전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Note

References

  1. An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827-5836.
    Pubmed PMC CrossRef
  2. Atlas, R. M. 1993. Handbook of Microbiological Media. L. C. Parks (ed.). CRC Press, Boca Raton, FL, U.S.A
    PMC
  3. Attele, A. S., J. A. Wu, and C. S. Yuan. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693.
    CrossRef
  4. Baek, S. H., J. H. Lim, L. Jin, H. G. Lee, and S. T. Lee. 2011. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 61: 2464-2468.
    Pubmed CrossRef
  5. Balkwill, D. L., G. R. Drake, R. H. Reeves, J. K. Fredrickson, D. C. White, D. B. Ringelberg, et al. 1997. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol. 47: 191-201.
    Pubmed CrossRef
  6. Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993.
    Pubmed PMC
  7. Cappuccino, J. G. and N. Sherman. 2002. Microbiology: A Laboratory Manual, 6th Ed. Pearson Education, Inc., California.
  8. Christensen, L. P. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55:1-99.
    CrossRef
  9. Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.
    Pubmed CrossRef
  10. Cui, C. H., T. E. Choi, H. Yu, F. Jin, S. T. Lee, S. C. Kim, and W. T. Im. 2011. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J. Microbiol. 49: 393-398.
    Pubmed CrossRef
  11. Euzeby, J. P. 1997. List of bacterial names with standing in nomenclature: A folder available on the Internet. Int. J. Syst. Bacteriol. 47: 590-592.
    Pubmed CrossRef
  12. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.
    CrossRef
  13. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
    CrossRef
  14. Fitch, W. M. 1971. Toward defining the course of evolution:Minimum change for a specific tree topology. Syst. Zool. 20:406-416.
    CrossRef
  15. Gupta, S. K., D. Lal, and R. Lal. 2009. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 59:156-161.
    Pubmed CrossRef
  16. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  17. Hiraishi, A., Y. Ueda, J. Ishihara, and T. Mori. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 457-469.
    CrossRef
  18. Hong, H., C. H. Cui, J. K. Kim, F. X. Jin, S. C. Kim, and W. T. Im. 2012. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424.
    CrossRef
  19. Im, W. T., S. Y. Kim, Q. M. Liu, J. E. Yang, S. T. Lee, and T. H. Yi. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48: 623-628.
    Pubmed CrossRef
  20. Jin, F., H. Yu, Y. Fu, D. S. An, W. T. Im, S. T. Lee, and J. A. Teixeira da Silva. 2012. Biotransformation of ginsenosides (Ginseng saponins). Int. J. Biomed. Pharm. Sci. 6: 33-44.
  21. Kämpfer, P., C. C. Young, H. J. Busse, S. Y. Lin, P. D. Rekha, A. B. Arun, et al. 2011. Novosphingobium soli sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61: 259-263.
    Pubmed CrossRef
  22. Kim, J. K., C. H. Cui, M. H. Yoon, S. C. Kim, and W. T. Im. 2012. Bioconversion of major ginsenosides Rg1 to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J. Biotechnol. 161: 294-301.
    Pubmed CrossRef
  23. Kim, S. K. and J. H. Park. 2011. Trends in ginseng research in 2010. J. Ginseng Res. 35: 389-398.
    CrossRef
  24. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
    CrossRef
  25. Lee, J. H., J. Y. Ahn, T. J. Shin, S. H. Choi, B. H. Lee, S. H. Hwang, et al. 2011. Effects of minor ginsenosides, ginsenoside metabolites, and ginsenoside epimers on the growth of Caenorhabditis elegans. J. Ginseng. Res. 35: 375-383.
    CrossRef
  26. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.
    CrossRef
  27. Minnikin, D. E., P. V. Patel, L. Alshamaony, and M. Goodfellow. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27:104-117.
    CrossRef
  28. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.). Current Protocols in Molecular Biology. Wiley, New York, USA
  29. Park, C. S., M. H. Yoo, K. H. Noh, and D. K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19.
    Pubmed CrossRef
  30. Qu, C. L., Y. P. Bai, X. Q. Jin, Y. T. Wang, K. Zhang, J. Y. You, and H. Q. Zhang. 2009. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem. 115:340-346.
    CrossRef
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
    Pubmed
  32. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.
  33. Shi, W., Y. T. Wang, J. Li, H. Q. Zhang, and L. Ding. 2007. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 102: 664-668.
    CrossRef
  34. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.
    CrossRef
  35. Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51: 1405-1417.
    Pubmed
  36. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
    Pubmed PMC CrossRef
  37. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
    Pubmed PMC CrossRef
  38. Wang, L., D. S. An, S. G. Kim, F. X. Jin, S. C. Kim, S. T. Lee, and W. T. Im. 2012. Ramlibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. J. Microbiol. Biotechnol. 22: 311-315.
    Pubmed CrossRef
  39. Wayne, L. G. 1988. International Committee on Systematic Bacteriology: Announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 268: 433-434.
  40. Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34: 99-119.
    Pubmed
  41. Zhao, X., J. Wang, J. Li, L. Fu, J. Gao, X. Du, et al. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J. Ind. Microbiol. Biotechnol. 36: 721-726.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Note

