전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Abriouel, H., C. Franz, N. B. Omar, and A. Gálvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232.
    Pubmed CrossRef
  2. Amara, N., B. P. Krom, G. F. Kaufmann, and M. M. Meijler. 2011. Macromolecular inhibition of quorum sensing: Enzymes, antibodies and beyond. Chem. Rev. 111: 195-208.
    Pubmed CrossRef
  3. Ansaldi, M., D. Marolt, T. Stebe, I. Mandic-Mulec, and D. Dubnau. 2002. Specific activation of the Bacillus quorumsensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44: 1561-1573.
    Pubmed CrossRef
  4. Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319.
    Pubmed PMC CrossRef
  5. Brötz, H., G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahl. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42: 154-160.
    Pubmed PMC
  6. Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.
    Pubmed CrossRef
  7. Chen, X. H., J. Vater, J. Piel, P. Franke, R. Scholz, K. Schneider, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. J. Bacteriol. 188: 4024-4036.
    Pubmed PMC CrossRef
  8. Christiaen, S., G. Brackman, H. J. Nelis, and T. Coenye. 2011. Isolation and identification of quorum quenching bacteria from environmental samples. J. Microbiol. Methods 87: 213-219.
    Pubmed CrossRef
  9. Cooper, G. R. and A. Moir. 2011. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 193: 2261-2267.
    Pubmed PMC CrossRef
  10. Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28:214-220.
    Pubmed CrossRef
  11. Czajkowski, R. and S. Jafra. 2009. Quenching of acylhomoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 56: 1-16.
    Pubmed
  12. Duc, L. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 21612171.
    PMC CrossRef
  13. Fuchs, S. W., T. W. Jaskolla, S. Bochmann, P. Kotter, T. Wichelhaus, M. Karas, et al. 2011. Entianin, a novel subtilinlike lantibiotic from Bacillus subtilis subsp. spizizenii DSM15029 with high antimicrobial activity. Appl. Environ. Microbiol. 77:1698-1707.
    Pubmed PMC CrossRef
  14. Fuqua, C. and E. P. Greenberg. 2002. Listening in on bacteria:Acyl-homoserine lactone signalling. Nat. Rev. 3: 685-695.
    Pubmed CrossRef
  15. Griffiths, K., J. Zhang, A. E. Cowan, J. Yu, and P. Setlow. 2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 81: 1061-1077.
    Pubmed CrossRef
  16. Gould, G. W. 1969. Germination, pp. 397-444. In G. W. Gould and A. Hurst (eds.). The bacterial spore, Academic Press, London, England.
  17. Guez, J. S., C. H. Müller, P. M. Danze, J. Büchs, and P. Jacques. 2008. Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J. Biotechnol. 134: 121-126.
    Pubmed CrossRef
  18. He, H., L. A. Silo-Suh, J. Clardy, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502.
    CrossRef
  19. Herzner, A. M., J. Dischinger, C. Szekat, M. Josten, S. Schmitz, A. Yakeleba, et al. 2011. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS ONE 6(7): e22389.
    Pubmed PMC CrossRef
  20. Higgins, D. and J. Dworkin. 2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36: 131-148.
    Pubmed CrossRef
  21. Hofemeister, J., B. Conrad, B. Adler, B. Hofemeister, J. Feesche, N. Kucheryava, et al. 2004. Genetic analysis of the biosynthesis of non-ribosomal peptide and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics 272: 363-378.
    Pubmed CrossRef
  22. Igarashi, T. and P. Setlow. 2006. Transcription of the Bacillus subtilis gerK operon, which encodes a spore germinant receptor, and comparison with that of operons encoding other germinant receptors. J. Bacteriol. 188: 4131-4136.
    Pubmed PMC CrossRef
  23. Inglesby, T. V., T. O’Toole, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, et al. 2002. Anthrax as a Biological Weapon. JAMA 287: 2236-2252.
    Pubmed CrossRef
  24. Kanhere, A. and M. Vingron. 2009. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9: 9
    Pubmed PMC CrossRef
  25. Kearns, D. B., F. Chu, R. Rudner, and R. Losick. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55: 739-749.
    Pubmed CrossRef
  26. Kinsinger, R. F., M. C. Shirk, and R. Fall. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185: 5627-5631.
    Pubmed PMC CrossRef
  27. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596.
    CrossRef
  28. Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24: 895-904.
    Pubmed CrossRef
  29. Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266.
    Pubmed CrossRef
  30. Lee, H. and H. Y. Kim. 2011. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol. 21: 229-235.
    Pubmed
  31. Li, H., X. Wang, M. Han, Z. Zhao, M. Wang, Q. Tang, et al. 2012. Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afri. J. Biotechnol. 11:231-242.
  32. Lopez, D., H. Vlamakis, R. Losick, and R. Kolter. 2009. Paracrine signaling in a bacterium. Genes Dev. 23: 1631-1638.
    Pubmed PMC CrossRef
