전체메뉴
검색
Article Search

JMB Journal of Microbiolog and Biotechnology

QR Code QR Code

Review

References

  1. Aarbiou, J., G. S. Tjabringa, R. M. Verhoosel, D. K. Ninaber, S. R. White, L. T. Peltenburg, et al. 2006. Mechanisms of cell death induced by the neutrophil antimicrobial peptides αdefensins and LL-37. Inflamm. Res. 55: 119-127.
    Pubmed CrossRef
  2. Aerts, A. M., D. Carmona-Gutierrez, S. Lefevre, G. Govaert, I. E. François, F. Madeo, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516.
    Pubmed CrossRef
  3. Andrés, M. T., M. Viejo-Díaz, and J. F. Fierro. 2008. Human lactoferrin induces apoptosis-like cell death in Candida albicans:Critical role of K+-channel-mediated K+ efflux. Antimicrob. Agents Chemother. 52: 4081-4088.
    Pubmed PMC CrossRef
  4. Bak, M., R. P. Bywater, M. Hohwy, J. K. Thomsen, K. Adelhorst, H. J. Jakobsen, et al. 2001. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. Biophys. J. 81: 1684-1698.
    CrossRef
  5. Barroso, G., S. Taylor, M. Morshedi, F. Manzur, F. Gaviño, and S. Oehninger. 2006. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: A comparison of two different sperm subpopulations. Fertil. Steril. 85: 149-154.
    Pubmed CrossRef
  6. Bechinger, B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy. Biochim. Biophys. Acta 1462: 157-183.
    CrossRef
  7. Benaroudj, N., D. H. Lee, and A. L. Goldberg. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276:24261-24267.
    Pubmed CrossRef
  8. Boman, H. G. and D. Hultmark. 1987. Cell-free immunity in insects. Annu. Rev. Microbiol. 41: 103-126.
    Pubmed CrossRef
  9. Bortner, C. D. and J. A. Cidlowski. 2002. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9:1307-1310.
    Pubmed CrossRef
  10. Bortner, C. D. and J. A. Cidlowski. 2007. Cell shrinkage and monovalent cation fluxes: Role in apoptosis. Arch. Biochem. Biophys. 462: 176-188.
    Pubmed PMC CrossRef
  11. Broekaert, W. F., F. R. Terras, B. P. Cammue, and R. W. Osborn. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108:1353-1358.
    Pubmed PMC CrossRef
  12. Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250.
    Pubmed CrossRef
  13. Burhans, W. C., M. Weinberger, M. A. Marchetti, L. Ramachandran, J. A. D’Urso, and G. Huberman. 2003. Apoptosis like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227-243.
    CrossRef
  14. Cantor, R. S. 2002. Size distribution of barrel-stave aggregates of membrane peptides: Influence of the bilayer lateral pressure profile. Biophys. J. 82: 2520-2525.
    CrossRef
  15. Cerón, J. M., J. Contreras-Moreno, E. Puertollano, G. Á. de Cienfuegos, M. A. Puertollano, and M. A. de Pablo. 2010. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 31:1494-1503.
    Pubmed CrossRef
  16. Chan, S. C., L. Hui, and H. M. Chen. 1998. Enhancement of the cytolytic effect of antibacterial cecropin by the microvilli of cancer cells. Anticancer Res. 18: 4467-4474.
    Pubmed
  17. Chen, H. M., W. Wang, D. Smith, and S. C. Chan. 1997. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336: 171-179.
    CrossRef
  18. Chiu, D., B. Lubin, and S. B. Shohet. 1979. Erythrocyte membrane lipid reorganization during the sickling process. Br. J. Haematol. 41: 223-234.
    Pubmed CrossRef
  19. Cho, J. and D. G. Lee. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879.
    Pubmed CrossRef
  20. Cruciani, R. A., J. L. Barker, M. Zasloff, H. C. Chen, and O. Colamonici. 1991. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA 88: 3792-3796.
    CrossRef
  21. Düssmann, H., M. Rehm, D. Kögel, and J. H. Prehn. 2003. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: A single-cell analysis. J. Cell Sci. 116: 525-536.
    CrossRef
  22. Eisenberg, T., S. Büttner, G. Kroemer, and F. Madeo. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1023.
    Pubmed CrossRef
  23. Er, E., L. Oliver, P. F. Cartron, P. Juin, S. Manon, and F. M. Vallette. 2006. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim. Biophys. Acta 1757: 1301-1311.
    Pubmed CrossRef
  24. Farnaud, S. and R. W. Evans. 2003. Lactoferrin - a multifunctional protein with antimicrobial properties. Mol. Immunol. 40: 395-405.
    CrossRef
  25. Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225.
    CrossRef
  26. Franco, R., C. D. Bortner, and J. A. Cidlowski. 2006. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J. Membr. Biol. 209: 43-58.
    Pubmed CrossRef
  27. Furlong, S. J., J. S. Mader, and D. W. Hoskin. 2006. Lactoferricininduced apoptosis in estrogen-non-responsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol. Rep. 15: 1385-1390.
  28. Gudmundsson, G. H., B. Agerberth, J. Odeberg, T. Bergman, B. Olsson, and R. Salcedo. 1996. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238: 325-332.
    Pubmed CrossRef
  29. Hale, J. D. and R. E. Hancock. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959.
    Pubmed CrossRef