J. Microbiol. Biotechnol. 2013; 23(4): 444-450

Published online April 28, 2013 https://doi.org/10.4014/jmb.1212.12053

Copyright © The Korean Society for Microbiology and Biotechnology.

Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside

Jin-Kwang Kim 1, 2, Dan He 1, Qing-Mei Liu 1, 3, Hye-Yoon Park 4, Mi-Sun Jung 5, Min-Ho Yoon 2, Sun-Chang Kim 1, 3 and Wan-Taek Im 1*

1KI for the BioCentry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea, 2Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea, 3Intelligent Synthetic Biology Center, Daejeon 305-701, Korea, 4Microorganism Resources Division, National Institute of Biological Resources, Incheon 404-708, Korea, 4College of Humanities and Social Science, Youngdong University, Yeongdong-gun, Chungbuk 370-701, Korea

Received: December 26, 2012; Accepted: January 31, 2013

Abstract

A Gram-negative, strictly aerobic, non-motile, non-sporeforming,
and rod-shaped bacterial strain designated FW-6T
was isolated from a freshwater sample and its taxonomic
position was investigated by using a polyphasic approach.
Strain FW-6T grew optimally at 10-42oC and at pH 7.0
on nutrient and R2A agar. Strain FW-6T displayed β-
glucosidase activity that was responsible for its ability to
transform ginsenoside Rb1 (one of the dominant active
components of ginseng) to Rd. On the basis of 16S rRNA
gene sequence similarity, strain FW-6T was shown to
belong to the family Sphingomonadaceae and was related
to Novosphingobium aromaticivorans DSM 12444T (98.1%
sequence similarity) and N. subterraneum IFO 16086T
(98.0%). The G+C content of the genomic DNA was
64.4%. The major menaquinone was Q-10 and the major
fatty acids were summed feature 7 (comprising C18:1 ω9c/
ω12t/ω7c), summed feature 4 (comprising C16:1 ω7c/iso-
C15:0 2OH), C16:0, and C14:0 2OH. DNA and chemotaxonomic
data supported the affiliation of strain FW-6T to the genus
Novosphingobium. Strain FW-6T could be differentiated
genotypically and phenotypically from the recognized
species of the genus Novosphingobium. The isolate that
has ginsenoside converting ability therefore represents
a novel species, for which the name Novosphingobium
ginsenosidimutans sp. nov. is proposed, with the type strain
FW-6T (= KACC 16615T = JCM 18202T).

Keywords: 16S rRNA gene, polyphasic taxonomy, Novosphingobium ginsenosidimutans, ginsenoside