  33. Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.
    CrossRef
  34. Malone, C. L., B. R. Boles, and A. R. Horswill. 2007. Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB Mini-Intein. Appl. Environ. Microbiol. 73: 6036-6044.
    Pubmed PMC CrossRef
  35. Mayville, P., G. Ji, R. Beavis, H. Yang, M. Goger, R. P. Novick, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 12181223.
    CrossRef
  36. McPherson, D. C., H. Kim, M. Hahn, R. Wang, P. Grabowski, P. Eichenberger, and A. Driks. 2005. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J. Bacteriol. 187: 8278-8290.
    Pubmed PMC CrossRef
  37. Moir, A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526-530.
    Pubmed CrossRef
  38. Moldenhauer, J., D. C. G. Gotz, C. R. Albert, S. K. Bischof, K. Schneider, R. D. Sussmuth, et al. 2010. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42:Direct evidence for β,γ dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49: 1465-1467.
    Pubmed CrossRef
  39. Mongkolthanaruk, W., G. R. Cooper, J. S. P. Mawer, R. N. Allan, and A. Moir. 2011. Effect of amino acid substitutions in the GerAA protein on the function of the alanine responsive germinant receptor of Bacillus subtilis spores. J. Bacteriol. 193:2268-2275.
    Pubmed PMC CrossRef
  40. Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416.
    Pubmed CrossRef
  41. Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572.
    Pubmed PMC CrossRef
  42. Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. Donk. 2011. Sublancin is not a lantibiotic but an S-linked glycopeptides. Nat. Chem. Biol. 7: 78-80.
    Pubmed PMC CrossRef
  43. Ongena, M. and P. Jacques. 2007. Bacillus lipopeptides:Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
    Pubmed CrossRef
  44. Ongena, M., J. Emmanuel, A. Adam, M. Paquot, A. Brans, B. Joris, et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
    Pubmed CrossRef
  45. Park, S. J., S. Y. Park, C. M. Ryu, S. H. Park, and J. K. Lee. 2008. The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J. Microbiol. Biotechnol. 18: 1518-1521.
    Pubmed
  46. Park, S. Y., S. J. Lee, T. K. Oh, J. W. Oh, B. T. Koo, D. Y. Yum, and J. K. Lee. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149: 1541-1550.
    Pubmed CrossRef
  47. Pelczar, P. L. and P. Setlow. 2008. Localization of the germination protein GerD to the inner membrane in Bacillus subtilis spores. J. Bacteriol. 190: 5635-5641.
    Pubmed PMC CrossRef
  48. Pottathil, M., A. Jung, and B. A. Lazazzera. 2008. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. J. Bacteriol. 190: 4095-4099.
    Pubmed PMC CrossRef
  49. Raaijmakers, J. M., I. Bruijn, O. Nybroe, and M. Ongena. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas:More than surfactants and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062.
    Pubmed
  50. Reiss, R., J. Ihssen, and L. Thöny-Meyer. 2011. Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 9
    Pubmed PMC CrossRef
  51. Roche, D. M., J. T. Byers, D. S. Smith, F. G. Glansdrop, D. R. Spring, and M. Welch. 2004. Communication blackout? Do Nacylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150: 2023-2028.
    Pubmed CrossRef
  52. Romero, D., A. Vicente, R. Rakotoaly, S. Dufour, J. Veening, E. Arrebola, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20:430-440.
    Pubmed CrossRef
  53. Ryan, R. P. and J. M. Dow. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845-1858.
    Pubmed CrossRef
  54. Schneider, K., X. C. Chen, J. Vater, P. Franke, J. Nicholson, R. Borriss, and R. D. Süssmuth. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70: 1417-1423.
    Pubmed CrossRef
  55. Setlow, B., A. E. Cowan, and P. Setlow. 2003. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95: 637-648.
    Pubmed CrossRef
  56. Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101: 514-525.
    Pubmed CrossRef
  57. Shank, E. A. and R. Kolter. 2011. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol. 14:741-747.
    Pubmed CrossRef
  58. Tam, N. K., N. Q. Uyen, H. A. Hong, L. H. Duc, T. T. Hoa, C. R. Serra, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700.
    Pubmed PMC CrossRef
  59. Uroz, S., S. R. Chhabra, M. Camara, P. Williams, P. Oger, and Y. Dessaux. 2005. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322.
    Pubmed CrossRef
  60. Velho, R. V., D. G. Caldas, L. F. Medina, S. M. Tsai, and A. Brandelli. 2011. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett. Appl. Microbiol. 52: 660-666.
    Pubmed CrossRef
  61. Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
    Pubmed PMC
  62. Xu, D. and J. Cote. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53: 695-704.
    Pubmed CrossRef
  63. Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control of plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2012; 22(12): 1597-1604