  30. Hancock, R. E. and H. G. Sahl. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557.
    Pubmed CrossRef
  31. Heiskanen, K. M., M. B. Bhat, H. W. Wang, J. Ma, and A. L. Nieminen. 1999. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274: 5654-5658.
    Pubmed CrossRef
  32. Horton, K. L., K. M. Stewart, S. B. Fonseca, Q. Guo, and S. O. Kelley. 2008. Mitochondria-penetrating peptides. Chem. Biol. 15: 375-382.
    CrossRef
  33. Hoskin, D. W. and A. Ramamoorthy. 2007. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778:357-375.
    Pubmed
  34. Hsu, C. H., C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, et al. 2005. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 33: 4053-4064.
    Pubmed PMC CrossRef
  35. Hwang, B., J. S. Hwang, J. Lee, and D. G. Lee. 2011. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem. Biophys. Res. Commun. 405: 267-271.
    Pubmed CrossRef
  36. Hwang, B., J. S. Hwang, J. Lee, J. K. Kim, S. R. Kim, Y. Kim, and D. G. Lee. 2011. Induction of yeast apoptosis by an antimicrobial peptide, papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93.
    Pubmed CrossRef
  37. Hwang, J. S., J. Lee, B. Hwang, S. H. Nam, E. Y. Yun, S. R. Kim, and D. G. Lee. 2010. Isolation and characterization of psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol. Biotechnol. 20: 708-711.
    Pubmed CrossRef
  38. Jin, X., H. Mei, X. Li, Y. Ma, A. H. Zeng, Y. Wang, et al. 2010. Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochim. Biophys. Sin. 42: 259-265.
    Pubmed CrossRef
  39. Kapuscinski, J. 1995. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem. 70: 220-233.
    CrossRef
  40. Kataoka, M., Y. Fukura, Y. Shinohara, and Y. Baba. 2005. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis 26: 3025-3031.
    Pubmed CrossRef
  41. Lee, D. G., H. K. Kim, S. A. Kim, Y. Park, S. C. Park, S. H. Jang, and K. S. Hahm. 2003. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem. Biophys. Res. Commun. 305: 305-310.
    CrossRef
  42. Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11:23-27.
    CrossRef
  43. Liao, R. S., R. P. Rennie, and T. A. Talbot. 1999. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43: 1034-1041.
    Pubmed PMC
  44. Lin, W. J., Y. L. Chien, C. Y. Pan, T. L. Lin, J. Y. Chen, S. J. Chiu, and C. F. Hui. 2009. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30:283-290.
    Pubmed CrossRef
  45. Ludtke, S. J., K. He, W. T. Heller, T. A. Harroun, L. Yang, and H. W. Huang. 1996. Membrane pores induced by magainin. Biochemistry 35: 13723-13728.
    Pubmed CrossRef
  46. Madeo, F., E. Fröhlich, and K. U. Fröhlich. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734.
    Pubmed PMC CrossRef
  47. Mader, J. S., J. Salsman, D. M. Conrad, and D. W. Hoskin. 2005. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer Ther. 4: 1-13.
    Pubmed CrossRef
  48. Maeno, E., Y. Ishizaki, T. Kanaseki, A. Hazama, and Y. Okada. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97: 9487-9492.
    Pubmed CrossRef
  49. Mills, J. C., N. L. Stone, J. Erhardt, and R. N. Pittman. 1998. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140: 627-636.
    Pubmed PMC CrossRef
  50. Moore, A. J., D. A. Devine, and M. C. Bibby. 1994. Preliminary experimental anticancer activity of cecropins. Pept. Res. 7:265-269.
    Pubmed
  51. Mor, A., K. Hani, and P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269: 31635-31641.
    Pubmed
  52. Morton, C. O., S. C. Dos Santos, and P. Coote. 2007. An amphibian-derived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507.
    Pubmed CrossRef
  53. Niyonsaba, F., A. Someya, M. Hirata, H. Ogawa, and I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human β-defensins-1/-2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur. J. Immunol. 31: 1066-1075.
    CrossRef
  54. Park, C. and D. G. Lee. 2010. Melittin induces apoptotic features in Candida albicans. Biochem. Biophys. Res. Commun. 394: 170-172.
    CrossRef
  55. Park, C. B., M. S. Kim, and S. C. Kim. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218: 408-413.
    Pubmed CrossRef
  56. Park, C. B., H. S. Kim, and S. C. Kim. 1998. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244: 253-257.
    Pubmed CrossRef
  57. Pereira, C., N. Camougrand, S. Manon, M. J. Sousa, and M. Côrte-Real. 2007. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol. Microbiol. 66: 571-582.
    Pubmed CrossRef
  58. Pereira, C., R. D. Silva, L. Saraiva, B. Johansson, M. J. Sousa, and M. Côrte-Real. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302
    Pubmed CrossRef
  59. Perrone, G. G., S. X. Tan, and I. W. Dawes. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368.
    Pubmed CrossRef
  60. Peters, B. M., M. E. Shirtliff, and M. A. Jabra-Rizk. 2010. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6: e1001067.
    Pubmed PMC CrossRef