References

  1. An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827-5836.
    Pubmed KoreaMed CrossRef
  2. Atlas, R. M. 1993. Handbook of Microbiological Media. L. C. Parks (ed.). CRC Press, Boca Raton, FL, U.S.A
    KoreaMed
  3. Attele, A. S., J. A. Wu, and C. S. Yuan. 1999. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693.
    CrossRef
  4. Baek, S. H., J. H. Lim, L. Jin, H. G. Lee, and S. T. Lee. 2011. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 61: 2464-2468.
    Pubmed CrossRef
  5. Balkwill, D. L., G. R. Drake, R. H. Reeves, J. K. Fredrickson, D. C. White, D. B. Ringelberg, et al. 1997. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int. J. Syst. Bacteriol. 47: 191-201.
    Pubmed CrossRef
  6. Buck, J. D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993.
    Pubmed KoreaMed
  7. Cappuccino, J. G. and N. Sherman. 2002. Microbiology: A Laboratory Manual, 6th Ed. Pearson Education, Inc., California.
  8. Christensen, L. P. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55:1-99.
    CrossRef
  9. Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.
    Pubmed CrossRef
  10. Cui, C. H., T. E. Choi, H. Yu, F. Jin, S. T. Lee, S. C. Kim, and W. T. Im. 2011. Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. J. Microbiol. 49: 393-398.
    Pubmed CrossRef
  11. Euzeby, J. P. 1997. List of bacterial names with standing in nomenclature: A folder available on the Internet. Int. J. Syst. Bacteriol. 47: 590-592.
    Pubmed CrossRef
  12. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.
    CrossRef
  13. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
    CrossRef
  14. Fitch, W. M. 1971. Toward defining the course of evolution:Minimum change for a specific tree topology. Syst. Zool. 20:406-416.
    CrossRef
  15. Gupta, S. K., D. Lal, and R. Lal. 2009. Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 59:156-161.
    Pubmed CrossRef
  16. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  17. Hiraishi, A., Y. Ueda, J. Ishihara, and T. Mori. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 457-469.
    CrossRef
  18. Hong, H., C. H. Cui, J. K. Kim, F. X. Jin, S. C. Kim, and W. T. Im. 2012. Enzymatic biotransformation of ginsenoside Rb1 and gypenoside XVII into ginsenosides Rd and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J. Ginseng Res. 36: 418-424.
    CrossRef
  19. Im, W. T., S. Y. Kim, Q. M. Liu, J. E. Yang, S. T. Lee, and T. H. Yi. 2010. Nocardioides ginsengisegetis sp. nov., isolated from soil of a ginseng field. J. Microbiol. 48: 623-628.
    Pubmed CrossRef
  20. Jin, F., H. Yu, Y. Fu, D. S. An, W. T. Im, S. T. Lee, and J. A. Teixeira da Silva. 2012. Biotransformation of ginsenosides (Ginseng saponins). Int. J. Biomed. Pharm. Sci. 6: 33-44.
  21. Kämpfer, P., C. C. Young, H. J. Busse, S. Y. Lin, P. D. Rekha, A. B. Arun, et al. 2011. Novosphingobium soli sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61: 259-263.
    Pubmed CrossRef
  22. Kim, J. K., C. H. Cui, M. H. Yoon, S. C. Kim, and W. T. Im. 2012. Bioconversion of major ginsenosides Rg1 to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J. Biotechnol. 161: 294-301.
    Pubmed CrossRef
  23. Kim, S. K. and J. H. Park. 2011. Trends in ginseng research in 2010. J. Ginseng Res. 35: 389-398.
    CrossRef
  24. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.
    CrossRef
  25. Lee, J. H., J. Y. Ahn, T. J. Shin, S. H. Choi, B. H. Lee, S. H. Hwang, et al. 2011. Effects of minor ginsenosides, ginsenoside metabolites, and ginsenoside epimers on the growth of Caenorhabditis elegans. J. Ginseng. Res. 35: 375-383.
    CrossRef
  26. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.
    CrossRef
  27. Minnikin, D. E., P. V. Patel, L. Alshamaony, and M. Goodfellow. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27:104-117.
    CrossRef
  28. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.). Current Protocols in Molecular Biology. Wiley, New York, USA
  29. Park, C. S., M. H. Yoo, K. H. Noh, and D. K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19.
    Pubmed CrossRef
  30. Qu, C. L., Y. P. Bai, X. Q. Jin, Y. T. Wang, K. Zhang, J. Y. You, and H. Q. Zhang. 2009. Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem. 115:340-346.
    CrossRef
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
    Pubmed
  32. Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.
  33. Shi, W., Y. T. Wang, J. Li, H. Q. Zhang, and L. Ding. 2007. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 102: 664-668.
    CrossRef
  34. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.
    CrossRef
  35. Takeuchi, M., K. Hamana, and A. Hiraishi. 2001. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 51: 1405-1417.
    Pubmed
  36. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.
    Pubmed KoreaMed CrossRef
  37. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
    Pubmed KoreaMed CrossRef
  38. Wang, L., D. S. An, S. G. Kim, F. X. Jin, S. C. Kim, S. T. Lee, and W. T. Im. 2012. Ramlibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity. J. Microbiol. Biotechnol. 22: 311-315.
    Pubmed CrossRef
  39. Wayne, L. G. 1988. International Committee on Systematic Bacteriology: Announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 268: 433-434.
  40. Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol. Immunol. 34: 99-119.
    Pubmed
  41. Zhao, X., J. Wang, J. Li, L. Fu, J. Gao, X. Du, et al. 2009. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J. Ind. Microbiol. Biotechnol. 36: 721-726.
    Pubmed CrossRef