Published online December 28, 2012 https://doi.org/10.4014/jmb.1204.04013

Copyright © The Korean Society for Microbiology and Biotechnology.

Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals

Wiyada Mongkolthanaruk 1*

Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mitraparp Road, Khon Kaen 40002, Thailand

Received: April 9, 2012; Accepted: July 30, 2012

Abstract

Genus Bacillus is a spore-forming bacterium that has
unique properties in cell differentiation, allowing the
forming of spores in stress conditions and activated in the
vegetative cell, with suitable environments occurring
during the life cycle acting as a trigger. Their habitat is
mainly in soil; thus, many species of Bacillus are associated
with plants as well as rhizosphere bacteria and endophytic
bacteria. Signal transduction is the principal mechanism
of interactions, both within the cell community and with
the external environment, which provides the subsequent
functions or properties for the cell. The antimicrobial
compounds of Bacillus sp. are potentially useful products,
which have been used in agriculture for the inhibition of
phytopathogens, for the stimulation of plant growth, and
in the food industry as probiotics. There are two systems
for the synthesis of these substances: nonribosomal
synthesis of cyclic lipopeptides (NRPS) and polyketides
(PKS). For each group, the structures, properties, and
genes of the main products are described. The different
compounds described and the way in which they co-exist
exhibit the relationship of Bacillus substances to plants,
humans, and animals.

Keywords: quorum sensing, quorum quencing, cyclic lipopeptides, polyketides, bacteriocins