  61. Petit, P. X., S. A. Susin, N. Zamzami, B. Mignotte, and G. Kroemer. 1996. Mitochondria and programmed cell death: Back to the future. FEBS Lett. 396: 7-13.
    CrossRef
  62. Phillips, A. J., I. Sudbery, and M. Ramsdale. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332.
    Pubmed PMC CrossRef
  63. Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416-12423.
    Pubmed CrossRef
  64. Ramachandran, S., L. H. Xie, S. A. John, S. Subramaniam, and R. Lal. 2007. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2: e712.
    Pubmed PMC CrossRef
  65. Rana, M., S. Chatterjee, S. Kochhar, and B. M. J. Pereira. 2006. Antimicrobial peptides: A new dawn for regulating fertility and reproductive tract infections. J. Endocrinol. Reprod. 20: 88-95.
  66. Robinson Jr., W. E., B. McDougall, D. Tran, and M. E. Selsted. 1998. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63: 94-100.
    Pubmed
  67. Rollins-Smith, L. A., L. K. Reinert, C. J. O’Leary, L. E. Houston, and D. C. Woodhams. 2005. Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45: 137-142.
    Pubmed CrossRef
  68. Sang, Y. and F. Blech. 2008. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Anim. Health Res. Rev. 9: 227-235.
    Pubmed CrossRef
  69. Scandalios, J. G. 2002. The rise of ROS. Trends Biochem. Sci. 27: 483-486.
    CrossRef
  70. Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267:4292-4295.
    Pubmed
  71. Setsukinai, K., Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Biol. Chem. 278: 3170-3175.
    Pubmed CrossRef
  72. Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alphahelical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55-70.
    CrossRef
  73. Shai, Y. and Z. Oren. 2001. From “carpet” mechanism to denovo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22: 1629-1641.
    CrossRef
  74. Silvestro, L., J. N. Weiser, and P. H. Axelsen. 2000. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44: 602-607.
    Pubmed PMC CrossRef
  75. Sørensen, O. E., P. Follin, A. H. Johnsen, J. Calafat, G. S. Tjabringa, P. S. Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951-3959.
    Pubmed CrossRef
  76. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446.
    Pubmed CrossRef
  77. Suttmann, H., M. Retz, F. Paulsen, J. Harder, U. Zwergel, J. Kamradt, et al. 2008. Antimicrobial peptides of the Cecropinfamily show potent antitumor activity against bladder cancer cells. BMC Urol. 8: 5.
    Pubmed PMC CrossRef
  78. Torrent, M., D. Andreu, V. M. Nogués, and E. Boix. 2011. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6: e16968.
    Pubmed PMC CrossRef
  79. Uren, A. G., K. O’Rourke, L. A. Aravind, M. T. Pisabarro, S. Seshagiri, E. V. Koonin, and V. M. Dixit. 2000. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961-967.
    CrossRef
  80. Utsugi, T., A. J. Schroit, J. Connor, C. D. Bucana, and I. J. Fidler. 1991. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 51: 30623066.
  81. Wadskog, I., C. Maldener, A. Proksch, F. Madeo, and L. Adler. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15: 1436-1444.
    Pubmed PMC CrossRef
  82. Wang, H. X. and T. B. Ng. 2005. An antifungal peptide from the coconut. Peptides 26: 2392-2396.
    Pubmed CrossRef
  83. Wang, J. Y. 2001. DNA damage and apoptosis. Cell Death Differ. 8: 1047-1048.
    Pubmed CrossRef
  84. Wang, K. R., B. Z. Zhang, W. Zhang, J. X. Yan, J. Li, and R. Wang. 2008. Antitumor effects, cell selectivity and structureactivity relationship of a novel antimicrobial peptide polybiaMPI. Peptides 29: 963-968.
    Pubmed CrossRef
  85. Woolley, G. A. and B. A. Wallace. 1993. Temperature dependence of the interaction of alamethicin helices in membranes. Biochemistry 32: 9819-9825.
    Pubmed CrossRef
  86. Wu, M., E. Maier, R. Benz, and R. E. Hancock. 1999. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235-7242.
    Pubmed CrossRef
  87. Yang, D., Q. Chen, A. P. Schmidt, G. M. Anderson, J. M. Wang, and J. J. Wooters. 2000. LL-37, the neutrophil granuleand epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192: 1069-1074.
    Pubmed PMC CrossRef
  88. Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485.
    CrossRef
  89. Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55.
    Pubmed CrossRef
  90. Yoo, Y. C., R. Watanabe, Y. Koike, M. Mitobe, K. Shimazaki, S. Watanabe, and I. Azuma. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628.
    Pubmed CrossRef
  91. Zachowski, A. 1993. Phospholipids in animal eukaryotic membranes: Transverse asymmetry and movement. Biochem. J. 294: 1-14.
    Pubmed PMC
  92. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
    Pubmed CrossRef
  93. Zhang, L., A. Rozek, and R. E. Hancock. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714-35722.
    Pubmed CrossRef
  94. Zivna, L., Z. Krocova, A. Härtlova, K. Kubelkova, J. Zakova, E. Rudolf, et al. 2010. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb. Pathog. 49: 226-236.
    Pubmed CrossRef

