BD, Mandals. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Comp. 31: 93-98.
    CrossRef
  12. Gu JD, Ford TE, Berke NS, Mitchell R. 1998. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegradation 41: 101-109.
    CrossRef
  13. Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.
    Pubmed CrossRef
  14. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Piñar G, Rodriguez-Gallego M, et al. 2008. Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota that inhabits the stone. Int. Biodeterior. Biodegradation 62: 352-363
    CrossRef
  15. Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangena E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235.
    CrossRef
  16. Lowenstan HA, Weiner S. 1988. On Biomineralization. Oxford University Press, New York.
  17. Nica D, Davis JL, Kirby L, Zuo G, Roberts DJ. 2000. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeterior. Biodegradation 46: 61-68.
    CrossRef
  18. Nolan E, Basheer BPAM, Long AE. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build. Mater. 9: 267-272.
    CrossRef
  19. Pablo HP, du Toit Lindsey J. 2006. Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. J. Plant Dis. 90: 137-145.
    CrossRef
  20. Pangallo D, Chovanová K, Simonovicová A, Ferianc P. 2009. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55: 277-287.
    Pubmed CrossRef
  21. Park JM, Park SJ, Ghim SY. 2011. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39: 287-293.
  22. Park SJ, Lee NY, Kim WJ, Ghim SY. 2010. Application of bacteria isolated from Dokdo for improving compressive strength and crack remediation of cement-sand mortar. J. Microbiol. Biotechnol. 20: 782-788.
    Pubmed
  23. Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.
    Pubmed
  24. Park SK, Kim JHJ, Nam JW, Phan HD, Kim JK. 2009. Development of anti-fungal mortar and concrete using zeolite and zeocarbon microcapsules. Cem. Concr. Comp. 31:447-453.
    CrossRef
  25. Queener SW, Capone JJ. 1974. Simple method for preparation of homogeneous spore suspensions useful in industrial strain selection. Appl. Microbiol. 28: 498-500.
    Pubmed
  26. Ramacjandran SK, Ramakrishnan V, Bang SS. 2001. Remediation of concrete using microorganism. ACI Mater. 98: 3-9.
  27. Schultze-Lam S, Fortin D, Davis BS, Beveridge TJ. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171181.
    CrossRef
  28. Stocks-Fischer S, Galinat JK, Bang SS. 1999. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31: 1563-1571.
    CrossRef
  29. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalies and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
    Pubmed CrossRef
  30. Tiano P, Biagiotti L, Mastromei G. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation:methods of evaluation. J. Microbiol. Methods 36: 139–145.
    CrossRef
  31. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40: 157-166.
    CrossRef
  32. Warscheid Th, Braams J. 2010. Biodeterioration of stone: a review. Int. Biodeterior. Biodegradation 46: 343-368.
    CrossRef
  33. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen KY. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14: 908-934.
    Pubmed CrossRef