References

  1. Abriouel, H., C. Franz, N. B. Omar, and A. Gálvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 35: 201-232.
    Pubmed CrossRef
  2. Amara, N., B. P. Krom, G. F. Kaufmann, and M. M. Meijler. 2011. Macromolecular inhibition of quorum sensing: Enzymes, antibodies and beyond. Chem. Rev. 111: 195-208.
    Pubmed CrossRef
  3. Ansaldi, M., D. Marolt, T. Stebe, I. Mandic-Mulec, and D. Dubnau. 2002. Specific activation of the Bacillus quorumsensing systems by isoprenylated pheromone variants. Mol. Microbiol. 44: 1561-1573.
    Pubmed CrossRef
  4. Bais, H. P., R. Fall, and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319.
    Pubmed KoreaMed CrossRef
  5. Brötz, H., G. Bierbaum, K. Leopold, P. E. Reynolds, and H. G. Sahl. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42: 154-160.
    Pubmed KoreaMed
  6. Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014.
    Pubmed CrossRef
  7. Chen, X. H., J. Vater, J. Piel, P. Franke, R. Scholz, K. Schneider, et al. 2006. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. J. Bacteriol. 188: 4024-4036.
    Pubmed KoreaMed CrossRef
  8. Christiaen, S., G. Brackman, H. J. Nelis, and T. Coenye. 2011. Isolation and identification of quorum quenching bacteria from environmental samples. J. Microbiol. Methods 87: 213-219.
    Pubmed CrossRef
  9. Cooper, G. R. and A. Moir. 2011. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168. J. Bacteriol. 193: 2261-2267.
    Pubmed KoreaMed CrossRef
  10. Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28:214-220.
    Pubmed CrossRef
  11. Czajkowski, R. and S. Jafra. 2009. Quenching of acylhomoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim. Pol. 56: 1-16.
    Pubmed
  12. Duc, L. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Appl. Environ. Microbiol. 70: 21612171.
    KoreaMed CrossRef
  13. Fuchs, S. W., T. W. Jaskolla, S. Bochmann, P. Kotter, T. Wichelhaus, M. Karas, et al. 2011. Entianin, a novel subtilinlike lantibiotic from Bacillus subtilis subsp. spizizenii DSM15029 with high antimicrobial activity. Appl. Environ. Microbiol. 77:1698-1707.
    Pubmed KoreaMed CrossRef
  14. Fuqua, C. and E. P. Greenberg. 2002. Listening in on bacteria:Acyl-homoserine lactone signalling. Nat. Rev. 3: 685-695.
    Pubmed CrossRef
  15. Griffiths, K., J. Zhang, A. E. Cowan, J. Yu, and P. Setlow. 2011. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 81: 1061-1077.
    Pubmed CrossRef
  16. Gould, G. W. 1969. Germination, pp. 397-444. In G. W. Gould and A. Hurst (eds.). The bacterial spore, Academic Press, London, England.
  17. Guez, J. S., C. H. Müller, P. M. Danze, J. Büchs, and P. Jacques. 2008. Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J. Biotechnol. 134: 121-126.
    Pubmed CrossRef
  18. He, H., L. A. Silo-Suh, J. Clardy, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502.
    CrossRef
  19. Herzner, A. M., J. Dischinger, C. Szekat, M. Josten, S. Schmitz, A. Yakeleba, et al. 2011. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS ONE 6(7): e22389.
    Pubmed KoreaMed CrossRef
  20. Higgins, D. and J. Dworkin. 2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36: 131-148.
    Pubmed CrossRef
  21. Hofemeister, J., B. Conrad, B. Adler, B. Hofemeister, J. Feesche, N. Kucheryava, et al. 2004. Genetic analysis of the biosynthesis of non-ribosomal peptide and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol. Genet. Genomics 272: 363-378.
    Pubmed CrossRef
  22. Igarashi, T. and P. Setlow. 2006. Transcription of the Bacillus subtilis gerK operon, which encodes a spore germinant receptor, and comparison with that of operons encoding other germinant receptors. J. Bacteriol. 188: 4131-4136.
    Pubmed KoreaMed CrossRef
  23. Inglesby, T. V., T. O’Toole, D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, et al. 2002. Anthrax as a Biological Weapon. JAMA 287: 2236-2252.
    Pubmed CrossRef
  24. Kanhere, A. and M. Vingron. 2009. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9: 9
    Pubmed KoreaMed CrossRef
  25. Kearns, D. B., F. Chu, R. Rudner, and R. Losick. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55: 739-749.
    Pubmed CrossRef
  26. Kinsinger, R. F., M. C. Shirk, and R. Fall. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185: 5627-5631.
    Pubmed KoreaMed CrossRef
  27. Kleerebezem, M. and L. E. Quadri. 2001. Peptide pheromonedependent regulation of antimicrobial peptide production in gram-positive bacteria: A case of multicellular behavior. Peptides 22: 1579-1596.
    CrossRef
  28. Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24: 895-904.
    Pubmed CrossRef
  29. Kloepper, J. W., C. M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94: 1259-1266.
    Pubmed CrossRef
  30. Lee, H. and H. Y. Kim. 2011. Lantibiotics, class I bacteriocins from the genus Bacillus. J. Microbiol. Biotechnol. 21: 229-235.
    Pubmed
  31. Li, H., X. Wang, M. Han, Z. Zhao, M. Wang, Q. Tang, et al. 2012. Endophytic Bacillus subtilis ZZ120 and its potential application in control of replant diseases. Afri. J. Biotechnol. 11:231-242.
  32. Lopez, D., H. Vlamakis, R. Losick, and R. Kolter. 2009. Paracrine signaling in a bacterium. Genes Dev. 23: 1631-1638.