Related articles in JMB

More Related Articles

Article

Review

J. Microbiol. Biotechnol. 2012; 22(11): 1457-1466

Published online November 28, 2012 https://doi.org/10.4014/jmb.1205.05041

Copyright © The Korean Society for Microbiology and Biotechnology.

The Novel Biological Action of Antimicrobial Peptides via Apoptosis Induction

Jaeyong Cho 1, In–sok Hwang 1, Hyemin Choi 1, Ji Hong Hwang 1, Jae–Sam Hwang 2 and Dong Gun Lee 1*

1School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea, 2National Academy of Agricultural Science, Rural Development Administration, Suwon 441-100, Korea

Received: May 18, 2012; Accepted: June 13, 2012

Abstract

Antimicrobial peptides (AMPs) exert antimicrobial activity
against Gram-positive and Gram-negative bacteria, fungi, and
viruses by various mechanisms. AMPs commonly possess
particular characteristics by harboring cationic and
amphipathic structures and binding to cell membranes,
resulting in the leakage of essential cell contents by
forming pores or disturbing lipid organization. These
membrane disruptive mechanisms of AMPs are possible
to explain according to the various structure forming
pores in the membrane. Some AMPs inhibit DNA and/or
RNA synthesis as well as apoptosis induction by reactive
oxygen species (ROS) accumulation and mitochondrial
dysfunction. Specifically, mitochondria play a major role in
the apoptotic pathway. During apoptosis induced by AMPs,
cells undergo cytochrome c release, caspase activation,
phosphatidylserine externalization, plasma or mitochondrial
membrane depolarization, DNA and nuclei damage, cell
shrinkage, apoptotic body formation, and membrane
blebbing. Even AMPs, which have been reported to exert
membrane-active mechanisms, induce apoptosis in yeast.
These phenomena were also discovered in tumor cells
treated with AMPs. The apoptosis mechanism of AMPs is
available for various therapeutics such as antibiotics for
antibiotic-resistant pathogens that resist to the membrane
active mechanism, and antitumor agents with selectivity
to tumor cells.

Keywords: Antimicrobial peptide, Apoptosis, Mechanism, Antitumor effect

References

  1. Aarbiou, J., G. S. Tjabringa, R. M. Verhoosel, D. K. Ninaber, S. R. White, L. T. Peltenburg, et al. 2006. Mechanisms of cell death induced by the neutrophil antimicrobial peptides αdefensins and LL-37. Inflamm. Res. 55: 119-127.
    Pubmed CrossRef
  2. Aerts, A. M., D. Carmona-Gutierrez, S. Lefevre, G. Govaert, I. E. François, F. Madeo, et al. 2009. The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett. 583: 2513-2516.
    Pubmed CrossRef
  3. Andrés, M. T., M. Viejo-Díaz, and J. F. Fierro. 2008. Human lactoferrin induces apoptosis-like cell death in Candida albicans:Critical role of K+-channel-mediated K+ efflux. Antimicrob. Agents Chemother. 52: 4081-4088.
    Pubmed KoreaMed CrossRef
  4. Bak, M., R. P. Bywater, M. Hohwy, J. K. Thomsen, K. Adelhorst, H. J. Jakobsen, et al. 2001. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. Biophys. J. 81: 1684-1698.
    CrossRef
  5. Barroso, G., S. Taylor, M. Morshedi, F. Manzur, F. Gaviño, and S. Oehninger. 2006. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: A comparison of two different sperm subpopulations. Fertil. Steril. 85: 149-154.
    Pubmed CrossRef
  6. Bechinger, B. 1999. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy. Biochim. Biophys. Acta 1462: 157-183.
    CrossRef
  7. Benaroudj, N., D. H. Lee, and A. L. Goldberg. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276:24261-24267.
    Pubmed CrossRef
  8. Boman, H. G. and D. Hultmark. 1987. Cell-free immunity in insects. Annu. Rev. Microbiol. 41: 103-126.
    Pubmed CrossRef
  9. Bortner, C. D. and J. A. Cidlowski. 2002. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ. 9:1307-1310.
    Pubmed CrossRef
  10. Bortner, C. D. and J. A. Cidlowski. 2007. Cell shrinkage and monovalent cation fluxes: Role in apoptosis. Arch. Biochem. Biophys. 462: 176-188.
    Pubmed KoreaMed CrossRef
  11. Broekaert, W. F., F. R. Terras, B. P. Cammue, and R. W. Osborn. 1995. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108:1353-1358.
    Pubmed KoreaMed CrossRef
  12. Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250.
    Pubmed CrossRef
  13. Burhans, W. C., M. Weinberger, M. A. Marchetti, L. Ramachandran, J. A. D’Urso, and G. Huberman. 2003. Apoptosis like yeast cell death in response to DNA damage and replication defects. Mutat. Res. 532: 227-243.
    CrossRef
  14. Cantor, R. S. 2002. Size distribution of barrel-stave aggregates of membrane peptides: Influence of the bilayer lateral pressure profile. Biophys. J. 82: 2520-2525.
    CrossRef
  15. Cerón, J. M., J. Contreras-Moreno, E. Puertollano, G. Á. de Cienfuegos, M. A. Puertollano, and M. A. de Pablo. 2010. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 31:1494-1503.
    Pubmed CrossRef
  16. Chan, S. C., L. Hui, and H. M. Chen. 1998. Enhancement of the cytolytic effect of antibacterial cecropin by the microvilli of cancer cells. Anticancer Res. 18: 4467-4474.
    Pubmed
  17. Chen, H. M., W. Wang, D. Smith, and S. C. Chan. 1997. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336: 171-179.
    CrossRef
  18. Chiu, D., B. Lubin, and S. B. Shohet. 1979. Erythrocyte membrane lipid reorganization during the sickling process. Br. J. Haematol. 41: 223-234.
    Pubmed CrossRef
  19. Cho, J. and D. G. Lee. 2011. Oxidative stress by antimicrobial peptide pleurocidin triggers apoptosis in Candida albicans. Biochimie 93: 1873-1879.
    Pubmed CrossRef
  20. Cruciani, R. A., J. L. Barker, M. Zasloff, H. C. Chen, and O. Colamonici. 1991. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA 88: 3792-3796.
    CrossRef
  21. Düssmann, H., M. Rehm, D. Kögel, and J. H. Prehn. 2003. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: A single-cell analysis. J. Cell Sci. 116: 525-536.
    CrossRef
  22. Eisenberg, T., S. Büttner, G. Kroemer, and F. Madeo. 2007. The mitochondrial pathway in yeast apoptosis. Apoptosis 12: 1011-1023.
    Pubmed CrossRef