    Pubmed KoreaMed CrossRef
  33. Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.
    CrossRef
  34. Malone, C. L., B. R. Boles, and A. R. Horswill. 2007. Biosynthesis of Staphylococcus aureus autoinducing peptides by using the Synechocystis DnaB Mini-Intein. Appl. Environ. Microbiol. 73: 6036-6044.
    Pubmed KoreaMed CrossRef
  35. Mayville, P., G. Ji, R. Beavis, H. Yang, M. Goger, R. P. Novick, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 12181223.
    CrossRef
  36. McPherson, D. C., H. Kim, M. Hahn, R. Wang, P. Grabowski, P. Eichenberger, and A. Driks. 2005. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J. Bacteriol. 187: 8278-8290.
    Pubmed KoreaMed CrossRef
  37. Moir, A. 2006. How do spores germinate? J. Appl. Microbiol. 101: 526-530.
    Pubmed CrossRef
  38. Moldenhauer, J., D. C. G. Gotz, C. R. Albert, S. K. Bischof, K. Schneider, R. D. Sussmuth, et al. 2010. The final steps of bacillaene biosynthesis in Bacillus amyloliquefaciens FZB42:Direct evidence for β,γ dehydration by a trans-acyltransferase polyketide synthase. Angew. Chem. Int. Ed. 49: 1465-1467.
    Pubmed CrossRef
  39. Mongkolthanaruk, W., G. R. Cooper, J. S. P. Mawer, R. N. Allan, and A. Moir. 2011. Effect of amino acid substitutions in the GerAA protein on the function of the alanine responsive germinant receptor of Bacillus subtilis spores. J. Bacteriol. 193:2268-2275.
    Pubmed KoreaMed CrossRef
  40. Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416.
    Pubmed CrossRef
  41. Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572.
    Pubmed KoreaMed CrossRef
  42. Oman, T. J., J. M. Boettcher, H. Wang, X. N. Okalibe, and W. A. Donk. 2011. Sublancin is not a lantibiotic but an S-linked glycopeptides. Nat. Chem. Biol. 7: 78-80.
    Pubmed KoreaMed CrossRef
  43. Ongena, M. and P. Jacques. 2007. Bacillus lipopeptides:Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.
    Pubmed CrossRef
  44. Ongena, M., J. Emmanuel, A. Adam, M. Paquot, A. Brans, B. Joris, et al. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.
    Pubmed CrossRef
  45. Park, S. J., S. Y. Park, C. M. Ryu, S. H. Park, and J. K. Lee. 2008. The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. J. Microbiol. Biotechnol. 18: 1518-1521.
    Pubmed
  46. Park, S. Y., S. J. Lee, T. K. Oh, J. W. Oh, B. T. Koo, D. Y. Yum, and J. K. Lee. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149: 1541-1550.
    Pubmed CrossRef
  47. Pelczar, P. L. and P. Setlow. 2008. Localization of the germination protein GerD to the inner membrane in Bacillus subtilis spores. J. Bacteriol. 190: 5635-5641.
    Pubmed KoreaMed CrossRef
  48. Pottathil, M., A. Jung, and B. A. Lazazzera. 2008. CSF, a species-specific extracellular signaling peptide for communication among strains of Bacillus subtilis and Bacillus mojavensis. J. Bacteriol. 190: 4095-4099.
    Pubmed KoreaMed CrossRef
  49. Raaijmakers, J. M., I. Bruijn, O. Nybroe, and M. Ongena. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas:More than surfactants and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062.
    Pubmed
  50. Reiss, R., J. Ihssen, and L. Thöny-Meyer. 2011. Bacillus pumilus laccase: A heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 9
    Pubmed KoreaMed CrossRef
  51. Roche, D. M., J. T. Byers, D. S. Smith, F. G. Glansdrop, D. R. Spring, and M. Welch. 2004. Communication blackout? Do Nacylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150: 2023-2028.
    Pubmed CrossRef
  52. Romero, D., A. Vicente, R. Rakotoaly, S. Dufour, J. Veening, E. Arrebola, et al. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 20:430-440.
    Pubmed CrossRef
  53. Ryan, R. P. and J. M. Dow. 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845-1858.
    Pubmed CrossRef
  54. Schneider, K., X. C. Chen, J. Vater, P. Franke, J. Nicholson, R. Borriss, and R. D. Süssmuth. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70: 1417-1423.
    Pubmed CrossRef
  55. Setlow, B., A. E. Cowan, and P. Setlow. 2003. Germination of spores of Bacillus subtilis with dodecylamine. J. Appl. Microbiol. 95: 637-648.
    Pubmed CrossRef
  56. Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101: 514-525.
    Pubmed CrossRef
  57. Shank, E. A. and R. Kolter. 2011. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol. 14:741-747.
    Pubmed CrossRef
  58. Tam, N. K., N. Q. Uyen, H. A. Hong, L. H. Duc, T. T. Hoa, C. R. Serra, et al. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700.
    Pubmed KoreaMed CrossRef
  59. Uroz, S., S. R. Chhabra, M. Camara, P. Williams, P. Oger, and Y. Dessaux. 2005. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151: 3313-3322.
    Pubmed CrossRef
  60. Velho, R. V., D. G. Caldas, L. F. Medina, S. M. Tsai, and A. Brandelli. 2011. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett. Appl. Microbiol. 52: 660-666.
    Pubmed CrossRef
  61. Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
    Pubmed KoreaMed
  62. Xu, D. and J. Cote. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53: 695-704.
    Pubmed CrossRef
  63. Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control of plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572.
    Pubmed CrossRef