  23. Er, E., L. Oliver, P. F. Cartron, P. Juin, S. Manon, and F. M. Vallette. 2006. Mitochondria as the target of the pro-apoptotic protein Bax. Biochim. Biophys. Acta 1757: 1301-1311.
    Pubmed CrossRef
  24. Farnaud, S. and R. W. Evans. 2003. Lactoferrin - a multifunctional protein with antimicrobial properties. Mol. Immunol. 40: 395-405.
    CrossRef
  25. Fehlbaum, P., P. Bulet, S. Chernysh, J. P. Briand, J. P. Roussel, L. Letellier, et al. 1996. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc. Natl. Acad. Sci. USA 93: 1221-1225.
    CrossRef
  26. Franco, R., C. D. Bortner, and J. A. Cidlowski. 2006. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J. Membr. Biol. 209: 43-58.
    Pubmed CrossRef
  27. Furlong, S. J., J. S. Mader, and D. W. Hoskin. 2006. Lactoferricininduced apoptosis in estrogen-non-responsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen. Oncol. Rep. 15: 1385-1390.
  28. Gudmundsson, G. H., B. Agerberth, J. Odeberg, T. Bergman, B. Olsson, and R. Salcedo. 1996. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 238: 325-332.
    Pubmed CrossRef
  29. Hale, J. D. and R. E. Hancock. 2007. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5: 951-959.
    Pubmed CrossRef
  30. Hancock, R. E. and H. G. Sahl. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557.
    Pubmed CrossRef
  31. Heiskanen, K. M., M. B. Bhat, H. W. Wang, J. Ma, and A. L. Nieminen. 1999. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells. J. Biol. Chem. 274: 5654-5658.
    Pubmed CrossRef
  32. Horton, K. L., K. M. Stewart, S. B. Fonseca, Q. Guo, and S. O. Kelley. 2008. Mitochondria-penetrating peptides. Chem. Biol. 15: 375-382.
    CrossRef
  33. Hoskin, D. W. and A. Ramamoorthy. 2007. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta 1778:357-375.
    Pubmed
  34. Hsu, C. H., C. Chen, M. L. Jou, A. Y. Lee, Y. C. Lin, Y. P. Yu, et al. 2005. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 33: 4053-4064.
    Pubmed KoreaMed CrossRef
  35. Hwang, B., J. S. Hwang, J. Lee, and D. G. Lee. 2011. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans. Biochem. Biophys. Res. Commun. 405: 267-271.
    Pubmed CrossRef
  36. Hwang, B., J. S. Hwang, J. Lee, J. K. Kim, S. R. Kim, Y. Kim, and D. G. Lee. 2011. Induction of yeast apoptosis by an antimicrobial peptide, papiliocin. Biochem. Biophys. Res. Commun. 408: 89-93.
    Pubmed CrossRef
  37. Hwang, J. S., J. Lee, B. Hwang, S. H. Nam, E. Y. Yun, S. R. Kim, and D. G. Lee. 2010. Isolation and characterization of psacotheasin, a novel knottin-type antimicrobial peptide, from Psacothea hilaris. J. Microbiol. Biotechnol. 20: 708-711.
    Pubmed CrossRef
  38. Jin, X., H. Mei, X. Li, Y. Ma, A. H. Zeng, Y. Wang, et al. 2010. Apoptosis-inducing activity of the antimicrobial peptide cecropin of Musca domestica in human hepatocellular carcinoma cell line BEL-7402 and the possible mechanism. Acta Biochim. Biophys. Sin. 42: 259-265.
    Pubmed CrossRef
  39. Kapuscinski, J. 1995. DAPI: A DNA-specific fluorescent probe. Biotech. Histochem. 70: 220-233.
    CrossRef
  40. Kataoka, M., Y. Fukura, Y. Shinohara, and Y. Baba. 2005. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry. Electrophoresis 26: 3025-3031.
    Pubmed CrossRef
  41. Lee, D. G., H. K. Kim, S. A. Kim, Y. Park, S. C. Park, S. H. Jang, and K. S. Hahm. 2003. Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem. Biophys. Res. Commun. 305: 305-310.
    CrossRef
  42. Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11:23-27.
    CrossRef
  43. Liao, R. S., R. P. Rennie, and T. A. Talbot. 1999. Assessment of the effect of amphotericin B on the vitality of Candida albicans. Antimicrob. Agents Chemother. 43: 1034-1041.
    Pubmed KoreaMed
  44. Lin, W. J., Y. L. Chien, C. Y. Pan, T. L. Lin, J. Y. Chen, S. J. Chiu, and C. F. Hui. 2009. Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30:283-290.
    Pubmed CrossRef
  45. Ludtke, S. J., K. He, W. T. Heller, T. A. Harroun, L. Yang, and H. W. Huang. 1996. Membrane pores induced by magainin. Biochemistry 35: 13723-13728.
    Pubmed CrossRef
  46. Madeo, F., E. Fröhlich, and K. U. Fröhlich. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139: 729-734.
    Pubmed KoreaMed CrossRef
  47. Mader, J. S., J. Salsman, D. M. Conrad, and D. W. Hoskin. 2005. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Mol. Cancer Ther. 4: 1-13.
    Pubmed CrossRef
  48. Maeno, E., Y. Ishizaki, T. Kanaseki, A. Hazama, and Y. Okada. 2000. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97: 9487-9492.
    Pubmed CrossRef
  49. Mills, J. C., N. L. Stone, J. Erhardt, and R. N. Pittman. 1998. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J. Cell Biol. 140: 627-636.
    Pubmed KoreaMed CrossRef
  50. Moore, A. J., D. A. Devine, and M. C. Bibby. 1994. Preliminary experimental anticancer activity of cecropins. Pept. Res. 7:265-269.
    Pubmed
  51. Mor, A., K. Hani, and P. Nicolas. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J. Biol. Chem. 269: 31635-31641.
    Pubmed
  52. Morton, C. O., S. C. Dos Santos, and P. Coote. 2007. An amphibian-derived, cationic, alpha-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol. Microbiol. 65: 494-507.
    Pubmed CrossRef
  53. Niyonsaba, F., A. Someya, M. Hirata, H. Ogawa, and I. Nagaoka. 2001. Evaluation of the effects of peptide antibiotics human β-defensins-1/-2 and LL-37 on histamine release and prostaglandin D2 production from mast cells. Eur. J. Immunol. 31: 1066-1075.
    CrossRef
  54. Park, C. and D. G. Lee. 2010. Melittin induces apoptotic features in Candida albicans. Biochem. Biophys. Res. Commun. 394: 170-172.
    CrossRef
  55. Park, C. B., M. S. Kim, and S. C. Kim. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem. Biophys. Res. Commun. 218: 408-413.
    Pubmed CrossRef
  56. Park, C. B., H. S. Kim, and S. C. Kim. 1998. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244: 253-257.
    Pubmed CrossRef
  57. Pereira, C., N. Camougrand, S. Manon, M. J. Sousa, and M. Côrte-Real. 2007. ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol. Microbiol. 66: 571-582.
    Pubmed CrossRef
  58. Pereira, C., R. D. Silva, L. Saraiva, B. Johansson, M. J. Sousa, and M. Côrte-Real. 2008. Mitochondria-dependent apoptosis in yeast. Biochim. Biophys. Acta 1783: 1286-1302
    Pubmed CrossRef
  59. Perrone, G. G., S. X. Tan, and I. W. Dawes. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368.
    Pubmed CrossRef
  60. Peters, B. M., M. E. Shirtliff, and M. A. Jabra-Rizk. 2010. Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6: e1001067.
    Pubmed KoreaMed CrossRef
  61. Petit, P. X., S. A. Susin, N. Zamzami, B. Mignotte, and G. Kroemer. 1996. Mitochondria and programmed cell death: Back to the future. FEBS Lett. 396: 7-13.
    CrossRef
  62. Phillips, A. J., I. Sudbery, and M. Ramsdale. 2003. Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100: 14327-14332.
    Pubmed KoreaMed CrossRef
  63. Pouny, Y., D. Rapaport, A. Mor, P. Nicolas, and Y. Shai. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31: 12416-12423.
    Pubmed CrossRef
  64. Ramachandran, S., L. H. Xie, S. A. John, S. Subramaniam, and R. Lal. 2007. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2: e712.
    Pubmed KoreaMed CrossRef
  65. Rana, M., S. Chatterjee, S. Kochhar, and B. M. J. Pereira. 2006. Antimicrobial peptides: A new dawn for regulating fertility and reproductive tract infections. J. Endocrinol. Reprod. 20: 88-95.
  66. Robinson Jr., W. E., B. McDougall, D. Tran, and M. E. Selsted. 1998. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63: 94-100.
    Pubmed
  67. Rollins-Smith, L. A., L. K. Reinert, C. J. O’Leary, L. E. Houston, and D. C. Woodhams. 2005. Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45: 137-142.
    Pubmed CrossRef
  68. Sang, Y. and F. Blech. 2008. Antimicrobial peptides and bacteriocins: Alternatives to traditional antibiotics. Anim. Health Res. Rev. 9: 227-235.
    Pubmed CrossRef
  69. Scandalios, J. G. 2002. The rise of ROS. Trends Biochem. Sci. 27: 483-486.
    CrossRef
  70. Selsted, M. E., M. J. Novotny, W. L. Morris, Y. Q. Tang, W. Smith, and J. S. Cullor. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267:4292-4295.
    Pubmed
  71. Setsukinai, K., Y. Urano, K. Kakinuma, H. J. Majima, and T. Nagano. 2003. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. Biol. Chem. 278: 3170-3175.
    Pubmed CrossRef
  72. Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alphahelical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462: 55-70.
    CrossRef
  73. Shai, Y. and Z. Oren. 2001. From “carpet” mechanism to denovo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22: 1629-1641.
    CrossRef
  74. Silvestro, L., J. N. Weiser, and P. H. Axelsen. 2000. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44: 602-607.
    Pubmed KoreaMed CrossRef
  75. Sørensen, O. E., P. Follin, A. H. Johnsen, J. Calafat, G. S. Tjabringa, P. S. Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951-3959.
    Pubmed CrossRef
  76. Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, et al. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441-446.
    Pubmed CrossRef
  77. Suttmann, H., M. Retz, F. Paulsen, J. Harder, U. Zwergel, J. Kamradt, et al. 2008. Antimicrobial peptides of the Cecropinfamily show potent antitumor activity against bladder cancer cells. BMC Urol. 8: 5.
    Pubmed KoreaMed CrossRef
  78. Torrent, M., D. Andreu, V. M. Nogués, and E. Boix. 2011. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6: e16968.
    Pubmed KoreaMed CrossRef
  79. Uren, A. G., K. O’Rourke, L. A. Aravind, M. T. Pisabarro, S. Seshagiri, E. V. Koonin, and V. M. Dixit. 2000. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6: 961-967.
    CrossRef
  80. Utsugi, T., A. J. Schroit, J. Connor, C. D. Bucana, and I. J. Fidler. 1991. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 51: 30623066.
  81. Wadskog, I., C. Maldener, A. Proksch, F. Madeo, and L. Adler. 2004. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell 15: 1436-1444.
    Pubmed KoreaMed CrossRef
  82. Wang, H. X. and T. B. Ng. 2005. An antifungal peptide from the coconut. Peptides 26: 2392-2396.
    Pubmed CrossRef
  83. Wang, J. Y. 2001. DNA damage and apoptosis. Cell Death Differ. 8: 1047-1048.
    Pubmed CrossRef
  84. Wang, K. R., B. Z. Zhang, W. Zhang, J. X. Yan, J. Li, and R. Wang. 2008. Antitumor effects, cell selectivity and structureactivity relationship of a novel antimicrobial peptide polybiaMPI. Peptides 29: 963-968.
    Pubmed CrossRef
  85. Woolley, G. A. and B. A. Wallace. 1993. Temperature dependence of the interaction of alamethicin helices in membranes. Biochemistry 32: 9819-9825.
    Pubmed CrossRef
  86. Wu, M., E. Maier, R. Benz, and R. E. Hancock. 1999. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235-7242.
    Pubmed CrossRef
  87. Yang, D., Q. Chen, A. P. Schmidt, G. M. Anderson, J. M. Wang, and J. J. Wooters. 2000. LL-37, the neutrophil granuleand epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192: 1069-1074.
    Pubmed KoreaMed CrossRef
  88. Yang, L., T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 81: 1475-1485.
    CrossRef
  89. Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55:27-55.
    Pubmed CrossRef
  90. Yoo, Y. C., R. Watanabe, Y. Koike, M. Mitobe, K. Shimazaki, S. Watanabe, and I. Azuma. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: Involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628.
    Pubmed CrossRef
  91. Zachowski, A. 1993. Phospholipids in animal eukaryotic membranes: Transverse asymmetry and movement. Biochem. J. 294: 1-14.
    Pubmed KoreaMed
  92. Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
    Pubmed CrossRef
  93. Zhang, L., A. Rozek, and R. E. Hancock. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714-35722.
    Pubmed CrossRef
  94. Zivna, L., Z. Krocova, A. Härtlova, K. Kubelkova, J. Zakova, E. Rudolf, et al. 2010. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb. Pathog. 49: 226-236.
    Pubmed CrossRef